专利名称::建筑材料板的制造方法
技术领域:
:本发明涉及用于诸如屋顶和壁板等应用的板状建筑材料。更具体而言,其涉及包含热塑性树脂和矿物填料的板材以及制造这类材料的方法。
背景技术:
:市场上可以获得多种类型天然的和合成的屋顶材料。一些较流行的天然类型包括天然石板、盖屋板和木瓦。天然石板因其迷人的外观和耐久性以及因为它还具有其他高度期望的性质如防火和防水性,一直是流行的屋顶材料。然而它非常昂贵,因此通常仅在最昂贵的房子和增加成本可以是合理的其他结构中用作屋顶。石板是脆性材料,相当容易裂开或者断裂。天然石板瓦相当耐用;但是它们在其安装时需要大量的劳动并且可能因受冲击而断裂。它们天性易碎,而且在运输和安装过程中破损严重。它们甚至在安装到屋顶之后也是易碎的,并且可能被屋顶上的行走损坏。石板瓦往往过重,在地震和强风中很危险,并且在火灾时穿破屋顶落下。因为瓦片如此之重,所以运输它们也很昂贵。此外,由于天然石板的重量,与松木盖屋板或者木瓦屋顶或者浙青屋顶相比,石板屋顶还需要额外的结构支撑。木制盖屋板和木瓦常常遭受破坏、腐烂和退色。它们的成本相对高,并且其安装耗费劳力。此外,木制盖屋板和木瓦可能相对重并且易燃、多孔,而不能够承受相对高的风速。木制盖屋板和木瓦的缺点在于它们吸收湿气并溶胀。因此,它们必须以隔开的布置施用以留出湿膨胀的空间。由于木制盖屋板和木瓦的吸水倾向,随着时间的推移它们往往卷曲,而不能在屋顶上保持平坦。合成屋顶材料提供优于这些天然材料的一些优点。它们可模制并且轻质。然而通常就性能而言,它们并不是可被完全接受的,因为它们常常不满足用于屋顶应用所期望的全部要求。例如,合成屋顶材料通常在配方中具有高浓度塑料或者橡胶含量,这直接影响产品的耐火性,其原因是塑料和橡胶材料缺乏耐火性。在一些情形中,已经通过添加高浓度的阻燃剂提高了产品的耐火性,这进而使得产品更加昂贵。由于挥发性组分的散发,具有循环橡胶的产品在温暖的日子也可能具有强烈的气味。任何合成的屋顶材料的一个期望性质是能够阻燃。尽管任何地方都期望耐火性,但这在气候炎热和干燥的地区尤为如此。耐火性的一个特别重要的方面是屋顶材料防止火灾从热源如燃烧灰烬扩散、防止沿屋顶燃烧从而使屋顶板或者建筑的内部暴露于火灾的能力。任何屋顶材料的另一期望性质是其具有长期的延展性,使得安装者和所有者能够在屋顶产品的使用期限期间的任意时间在屋顶上行走而不导致损坏。屋顶材料的延展性还使得在损坏时,例如由于落下的树枝招致的损坏的情形中,更易于进行修补。另外,随着公众日益增加的关于再循环以消耗较少材料的重要性的意识,期望的是将再循环材料用作任意的合成屋顶材料的一部分。这为再循环材料提供了市场并且鼓励了循环实践,如果知道这些材料的商业应用的话。借助于由塑料树脂和无机填料所制成的模制产品,已经进行了多种尝试以满足合成建筑材料的要求。下面的专利文件是一些例子。US5,571,868(Datta等人)公开了用于屋顶用板材中的弹性聚合物组合物。该材料可以包含弹性聚合物和无机填料,并且可以通过加热、辊轧和压延混合物来制备。US3,070,577(Gessler等人)公开了含有无机填料的聚合物组合物。该混合物可以通过加热它并使它通过辊形成为用于屋顶的薄板。US4,263,186(Bluemel)公开了通过混合聚乙烯和碳酸钙而制得的热塑性复合材料。其可以在辊轧机上形成为板,而且所得到的材料用于建筑构造中。US2005/0140041A1(Seth)公开了一种通过挤出塑料树脂和填料的混合物制成的合成建筑材料,所述塑料树脂可以是循环聚乙烯,所述填料可以是石灰石。US3,976,612(Kaji等人)公开了一种制备复合板的方法,其包括将无机钙化合物和聚乙烯进行混合,捏合并加热混合物成为糊料并将其压延成膜。1978年11月29日公布的GB1534128公开了一种制备含有聚合物树脂和碳酸钙的复合板的方法,其包括加热组合物,将其在160180°C的温度下通过25mm的辊轧区轧成粗糙膜并且在160180°C的温度下通过0.1Imm的辊轧区轧成光滑膜。但是,在建筑工业中仍然存在对具有对用于屋顶和壁板应用而言重要的特性的合成板材的需求。期望的是具有能够克服之前生产合成材料的尝试之不足的合成材料。存在对如下合成板材的需求耐用、重量适中、便宜、防火、有韧性和延展性,可以通过部分地使用再循环材料来制备,并且可以使用较便宜的生产设备来进行生产。
发明内容本发明人已经发现,当在受控的温度条件下使高度矿物填充的热塑性复合材料经受应变时,可以降低通常与使用高填料比相关的韧性和延展性损失,并且产生韧性和延展性提高的板材。本发明提供一种用于屋顶或者壁板应用的建筑材料板的制备方法,以及由该方法所制得的板材。制备热塑性树脂和矿物填料的混合物,所述树脂占混合物的约IOwt%40wt%,而填料占混合物的约60wt%90wt%。将混合物在高于树脂的熔融范围的温度进行混合并且在该温度形成为板。使板冷却直至表面所处的温度低于树脂的熔融范围的中点,在该点将其辊轧(压延),例如通过使其通过压延辊。根据本方法的一个实施方案,使板的表面冷却至205225°F(96107°C)的温度用于辊轧。在另一实施方案中,树脂是聚乙烯且表面温度范围为210220°F(991040C)0在又一实施方案中,树脂是聚丙烯且表面温度范围为220250°F(104121°C)。由该方法制备的具有高浓度矿物填料的板材,是耐火的并且比使用较高比例的树脂制备的产品便宜。板材是耐用、延展性的、重量适中并且耐候化。可以使用较便宜的制造设备来生产它。板材可以结合高比例的循环树脂,如循环高密度聚乙烯(HDPE)。在制备含有聚乙烯和矿物填料的板材的现有技术方法中,由于HDPE所产生的脆性,可以结合进产品中的HDPE的量,特别是循环HDPE的量是有限的。本发明的方法降低了板材的脆性并且允许使用比现有技术方法中更高含量的HDPE,特别是循环HDPE。从下面的优选实施方案的说明中,本发明的这些和其他优点和特点将变得显而易见。优选实施方案的详述本发明的方法生产含有热塑性树脂和矿物填料的建筑材料板,如屋顶板或者壁板。在本说明书中,措词“板”包括实际用于建筑应用中的具有任意厚度的片。在优选实施方案中,树脂为聚乙烯,填料为石灰石(碳酸钙)粉末。将石灰石加热到300350°F(149177°C),向其加入丸粒粒、薄片或者粉状形式的聚乙烯。还加入下面讨论类型的添加剂。使混合物的温度维持在聚乙烯的熔融范围之上。聚乙烯-石灰石配方优选维持在约300325°F(149163°C)。在混合聚乙烯和石灰石的同时维持该温度。在敞开的气氛中借助于双刀或者双螺杆搅拌机中的捏合进行混合。敞开的气氛允许放气,即释放由组分中的湿气形成的蒸汽,以使夹带气体最少并降低成品中空隙的尺寸和数目。将经捏合的糊料形成为具有期望宽度和长度的板。厚度为约四分之一英寸(6.4mm),这适合于典型的屋顶和侧壁应用。然后使板的表面冷却至210220°F(99104°C),在该点使板在受压力控制的压延辊之间通过,这导致在板的纵向上约10%的应变。压延辊同时使板经受应变和冷却,产生具有期望物性的成品板。用以产生期望程度应变的压延力高达约15000磅。使压延辊维持在用于混合物中的聚合物的固相线温度以下,例如室温150°C。可以对辊进行水冷以将它们维持在该范围。当四分之一英寸厚的板的表面的表面温度为210220°F(99104°C)时,板中间的温度为225245°F(107118°C)。为了控制过程中实施,表面温度要较易测量。可以将压延辊图案化用以在应变步骤过程中同时在板上凸印表面纹理或者特征。该表面特征可以包括模拟例如天然石板、松木木瓦、松木壁板、木纹或者其他人造纹理或者图案的那些特征。通过改变应变步骤期间由压延辊施加的力,可以改变成品的色调来更好地模拟天然产品如石板和松木中发现的色调的变化。通过随机改变传送到维持压延力的致动器的压力来产生力的变化。致动器是一类具有小的或不具有粘滞作用的仪器,使得即使小的压力变化也可实现压延力的成比例变化。可以向所产生的板材的表面施加例如Varathane(商标)聚氨酯或者其他聚合物涂层的保护性涂层。这明显降低板材对表面磨损的易感性。在树脂-填料混合物中,树脂按重量计可以占混合物的大约1040%,优选1035%,更优选约20%;而矿物填料可以占大约6090%,优选6590%,更优选大约80%。树脂可以包含聚乙烯。聚乙烯可以包括高密度聚乙烯和线性低密度聚乙烯的混合物。HDPE与LLDPE的比例按重量计可以为大约31。任意或者所有的树脂都可以包含再循环材料,并且优选包含至少一半的再循环材料。高密度聚乙烯可以包括再循环的奶瓶。或者,树脂可以包含聚丙烯和/或再循环聚丙烯。矿物填料优选石灰石。可以用于本发明中的其他矿物填料的实例包括白云石、滑石、硅石和粉煤灰。矿物填料的粒度可以为大约100目。或者,可以使用100目和200目的混合物,例如约90%的100目和约10%的200目,以微幅降低板材对于表面磨损的易感性。已经发现较大粒度如30到40目或者更大粒度的石灰石往往导致脆性板材。树脂和矿物的混合物还可以包含对于具体应用有用的添加剂。当板要用作屋顶板时,可以向混合物中添加诸如炭黑的稳定剂(相对于树脂为约1)以稳定成品抵抗紫外线和阳光的解聚作用。可以包含UV抑制剂,例如由CibaSpecialtyChemicals制得的Tinuvin783和Tinuvin328(商标)以及由Clariant制得的HostavinN321禾口HostavinARO8(商标)。可以包含无机颜料,例如氧化铬绿、未加工的钛、钛白和氧化铁如富铁黄土和富铁锻黄土。可以包含由Clariant制得的蜡Licocene(商标),来提高延展性。混合物可以包含云母,其具有提高板材延展性的作用和颜料的作用。混合物可以包含约0.1Iwt%的云母。本发明的板材比较耐火和防火。如果期望提高耐火性,则树脂_填料混合物中可以包含防火添加剂。实例包括高度氯化的萘、磷酸酯、有机氟化物、硅氧烷和硅酸酯。混合物还可以包含加工稳定剂或者润滑剂如硬脂酸金属盐、烃、脂肪酸、酯、酰胺、含氟聚合物、聚硅氧烷或者氮化硼。实施例1制备含有约100目石灰石、18wt%聚乙烯(13.5wt%的再循环HDPE薄片和4.5wt%的原始LLDPE)和2衬%润滑剂(硬脂酸锌或者硬脂酸)的组合物。将混合物在300325°F(149163°C)进行制备、捏合且形成为板。使该制备的样品#1冷却至约210220°F(99104°C)的表面温度,并在该温度下通过压延辊产生应变。使该制备的样品#2冷却至约70°F(21°C)的环境温度并且在该温度下通过压延辊产生应变。简单地使该制备的样品#3冷却至环境温度但不经受应变。按如下对样品进行脆性和延展性的测试。将约4.5英寸(11.4cm)长、1英寸(2.54cm)宽和0.25英寸(6.4mm)厚的样品装载入三点弯曲测试装置中,端支承体分开4英寸(10.2cm),载荷施加在支承体之间的中点处。施加载荷并测量所产生的位移,在图I中给出汇总的结果。<image>imageseeoriginaldocumentpage8</image>图I当在三点弯曲测试装置中测试时,样品3表现出脆性行为和脆性断裂。在屋顶应用中脆性行为是不期望的,因为在已经应用了脆性的屋顶材料后仅仅在其上行走就可能导致断裂和永久性损伤。另外,当用钉子将屋顶材料固定到位时,不期望脆性行为,而优选延展性行为。敲钉时的延展性降低了屋顶裂开或者在紧靠钉眼处产生过量内应力的可能性。样品1和2表现出较低的强度,但是延展性显著大于样品3。样品1和2的延展性与通过使得这些样品冷却并随后使样品应变和冷却而导致的物理变化直接相关。与样品2相比,样品1表现出强度增加,因此,由于样品1的延展性和适中的强度,认为样品1是三个样品中用于屋顶应用最理想的。实施例2研究了由聚乙烯和石灰石的混合物制成的板材中具有增加含量的石灰石的影响。制备具有以下组成的样品AD。样品A:52%石灰石,46%聚乙烯(其中四分之三是再循环HDPE,四分之一是原始LLDPE)。样品B:60%石灰石,38%聚乙烯(其中四分之三是再循环HDPE,四分之一是原始LLDPE)。样品C石灰石,27%聚乙烯(其中四分之三是再循环HDPE,四分之一是原始LLDPE)。样品D:80%石灰石,18%聚乙烯(其中四分之三是再循环HDPE,四分之一是原始LLDPE)。在约300325°F(149163°C)捏合各个样品组合物并形成为板。不使板经受如通过压延进行的应变。如实施例1所述,使用三点弯曲测<table>tableseeoriginaldocumentpage9</column></row><table>位移-英寸图II试法对样品板(尺寸与实施例1中的相同)进行脆性和延展性的测试。结果汇总在图II中。样品C和D在低和中等变形下断裂,而样品A和B在测试的范围内并没有断裂。样品A和B显示出在建造工业中有用的延展性行为。然而,因为高含量的热塑性树脂和低含量的矿物填料,生产样品A和B比较昂贵。实施例3研究了在220°F(104°C)用不同含量的石灰石填料制成的板的应变效果。制备具有实施例2中相同组成的样品A和D。在约300325°F(149163°C)制备它们并捏合且形成为板。使它们冷却至约220°F(104°C)的表面温度,且在该温度下通过使它们经过压延辊来产生应变。根据实施例1中所述的方法对这4个样品进行脆性和延展性测试。结果汇总在图III中。<image>imageseeoriginaldocumentpage10</image>图III结果表明所有样品都表现出延展性行为,而与矿物填料的含量无关。实施例4研究应变温度的影响。制备具有实施例1中所述的相同组成的样品。将它们在约300325°F(149163°C)进行捏合并形成为板。将它们分别冷却至195°F(91°C)、200°F(93°C)、210°F(99°C)、220°F(104°C)、240°F(116°C)、250°F(121°C)和260°F(127°C)的表面温度,并且在这些温度下通过压延而经受应变。如实施例1中所述,使用三点弯曲测试法对样品进行脆性和延展性测试。结果汇总在图IV中。结果表明在210和220°F的表面温度下经受应变的样品表现出最高水平的延展性,而在更低或者更高表面温度下经受应变的样品表现出不同程度的脆性行为。<image>imageseeoriginaldocumentpage11</image>图IV不希望受缚于任何特定的针对该实施例中所示范的行为的科学理论,据信在其组成材料在240、250或者260°F的表面温度下经受应变的样品中,在应变后出现聚乙烯大部分凝固,从而产生较大的内应力并且导致脆性行为。在其组成材料在190或者200°F的表面温度下经受应变的样品中,在应变之前已经出现聚乙烯大部分凝固,熔融形式的聚乙烯不足以允许在石灰石和聚乙烯的复合基体内充分运动来缓和因应变导致的内应力。因此,这些样品也表现出脆性行为。当本发明的四分之一英寸厚的板的表面温度为大约220°F(104°C)时,板内的温度为约225245°F。实施例5研究了低浓度云母对复合材料的延展性的影响。制备含有78wt%的石灰石、18wt%聚乙烯(13.再循环HDPE和4.5wt%的原始LLDE)和2wt%润滑剂(硬脂酸锌或者硬脂酸)的组合物,该组合物不含云母或者含有0.2衬%的云母。通过实施例1中所述的方法将组合物形成为板并且在210°F(99°C)通过辊轧经受应变,或者不经受应变。样品A没有云母且不经受应变。样品B没有云母但经受应变。样品C有云母且不经受应变。样品D有云母且经受应变。根据实施例1中所述的方法,对这4个样品进行脆性和延展性测试。结果汇总在图V中。<image>imageseeoriginaldocumentpage12</image>图V样品A表现出脆性行为,样品C表现出一定程度的延展性行为。尽管引入云母看起来改善未在210°F经受辊轧的复合材料的延展性,但是认为这种延展性的改善对于建筑应用而言是不足的。具体地,由于其有限的延展性,这种延展性的改善不足以允许钉合复合材料而不存在裂开的高可能性。例如,当样品A和C被钉进离边缘大约二分之一英寸时,样品裂开。样品B和D在复合材料于210°F被辊轧之后表现出复合材料的延展性行为。虽然样品B和D出现相同的曲线,但是当在弯曲测试之后用手反复地前后弯曲样品时,样品B(没有云母)比样品D(有云母)断裂或者失效地早得多,其表明样品D的延展性提高。该改善的延展性在其中期望提高韧性的应用中是有价值的。实施例6研究了经受应变的和未经受应变的样品的压缩和拉伸性质。如实施例1中所述制备板材,其样品之一在210°F(样品Α)下经受应变,另一个样品不经受应变(样品B)。测试样品的压缩和拉伸性质。结果汇总在图VI中。为了测定压缩性质,测试尺寸大约为1/4英寸X1/4英寸的样品A和样品B的标样。对于样品A的标样,1/2英寸的维度垂直于应变的方向。使标样沿着1/2英寸的维度负载大约100磅的压缩力并且测量和记录载荷和位移。在100磅的载荷下,样品A表现出为样品B的约4倍的压缩位移,如图VI的左下象限中示出的负向位移所证实的那样。为了测定拉伸性质,测试四又二分之一英寸的长狗骨状标样,该标样的中间部分大约为1/4英寸X1/4英寸,长2英寸。对于样品A的标样,2英寸的维度垂直于应变的方向。用沿2英寸维度施加的拉伸载荷来测试标样并且测量和记录载荷和位移。样品A表现出延展性行为,样品B表现出脆性行为,如图IV的右上象限中示出的结果所证实的那样。测试结果提供了进一步的证据,即通过使复合材料在大约210°F经受应变提高了延展性。<table>tableseeoriginaldocumentpage13</column></row><table>图VI实施例7研究应变温度对其中树脂包含聚丙烯的板材的影响。制备具有如下组合物的样品,所述组合物含有约SOwt%的100目的石灰石、18衬%聚丙烯和2衬%润滑剂(硬脂酸锌或者硬脂酸)。将它们在约300325°F(149163°C)进行捏合并形成为板。使它们分别冷却至210°F(99°C)、220°F(104°C)、230°F(110°C)、240°F(116°C)禾口250°F(121°C)的表面温度,并且在这些温度下通过压延辊经受应变。简单地使一个样品冷却至室温且不经受应变。使用实施例1中所述的三点弯曲测试法对样品进行脆性和延展性测试。结果汇总在图VII中。尽管根据不同的实施方案对本发明进行了说明,但是无意于将本发明限于这些实施方案。在本发明范围内的各种改变对于本领域技术人员而言将是显而易见的。本发明的范围由所附权利要求限定。权利要求一种制造用于屋顶或侧壁应用的建筑材料板的方法,所述方法包括如下步骤(a)制备含有热塑性树脂和矿物填料的混合物,所述树脂占所述混合物的约10wt%~40wt%,所述填料占所述混合物的约60wt%~90wt%;(b)在所述树脂的熔融范围之上的温度混合所述混合物;(c)将所述混合物成形为板,所述成形步骤是在步骤(b)的所述温度下进行的;(d)使所述板的表面冷却至所述热塑性树脂的熔融范围的中点之下的温度;和(e)当所述表面温度处于步骤(d)的所述范围中时使所述板经受应变。2.根据权利要求1所述的方法,其中步骤(d)中的所述温度为205225°F(961070C)。3.根据权利要求1所述的方法,其中所述热塑性树脂包含聚乙烯。4.根据权利要求2所述的方法,其中所述聚乙烯是高密度聚乙烯和线性低密度聚乙烯的混合物。5.根据权利要求3所述的方法,其中所述高密度聚乙烯和所述线性低密度聚乙烯的重量比为大约31。6.根据前述权利要求中任一项所述的方法,其中步骤(d)中的所述温度为210220°F(99104°C)。7.根据权利要求1所述的方法,其中所述热塑性树脂包含聚丙烯。8.根据权利要求7所述的方法,其中步骤(d)中的所述温度为220250°F(104121°C)。9.根据前述权利要求中任一项所述的方法,还包括在所述应变步骤期间降低所述表面温度。10.根据前述权利要求中任一项所述的方法,其中一半或更多的所述热塑性树脂是再循环树脂。11.根据前述权利要求中任一项所述的方法,其中所述热塑性树脂是丸粒、薄片或者粉末的形式。12.根据前述权利要求中任一项所述的方法,其中所述填料是石灰石。13.根据权利要求112中任一项所述的方法,其中所述填料是白云石、滑石、硅石和粉煤灰中之一。14.根据权利要求12所述的方法,其中所述石灰石的粒度为约100目。15.根据前述权利要求中任一项所述的方法,其中所述热塑性树脂占所述混合物的IOwt%35wt%。16.根据权利要求114中任一项所述的方法,其中所述热塑性树脂占所述混合物的约20wt%。17.根据权利要求115中任一项所述的方法,其中所述填料占所述混合物的65wt%~90wt%o18.根据权利要求116中任一项所述的方法,其中所述填料占所述混合物的约80wt%o19.根据前述权利要求中任一项所述的方法,其中所述混合物还包含云母。20.根据权利要求19所述的方法,其中所述云母占所述混合物的0.Iwt%1.Owt%。21.根据前述权利要求中任一项所述的方法,其中所述混合物还包含炭黑、UV稳定剂、延展性提高剂和防火组分中的一种或更多种。22.根据前述权利要求中任一项所述的方法,其中所述制备所述混合物的步骤包括加热所述填料并且将所述树脂加到所述填料中。23.根据权利要求19所述的方法,其中所述填料被加热到约350°F(177°C)。24.根据前述权利要求中任一项所述的方法,其中步骤(b)中的所述温度为300325°F(149163°C)。25.根据前述权利要求中任一项所述的方法,其中所述混合步骤是通过捏合来进行的。26.根据前述权利要求中任一项所述的方法,其中所述混合步骤是在敞开的气氛中进行的。27.根据前述权利要求中任一项所述的方法,其中所述应变步骤包括使所述板在压延辊之间通过。28.根据前述权利要求中任一项所述的方法,其中所述应变步骤使所述板的长度增加10%。29.根据权利要求27所述的方法,其中所述辊将凸出的图案施加到所述板上。30.根据权利要求27所述的方法,其中由所述压延辊所施加的压延力在应变步骤期间变化以使所述板的色调变化。31.根据前述权利要求中任一项所述的方法,其中在步骤(c)中形成的所述板为约四分之一英寸(6.4mm)厚。32.根据前述权利要求中任一项所述的方法,还包括在步骤(e)之后向所述板的所述表面施加保护性涂层的步骤。33.一种根据权利要求132中任一项的方法制得的建筑材料板。全文摘要一种用于屋顶或者壁板应用的建筑材料板的制造方法,以及由该方法制得的板材。制备热塑性树脂和矿物填料的混合物,树脂占混合物的约10wt%~40wt%,填料占约60wt%~90wt%。将混合物在树脂的熔点之上的温度进行混合并在该温度下成形为板。使板冷却直至表面温度在热塑性树脂的熔融范围的中点之下,例如对于聚乙烯为210~220°F(99~104℃),在该点通过使其通过压延辊发生应变。由该方法制得的具有高浓度的矿物填料的板材,防火、耐用、有延展性、具有适中的重量并且耐气候变化。可以使用较便宜的制造设备来生产它。板材可以结合高比例的循环树脂,例如循环的高密度聚乙烯。文档编号C08L23/12GK101815747SQ200780100924公开日2010年8月25日申请日期2007年10月1日优先权日2007年10月1日发明者杰弗瑞·F·温塞尔,罗伯特·W·苏吉特申请人:G.R.绿色建筑产品公司