一种从玉米纤维中提取半纤维素的方法
【专利摘要】一种分离玉米纤维的一种或多种成分的方法,该方法包括将玉米纤维与含有至少一种弱酸的提取液接触,将得到的纤维与液体的混合物的温度升至使玉米纤维中的半纤维素溶解进入液体中,将所述混合物冷却,并将冷却后的提取混合物分离成含有溶解的纤维素的可溶部分和含有木质素的不可溶部分。
【专利说明】一种从玉米纤维中提取半纤维素的方法
[0001]相关申请的交叉引用
[0002]本申请是要求2011年7月7日提交的美国临时申请号为61/505373的专利申请的优先权的正式申请,并将其所有内容并入本发明中。
【技术领域】
[0003]本发明涉及对碾磨过的玉米的加工。具体地,本发明涉及从玉米纤维中提取半纤维素。
【背景技术】
[0004]在美国,玉米的湿磨法每年可以产生玉米纤维4,000,000多吨。到目前,这些玉米纤维被美国的动物饲养所使用。玉米纤维含有但不限于,被称为玉米纤维胶和阿糖基木聚糖的半纤维素。玉米半纤维素的市场价值很可能远远高于它在动物饲养上的应用。例如,玉米半纤维素被认为可以用来在一些应用中,如在饮料香精乳化剂中,作为阿拉伯树胶的替代物。另外,玉米半纤维素也被认为可以在一些应用中,如在水溶液与悬浮液中膜的形成、增厚、乳化和稳定中,发挥作用。进一步地,已知在食品和饮料中含有玉米半纤维素和它的有限水解产物,聚合度(DP)为3-10的阿拉伯糖基木聚糖-低聚糖(AX0S),可以对健康带来有益影响,如增加对钙镁的吸收,减少对胆固醇的吸收,降低血浆胆固醇,减少肝脏中的胆固醇累积,以及带来好 的益菌保护效应。
[0005]鉴于玉米半纤维素的大量可能的较高价值的应用,从玉米纤维中提取半纤维素的工艺已具有商业规模,并继续成为调查和开发工作的主题也就不足为怪了。例如,美国专利号6,147,206 (Donner等)公开了一种获得大分子量的半纤维素的方法,涉及在用碱性溶液处理磨碎的玉米期间与处理后用过氧化氢处理,该方法经常被称为“碱性过氧化氢法”或者“ΑΗΡ”方法。采用AHP方法生产的半纤维素在水中有很高的溶解度。已知采用AHP方法生产的半纤维素的产量在大约35wt% (在25°C下提取24个小时)到大约42wt% (在60°C下提取2个小时)的范围内。对AHP的最终产物做色谱分析连同摩尔质量检测,结果显示为双峰的摩尔质量分布,具有闻分子量成分(8.4-16.1 X 105g/mole)和低分子量成分(1.1-2.1 X 105g/mole)。白色、蓬松的纤维素/阿糖基木聚糖混合物(CAX)由从玉米纤维胶的生产后剩下的固体残渣生成。CAX含有大量的食糖,显示主要有L-树胶醛醣、D-木糖和D, L-半乳糖。即便在极端的AHP环境(例如,I个小时,IO(TC)下制备的CAX仍然含有大量的食糖(例如,大约 33wt%)。
[0006]另一种已知的提取半纤维素的方法涉及使用盐酸和硫酸。然而,这样的方法会导致显著的水解为单体的现象,以至于提取的产物主要用于发酵为乙醇或有机酸。例如,据报道在121°C下用1.0%的硫酸处理玉米纤维会产生大约63.3%的总糖产量。
[0007]另一种从玉米纤维中提取半纤维素的被称为“氨-爆破(AFEX)”的方法,其涉及用液氮处理含有纤维素的物料,以增强纤维素的化学和生物反应。更具体地说,AFEX方法包括(a)在大约140psia到大约ISOpsia范围的处理压力下,在室温下,将含有纤维素的物料与氨接触少于一个小时,(b)爆发性地将压力从处理压力减少到大气压力,并且(C)将氨与含有纤维素的物料分离,从而增加了含有纤维素的物料中纤维的可消化性,并增加了纤维中和含有纤维素的物料的细胞壁内部的蛋白质的可用性。用AFEX方法处理后,将得到的玉米纤维用由商业淀粉酶、木聚糖酶和纤维素酶纤维素成分组成的混合物进行酶消化,以用于乙醇生产。消化后的物料含有大约30-40wt%的葡萄糖和低聚糖。
[0008]另一种已知的从玉米纤维中提取半纤维素的方法涉及在纤维素转化为乙醇的酶促反应过程中,使用连续SO2催化蒸汽的爆破和酶法水解反应。玉米纤维中的纤维素和半纤维素转化为单糖的转化过程中,如果使用被蒸汽爆破过的纤维,转化效率可以高达大约80%,但是如果酶法水解之前不进行蒸汽爆破,转化效率只有大约15%。
[0009]前面所述的每种从玉米纤维中提取半纤维素的已知方法都具有局限性。高品质的半纤维素可以通过碱与过氧化氢的组合来处理的方法获得。然而,加碱、酸中和以及醇沉淀的工艺的生产成品太高。以硫酸或盐酸为基础的提取工艺会导致半纤维素深度水解为食糖,这易于导致提取出来的材料不适于用作高价值的产品,如口香糖的替代物、低糖的天然可溶纤维或低糖的膨胀剂。对“氨-爆破”方法的测试显示只有不到20%的纤维溶解,伴随着显著的褐变反应,并且在提取的半纤维素中发现了残留的氨。此外,从经过热液体或蒸汽处理的玉米纤维中提取的半纤维素的产量过低而没有商业可行性。
[0010]综上所述,仍然需要一种从玉米纤维中提取半纤维素的方法,该方法具有如下一种或多种的特征:易于工业生产并且成本相对较低;可以生产一种或多种具有相对高价值的产品,如口香糖的替代物、低糖的天然纤维和/或低糖的膨胀剂。
【发明内容】
[0011]本发明提供了一种分离玉米纤维的一种或多种成分的方法,该方法包括:
[0012](e)将所述玉米纤维与提取液接触以形成提取混合物,所述玉米纤维含有基质,所述基质含有半纤维素、纤维素和木质素,所述提取液含有至少一种弱酸;
`[0013](f)通过控制所述提取混合物的温度Tjaff,使所述提取液充分酸化,以通过水解来打破半纤维素和木质素之间的键合,从而溶解所述玉米纤维中的半纤维素,因而使可溶解的半纤维素溶入所述提取液中;
[0014](g)通过控制所述提取混合物的温度Twa,从而使所述提取液不充分酸化以基本上解聚溶解的半纤维素,从而抑制水解;并且
[0015](h)将所述提取混合物分离为含有溶解的半纤维素的可溶部分和含有纤维素的不可溶部分。
[0016]本发明还提供了一种分离去淀粉的玉米纤维的一种或多种成分的方法,该方法包括控制提取混合物的温度,所述提取混合物含有去淀粉的玉米纤维和含有至少一种弱羧酸的提取液,使半纤维素从去淀粉的玉米纤维中溶解并溶入所述提取液中,从而使溶解的半纤维素的重量占所述去淀粉的玉米纤维的重量的大约30%到大约75%,并且所述溶解的半纤维素的重量的至少40%具有至少为3的聚合度。
[0017]另外,本发明提供了一种分离去淀粉的玉米纤维的一种或多种成分的方法,该方法包括通过控制提取混合物的温度在大约120°C到150°C的范围内保持大约2分钟到10分钟的时间段,然后将其抑制到所述范围以下的温度,将半纤维素从去淀粉的玉米纤维中溶解并溶入所述提取混合物中的提取液中,所述提取混合物含有大约6.5重量份的去淀粉的玉米纤维和大约100重量份的提取液,所述提取液含有浓度范围在大约0.01M到0.05M范围内的柠檬酸,从而使(a)溶解的半纤维素的重量占所述去淀粉玉米纤维重量的大约50%到大约60%,(b)所述溶解的半纤维素含有(i)总重量占所述溶解的半纤维素重量的大约30%到大约40%范围内的单糖和二糖,(ii)总重量占所述溶解的半纤维素重量的低于大约5%的低聚糖,和(iii)总重量占所述溶解的半纤维素重量的大约55%到大约70%范围内的多糖。
【专利附图】
【附图说明】
[0018]图1为根据本发明不同的实施方式,从去淀粉玉米纤维中提取得到的可溶部分的糖类分布的对比图。
[0019]图2为根据本发明不同的实施方式,从去淀粉玉米纤维中提取得到的可溶部分中食糖(DP1-2)的含量和可溶纤维(DP3及以上或DP3+)的含量的对比图。
[0020]图3为提取的可溶部分(KCl,被标记为7428-145)与5DE麦芽糖糊精、半乳糖、树胶醛醣和木糖的糖类分布的对比图。
[0021]图4为根据本发明的方法的不同实施方式提取的不同的半纤维素/AXOS样品的分子量分布的凝胶渗透色谱(GPC)图。
[0022]图5为根据本发明使用柠檬酸(弱酸)、产量为58.4%的方法提取的可溶部分和使用硫酸(强酸)、产量为39.3%的方法提取的可溶部分的糖类分布的对比图。
【具体实施方式】
[0023]本发明至少部分地涉及一种从含有半纤维素、纤维素和木质素的玉米纤维中分离出一种或多种成分的方法。尽管不是必需的,在本发明的一个【具体实施方式】中,玉米纤维的源材料是去淀粉的玉米纤维。有利的是,使用去淀粉的玉米纤维可以明显地导致该方法的产品有更高含量的纤维,易于使最终产品更适于做食品配料成分。即便如此,如果并不关注本发明的产品是否含有大量的淀粉或水解了的淀粉(例如,产品在用于生产乙醇的发酵过程的应用),那么使用不去淀粉的玉米纤维也是可以满足要求的。进一步地,本发明中所使用的去淀粉的玉米纤维可以通过以下任意的去淀粉的方法实现,如酶解、水洗和两者的组合。综上所述,可以理解为玉米纤维、去淀粉的玉米纤维和任何程度的部分去淀粉的玉米纤维都可以在本发明的方法中使用。
[0024]尤其地,本发明的方法包括将玉米纤维与含有至少一种弱酸的提取液接触以形成提取混合液。该方法进一步包括通过控制提取混合物的温度Tjaff,使提取液充分酸化,以通过水解来打破半纤维素和木质素之间的键合,从而溶解所述玉米纤维中的半纤维素,因而使可溶解的半纤维素溶入提取液中。该方法进一步包括通过控制提取混合物的温度Tw$IJ,使提取液不充分酸化以基本上解聚溶解的半纤维素,从而抑制水解。更进一步地,该方法包括将提取混合物分离为含有溶解的半纤维素的可溶部分和含有纤维素的不可溶部分。因此,通过该方法的实施,至少半纤维素可以从玉米纤维中分离出来。如果需要进一步实施,该方法可以还包括通过处 理所述可溶部分,以将溶解的半纤维素从提取液中分离出来。
[0025]HM[0026]如前所述,本发明的方法涉及使用弱酸。通常来说,与强酸(例如,HCl和&504)不同,当将弱酸(例如,柠檬酸和醋酸)溶于水时,形成水合氢离子(H3O+)的反应不会继续完成。例如,在25°C的0.1M的醋酸溶液中,只有大约1%的醋酸分子通过把质子转移给水而离子化。应该指出的是,除非另有说明,这里所述的所有参考值均为在25°C下的值。根据范特霍夫方程(van’ t Hoff equation),可知包括pKa的平衡常数都会随着温度而变化。
[0027]酸度通常表述为pKa,其为酸度常数Ka的负对数。这种方法类似于把水合氢离子的浓度表述为pH。pKa的大小与酸的强度存在着相反的关系-pKa的值越大,酸的强度越弱。这包括负数;盐酸被认为是一种非常强的酸,它的PKa为-7,反之硝酸被认为是一种弱酸,它的PKaS-1.4。通常来说,PKa大于-2的酸被认为是弱酸。PKaS-2或者更低的酸可以在pH为0(1M的酸)时99%以上解离。弱酸包括一元酸(失去一个质子的酸)如醋酸,和多元酸(可以失去不止一个质子的酸),如可以失去三个质子、对应三个?1^值(?1^=2.15、pKa2=7.2并且 pKa3=12.37)的磷酸(Η3Ρ04)。
[0028]在本发明的【具体实施方式】中,提取液中的每种弱酸的pKa值为大于-2、至少为O、至少为2或至少为4。
[0029]在本发明其他的【具体实施方式】中,提取溶液不含有任何强酸。因此,提取液中唯一的酸是弱酸。在这样的实施方式中,提取液中的每种弱酸的PKa值为大于-2、至少为O、至少为2或至少为4。
[0030]在本发明的另一个实施方式中,尽管提取液中可能含有无机弱酸如磷酸和硝酸(并且,事实上,可能是提取液中唯一的弱酸),但是提取液含有至少一种羧酸。在另一个实施方式中,提取液中的至少一种弱酸含有至少一种羧酸。作为弱酸的羧酸的例子包括柠檬酸、乳酸、羟基丁二酸、醋酸、富马酸、甲酸、乙二酸。在一个实施方式中,提取液中含有的至少一种羧酸选自由柠檬酸、乳酸、羟基丁二酸、醋酸、富马酸、甲酸、乙二酸及它们的组合组成的组。在另一个实施方式中,所述至少一种羧酸选自由柠檬酸、羟基丁二酸和富马酸以及它们的组合组成的组。在其他的实施方式中,所述至少一种羧酸是柠檬酸。
[0031]通常来说,提取液中弱酸的量使弱酸的总浓度在大约0.0OlM到大约IOM的范围内。也就是说,迄今为止的实验结果显示,当弱酸的总浓度在大约0.01M到大约IM的范围内时,本发明的方法可以在原材料成本、安全、时间和效率上达到令人满意的平衡。
[0032]关于提取液中的水,任何合适的种类都可以按照本发明来使用。也就是说,如果将提取的半纤维素和AXOS用作食品添加剂时,一般来说更适于采用去离子水和蒸馏水。
[0033]提取混合物中提取液和S米纤维的相对含暈
[0034]实践中形成了一种提取混合物,该提取混合物含有至少足够的提取液,润湿并悬浮和/或溶解需要被处理的玉米纤维。也就是说,提取液与玉米纤维的比例并不是至关重要的。事实上,本发明所用的提取混合物中提取液和玉米纤维的比例可以在一个相对较大的范围内波动。例如,在本发明的一个【具体实施方式】中,控制所述方式从而使得提取混合物中玉米纤维和提取液的重量比可以在大约1:100到大约60:100的范围内。在另一个实施方式中,提取混合物中玉米纤维和提取液的重量比在大约3:100到大约20:100的范围内。
[0035]溶解半纤维素
[0036]如上所述,本发明的方法包括通过控制提取混合物的温度Tjaff,使提取液充分酸化,以通过水解来打破半纤维素和木质素之间的键合,从而溶解所述玉米纤维中的半纤维素,因而使可溶解的半纤维素溶入提取液中。该方法进一步包括通过控制提取混合物的温度Twa,从而使提取液不充分酸化以基本上解聚溶解的半纤维素,从而抑制水解。
[0037]当在相对较低的温度时(例如,低于大约50°C ),提取混合物中的弱酸倾向于不攻击玉米纤维中的组分或与之发生反应。例如,在相对较低的温度时,提取混合物中的弱酸不能充分酸化以通过水解打破半纤维素和木质素之间的键合。相反地,在相对较低的温度下,溶液中的强酸可以充分酸化以打破半纤维素和木质素之间的键合(玉米纤维的反应程度当然在很大程度上与酸的浓度和溶液的PH有关)。因此,本发明的方法允许玉米纤维中化学键的水解被控制在一个相对简单、可靠和安全的方式下,而无需加入化学物质来中和提取混合物的酸度。为了以显著的速度打破半纤维素和木质素之间的键合,提取混合物的温度被简单地提升到可以使提取混合物中的弱酸充分酸化以通过水解来打破半纤维素和木质素之间的键合的温度T _。
[0038]相反地,在水解已经达到需要的量时,要通过控制(降低)提取混合物的温度Twa,在该温度Twa下,提取液不能充分酸化以大量地水解溶解的半纤维素的化学键,从而使本发明中的水解反应得到有效地抑制或停止。换句话来说,Twa的值是要达到能够使提取液的酸度足够低而使分离得到的半纤维素能够达到我们的目的被有效地停止。这与先前已知的使用盐酸或硫酸的方法相比具有明显的优势,因为这些酸会持续地水解溶解的半纤维素中的糖苷键,直到被化学中和。因此,当使用这些强酸时,从玉米纤维中分离出的半纤维素的很大一部分会地被分解为食糖(DP1-2)。因此,由于可以简单地通过降低提取混合物的温度实现基本停止水解反应,本发明可以通过控制使得玉米纤维中分离得到的半纤维素的更大部分是DP3+,并且仍然可以实现相对较高的总产量的分离的半纤维素。
[0039]当然,任何具体的提取混合物的T_的最低温度和T?φ$(的最高温度至少部分地取决于提取混合物中具体的弱酸。尽管如此,为某个具体的提取混合物确定一个合适的Tjaff和Twa对本领域的普通技术人员来说是简单明确的。在本发明一个具体的实施方式中,Ts解在大约50°c到大约350°C的范围内。在另一个具体的实施方式中,Tjaff在大约120°C到大约150°C的范围内。在另一个具体的实施方式中,Twffl在大约5°C到大约40°C的范围内。在另一个具体的实施方式中,Twffl在大约10°C到大约30°C的范围内。
[0040]同样地,提取混合物在Tjaff (也就是说,!^^中的某一个具体的温度)下的持续时间 取决于需要被溶解在提取混合物中的玉米纤维中的半纤维素的量,并且反过来,也至少
部分地取决于在Tjaff的范围内选择的具体温度。通常来说,温度越高,就能越快地通过水解打破玉米纤维中的成分之间的键合,并且分离所述成分(例如,溶解的半纤维素)。通常来说,持续的时间越长,越多的玉米纤维中的半纤维素可以被溶解于提取液中。因而得到更高产量的分离出的半纤维素。但是持续时间越长,更多的溶解的半纤维素被解聚为食糖(DP1-2)。因此,本发明的实际操作者会从前面所述的各种变量(包括Tjaff)中选择合适的值,以达到满意的结果。这些值的确定可能基于这里公开的信息,或者常规测试,或者两者,这对本领域的普通技术人员来说是简单明确的。在本发明一个具体的实施方式中,提取混合物在Tjaff的温度下的持续时间在大约I分钟到大约200分钟的范围内。在另一个具体的实施方式下,提取混合物在Tjaff的温度下的持续时间在大约2分钟到大约10分钟的范围内。
[0041]尽管不是必需的,但是从木质素和纤维素中已经分离得到足够的半纤维时,经常需要相对迅速地降低提取液的温度,以抑制水解反应,使从玉米纤维中分离出并溶解于提取液中的半纤维素的解聚作用达到最低。这种相对较快地降低和加热提取液的方法可以通过任意合适的方法来实现,比如通过对夹套通入流动的热水、蒸汽、自来水或冷却水来加热或降温。在本发明一个具体地实施方式中,在抑制过程中,从Tjaff转变到Twffl的平均速度在大约0.rc /s到大约0.50C /s的范围内。在另一个具体的实施方式中,在抑制过程中,从T_转变到Τ.的平均速度在大约0.50C /s到大约1°C /s的范围内。
[0042]需要注意的是,本发明的方法可以在连续的方式下实施。例如,可以通过将提取混合物引入温度至少大约为Tjaff的区域中来将其加热至Tjaff,以满足在Tjaff下的所述提取混合物的所有部分的停留时间为水解反应是通过把混合物引入温度不高于Twa的区域中来抑制。一个相似的持续的装置/操作的特定例子在美国专利号为4,256,509已经描述,并将所述专利的所有内容并入本发明。
[0043]分离提取混合物至各部分
[0044]如前面所述,本发明也包括把提取混合物分离为含有溶解的半纤维素的可溶部分以及含有纤维素和木质素的不可溶部分。这可以通过任意合适的方法来实现,比如过滤或离心分离。
[0045]尽管不是必需,如果需要,分离得到的含有纤维素和木质素的不可溶部分可以通过任意合适的方法来进行干燥,比如加热的烘干炉干燥或吹风机干燥。另外,如果需要,分离得到的可溶部分可以进行 蒸发溶剂(如水)的处理,以得到干燥的含有之前溶解的固体半纤维素的可溶部分。溶剂的蒸发可以通过任意合适的方法实现,比如喷雾干燥、冷冻干燥或烘干炉干燥。
[0046]所述方法的产品
[0047]如前面所述,本发明的方法可以控制可溶物料的量。所述可溶物料包括从玉米纤维中提取和分离的半纤维素和AX0S。进一步地,如前面所述,在本发明的某些具体的实施方式中使用的是去淀粉的玉米纤维。举例来说,在这样的实施方式中,可溶部分中的溶解的半纤维素的重量占去淀粉玉米纤维重量的大约30%到大约75%,并且不可溶部分中的纤维素的重量占去淀粉玉米纤维重量的大约15%到大约30%。在另外的这样的实施方式中,可溶部分中的溶解的半纤维素的重量占去淀粉玉米纤维的大约50%到大约60%,并且不可溶部分中的纤维素的重量占去淀粉玉米纤维的大约20%到大约30%。
[0048]前面也提到本发明的方法需要控制分离出的半纤维素的聚合度。举例来说,在某些具体的实施方式中,可溶部分的溶解的半纤维素含有(i)总重量占溶解的半纤维素重量的大约20%到大约75%范围内的单糖和二糖,(ii)总重量占溶解的半纤维素重量的低于大约10%的低聚糖,和(iii)总重量占溶解的半纤维素重量的大约25%到大约70%范围内的多糖。在另外的实施方式中,可溶部分的溶解的半纤维素含有(i)总重量占溶解的半纤维素重量的大约30%到大约40%范围内的单糖和二糖,(ii)总重量占溶解的半纤维素重量的低于大约5%的低聚糖,和(iii)总重量占溶解的半纤维素重量的大约55%到大约70%范围内的多糖。
[0049]在另一个具体的实施方式中,该方法包括控制提取混合物的温度,所述提取混合物含有去淀粉的玉米纤维和含有至少一种弱羧酸的提取液,使半纤维素从去淀粉玉米纤维中溶解并溶入提取液中,从而使溶解的半纤维素的重量占所述去淀粉的玉米纤维的重量的大约30%到大约75%,并且溶解的半纤维素的重量的至少40%具有至少为3的聚合度。在另一个具体的实施方式中,使溶解的半纤维素的重量的至少30%具有至少为11的聚合度可能会更适合,使溶解的半纤维素的重量的不超过10%具有3到10的范围内的聚合度也可能更适合。更进一步地,使溶解的半纤维素的重量的不超过60%具有在I到2的范围内的聚合度也可能更适合。[0050]在另一个具体的实施方式中,从分离去淀粉的玉米纤维的一种或多种成分的方法可以包括通过控制提取混合物的温度在大约120°C到大约150°C的范围内保持大约2分钟到10分钟的时间段,然后将其抑制到所述范围以下的温度,将半纤维素从去淀粉的玉米纤维中溶解并溶入提取混合物中的提取液中,所述提取混合物含有大约6.5重量份的去淀粉的玉米纤维和大约100重量份的提取液,所述提取液含有浓度范围在大约0.01M到大约
0.05M范围内的柠檬酸,从而使(a)溶解的半纤维素的重量占所述去淀粉玉米纤维重量的大约50%到大约60%,(b)溶解的半纤维素含有(i)总重量占溶解的半纤维素重量的大约30%到大约40%范围内的单糖和二糖,(ii)总重量占溶解的半纤维素重量的低于大约5%的低聚糖,和(iii)总重量占溶解的半纤维素重量的大约55%到大约70%范围内的多糖。
[0051]实施例
[0052]以下公开的【具体实施方式】只是可以以不同形式体现的本发明的代表。因此,以下实施例公开的特定的结构、功能和实施细节并不视为限制。
[0053]玉米纤维去淀粉的方法
[0054]在钢制容器中,将大约750g干重(d.s.)为40%的Vetter的玉米纤维与至总重为4kg的纯净水混合。将纤维悬浮液在带有装备有2个叶片(直径45mm)的搅拌轴的Maxima数字搅拌器(Fisher Scientific, Pittsburgh, PA)的加热板上加热至沸点(大约95°C )。将悬浮液的PH值用IN的NaOH溶液调至大约6.5。并且加入大约6mL的IM的CaCl2溶液。然后向纤维悬浮液中加入大约6mL的Termamyl SC DS(诺维信北美有限公司,弗兰克林顿,NC),并在大约95°C下进行酶促反应大约1.5小时。将纤维悬浮液用铝箔密封在钢制容器中并在室温下过夜。然后,将纤维悬浮液加热至大约57°C,并用30wt%的柠檬酸溶液调节pH至4.5。向悬浮液中加入大约6mL的糖化酶(Spirizyme fuel)(淀粉转葡糖苷酶,诺维信北美有限公司,弗兰克林顿,NC),并在大约57°C下反应大约3个小时。然后,将悬浮液降温至大约50°C (pH约4.5)并加入6!^ ProSteep? (蛋白酶,杰能科国际有限公司,罗切斯特,NY)进行蛋白质水解大约1.5小时。然后,将温度升高到大约85°C并保持大约5分钟,使蛋白酶和淀粉转葡糖苷酶失活。去淀粉的纤维使用装有2号滤布(过滤服务,2171E.安德鲁斯圣,梅肯IL62544)的布氏漏斗过滤,并将获得的滤饼在大约50°C的送风型烘箱中干燥。
[0055]使用柠檬酸提取半纤维素
[0056]向大约90g的去淀粉玉米纤维(DS)中加入净化水使总重量大约为1450g。加入大约20g的30wt%的柠檬酸溶液并伴有附加体积的纯净水,使总重达到大约1500g,pH值达到大约2.8。将纤维悬浮液转移到带有搅拌装置和通过夹套进行可控的蒸汽加热的2L高压不锈钢反应器中。将悬浮液加热到大约150°C并保持大约2分钟或大约10分钟以溶解半纤维素。然后用夹套中的自来水将悬浮液迅速冷却。反应后,pH大约为2.8。溶液用装备有绷紧的2号滤布的布氏漏斗过滤,并且将获得的滤饼用纯净水冲洗并在大约50°C的送风型烘箱中干燥大约24小时。记录滤液和冲洗水的重量,并用送风型烘箱的湿度测量方法(大约105°C下1.5小时)测量湿度。
[0057]高效液相色谱法(HPLC)
[0058]将前面所述提取工艺的产品通入装备有银质Aminex?树脂基柱子的HPLC,以分离不同聚合度(DP)的食糖(糖类分布在聚合度1-10)。Aminex?树脂基柱子是根据尺寸排阻和配体交换的机理进行糖类的分离。具体地说,对低聚糖的分离来说,尺寸排阻是分离的首要机理(低交联的树脂可以按照尺寸允许糖类渗透并使低聚糖分离)。对单糖的分离来说,配体交换是首要的机理,其涉及食糖上的羟基与树脂上固定的平衡离子的结合。配体交换受到平衡离子的性质和糖类上羟基基团的空间位置的影响。
[0059]样品用从Waters公司(HPX-42A)购买的带有长度30cm、内径7.8mm的柱子的HPLC进行测定。系统的运行条件为:柱温大约85°C ;溶剂采用去离子除气水;流速大约0.6mL/分钟;检测器灵敏度设置为16X ;进样量大约20 μ I ;运行时间大约25分钟。样品干重大约1%。制备和分析了含有从葡萄糖到麦芽六糖(DP6)的已知直链糖类的标准样品,以便与可能的替代糖类的停留时间进行比较。
[0060]凝胶渗诱色谱法(GPC)
[0061]将前面所述的提取工艺的产品通入GPC,基于分子的尺寸和溶液中的流体力学体积进行分子分离。将样品用水稀释,并用四种不同孔径串联的柱子(从Waters公司购买的
一个Ultrahydragel?120A的柱子;两个250A的柱子;和一个1000A的柱子)进行分子
分离。洗脱液为加入了 0. 1N NaNO3的水,流速为大约0.6ml/分钟。分离后,分子通过能够将原始数据提供给多通道色谱软件包的差示折光检测器进行检测。分子量分布通过与一系列多糖分子量标准样进行比较,使用窄多分散性校准技术进行计算。
[0062]带有脉冲安培检测的高效阴离子交换色谱法(PHPAE-PAD)
[0063]将前面所述的产品通入PHPAE-PAD。糖类被转化为其阴离子的形式,并且在以羟基形式存在的强碱性阴离子交换剂上分离。将糖类阴离子在金制的工作电极上进行脉冲安培检测。用Dionex Carbopac PAl柱子在氢氧化钠溶液中用醋酸梯度洗脱的方法进行分离。开始的运行环境是用1.2mL/min的IOOmM的氢氧化钠运行4分钟。在接下来的20分钟,加入O到375mM的乙酸钠,并使上层浓度在IOOmM Na0H/375mM NaOAc下维持10分钟。样品和标准液均用水稀释。
[0064]葡萄糖的测定
[0065]将前面所述提取工艺的产品的样品稀释至葡萄糖含量小于0.2%。葡萄糖用YSI模型27分析仪(黄泉仪器有限公司,黄泉,俄亥俄州)检测。
[0066]淀粉含暈分析
[0067]将前面所述提取工艺的产品用于分析淀粉含量。样品中的淀粉被胶化,并用淀粉酶和淀粉转葡糖苷酶将其转化为β -D-葡萄糖。然后用YSI模型27葡萄糖分析仪进行葡萄糖分析。
[0068]将样品用转盘进行研磨,然后取大约0.2g到大约0.4g样品加入50mL烧瓶中,并加入大约20mL去离子水。烧瓶用铝箔覆盖,在大约12rC、20psi下高压蒸汽处理大约20分钟,使成胶状淀粉。然后往每个烧瓶中加入约5.0mL的醋酸缓冲液(200mL中含有33.0g无水醋酸钠和24.0mL冰醋酸)和大约0.4mL的氯化钙(6.25%)。烧瓶被盖好并放置在大约60°C下以200rpm的速率振荡大约45分钟。酶法水解之后,样品用YSI葡萄糖分析仪分析葡萄糖。葡萄糖至淀粉的转化使用转化因数0.9 (淀粉的重量=0.9X葡萄糖的重量)。
[0069]蛋白质含暈分析
[0070]蛋白质的测定米用凯氏(Kieldahl)定氮法进行(Bradstreet, 1954)。
[0071]灰分含暈分析
[0072]向坩埚中加入大约2-10g样品(取决于样品的湿度和类型)。将样品用本生灯加热使之碳化,直到样品不再能够维持火焰或烟。将样品放入大约538°C的马弗炉中,并加热至少5个小时或过夜(16小时)。 残渣重量与样品重量的比,用百分比的形式表示,被定义为灰分的含量(wt%)。
[0073]脂肪含暈分析
[0074]向400mL的玻璃烧杯中加入大约2.5-5.0g样品,并加入大约150mL3N的HC1。将烧杯盖好,放置于高压灭菌器中,在大约12rC、20psi下加热大约15分钟,使脂肪成分从淀粉和蛋白质复合物中脱离。脱离的脂肪成分通过过滤并用石油醚从滤纸中提取的方法进行分离。溶剂蒸发后测定脂肪残渣的重量。脂肪残渣的重量与样品重量的比,用百分比的形式表示,被定义为样品中总脂肪含量。
[0075]湿度和干物质的分析
[0076]不可溶的纤维素物料的湿度通过微水分分析仪(Model MAX1000,亚利桑那仪器有限公司,Chandler,AZ)进行测定。可溶部分中的干物质(d.s.)使用送风型烘箱法进行测定,该方法包括将12g溶液放置于76mm直径的铝盘中,在105°C下干燥1.5小时。干燥后的可溶部分的干物质在大约70°C的真空干燥炉放置大约5个小时进行测量。干燥后物料的重量与样品重量的比,用百分比的形式表示,被定义为干物质的含量(wt%)。
[0077]硫酸水解
[0078]将大约0.15N的硫酸在沸水浴中用于对可溶与不可溶物质水解大约4个小时。将大约0.6mLlN的硫酸加入到总量4mL的溶液中。可溶物料的干物质大约为1.73wt%,不可溶物料的干物质大约为4.82wt%。
[0079]酶水解
[0080]将大约5mL2.03wt%的可溶部分用10 μ I的酶水解一夜(大约16小时),然后将盛装溶液的容器用沸水浴加热大约10分钟,使酶灭活。
[0081]结果与讨论
[0082]源自Vetter玉米纤维的去淀粉的纤维的产量约为65wt%,如表1所示。
[0083]表1
[0084]
【权利要求】
1.一种分离玉米纤维的一种或多种成分的方法,该方法包括: (a)将所述玉米纤维与提取液接触以形成提取混合物,所述玉米纤维含有基质,所述基质含有半纤维素、纤维素和木质素,所述提取液含有至少一种弱酸; (b)通过控制所述提取混合物的温度Tjaff,使所述提取液充分酸化,以通过水解来打破半纤维素和木质素之间的键合,从而溶解所述玉米纤维中的半纤维素,因而使可溶解的半纤维素溶入所述提取液中; (c)通过控制所述提取混合物的温度Twa,使所述提取液不充分酸化以基本上解聚溶解的半纤维素,从而抑制水解;并且 (d)将所述提取混合物分离为含有溶解的半纤维素的可溶部分和含有纤维素的不可溶部分。
2.根据权利要求1所述的方法,其中,该方法进一步包括处理所述可溶部分,使溶解的半纤维素从提取液中分离。
3.根据权利要求1或权利要求2所述的方法,其中,每种弱酸的pKa的值(在25°C下的水溶液中)大于_2。
4.根据权利要求1或权利要求2所述的方法,其中,每种弱酸的pKa的值(在25°C下的水溶液中)至少为O。
5.根据权利要求1或权利要求2所述的方法,其中,每种弱酸的pKa的值(在25°C下的水溶液中)至少为2。
6.根据权利要求1或权利要求2所述的方法,其中,每种弱酸的pKa的值(在25°C下的水溶液中)至少为4。`
7.根据权利要求1-6中任意一项所述的方法,其中,所述至少一种弱酸包括至少一种羧酸。
8.根据权利要求7所述的方法,其中,所述至少一种羧酸选自由柠檬酸、乳酸、羟基丁二酸、醋酸、富马酸、甲酸、乙二酸和它们的组合组成的组。
9.根据权利要求7所述的方法,其中,所述至少一种羧酸选自由柠檬酸、羟基丁二酸和富马酸以及它们的组合组成的组。
10.根据权利要求1-9中任意一项所述的方法,其中,所述提取液中弱酸的总浓度在大约0.0OlM到大约IOM的范围内。
11.根据权利要求1-9中任意一项所述的方法,其中,所述提取液中弱酸的总浓度在大约0.01M到大约IM的范围内。
12.根据权利要求1-11中任意一项所述的方法,其中,所述提取混合物中,玉米纤维与提取液的重量比在大约1:100到大约60:100的范围内。
13.根据权利要求1-11中任意一项所述的方法,其中,所述提取混合物中,玉米纤维与提取液的重量比在大约3:100到大约20:100的范围内。
14.根据权利要求1-13中任意一项所述的方法,其中,Tjaff在大约50°C到大约350°C的范围内,Twffl在大约5°C到大约40°C的范围内,并且在所述抑制过程中,从Tjaff转变到Twffl的平均速度在大约0.10C /s到大约5°C /s的范围内。
15.根据权利要求1-13中任意一项所述的方法,其中,Tjaff在大约120°C到大约150°C的范围内,Twffl在大约10°C到大约30°C的范围内,并且在所述抑制过程中,从Tjaff转变到T的平均速度在大约0.5°C /s到大约1°C /s的范围内。
16.根据权利要求1-15中任意一项所述的方法,其中,所述提取混合物在Tjaff下的持续时间t_在大约I分钟到大约200分钟的范围内。
17.根据权利要求1-15中任意一项所述的方法,其中,所述提取混合物在Tjaff下的持续时间在大约2分钟到大约10分钟的范围内。
18.根据权利要求1-17中任意一项所述的方法,其中,所述玉米纤维是去淀粉的玉米纤维。
19.根据权利要求18所述的方法,其中,所述可溶部分中溶解的半纤维素的重量占所述去淀粉的玉米纤维重量的大约30%到大约75%,并且所述不可溶部分中纤维素的重量占所述去淀粉的玉米纤维重量的大约15%到大约30%。
20.根据权利要求18所述的方法,其中,所述可溶部分中溶解的半纤维素的重量占所述去淀粉的玉米纤维重量的大约50%到大约60%,并且所述不可溶部分中纤维素的重量占所述去淀粉的纤维重量的大约20%到大约30%。
21.根据权利要求18所述的方法,其中,所述可溶部分中溶解的半纤维素含有(i)总重量占所述溶解的半纤维素重量的大约20%到大约75%范围内的单糖和二糖,(ii)总重量占所述溶解的半纤维素重量的低于大约10%的低聚糖,和(iii)总重量占所述溶解的半纤维素重量的大约25%到大约70%范围内的多糖。
22.根据权利要求 18所述的方法,其中,所述可溶部分中溶解的半纤维素含有(i)总重量占所述溶解的半纤维素重量的大约30%到大约40%范围内的单糖和二糖,(ii)总重量占所述溶解的半纤维素重量的低于大约5%的低聚糖,和(iii)总重量占所述溶解的半纤维素重量的大约55%到大约70%范围内的多糖。
23.一种分离去淀粉的玉米纤维的一种或多种成分的方法,该方法包括控制提取混合物的温度,所述提取混合物含有去淀粉的玉米纤维和含有至少一种弱羧酸的提取液,使半纤维素从去淀粉的玉米纤维中溶解并溶入所述提取液中,从而使溶解的半纤维素的重量占所述去淀粉的玉米纤维的重量的大约30%到大约75%,并且所述溶解的半纤维素重量的至少40%具有至少为3的聚合度。
24.根据权利要求23所述的方法,其中,所述溶解的半纤维素重量的至少30%具有至少为11的聚合度。
25.根据权利要求23或权利要求24所述的方法,其中,所述溶解的半纤维素重量的至多10%具有在3到10的范围内的聚合度。
26.根据权利要求23-25中任意一项所述的方法,其中,所述溶解的半纤维素重量的至多60%具有在I到2的范围内的聚合度。
27.根据权利要求23-26中任意一项所述的方法,其中,所述至少一种弱羧酸选自由柠檬酸、乳酸、羟基丁二酸、醋酸、富马酸、甲酸、乙二酸和它们的组合组成的组;所述提取液中所含弱羧酸的总浓度在大约0.0OlM到大约IOM的范围内;并且所述提取混合液中去淀粉的玉米纤维与提取液的重量比在大约1:100到大约60:100的范围内。
28.根据权利要求23-27中任意一项所述的方法,其中,控制所述提取混合物的温度包括使所述提取混合物在大约50°C到大约350°C的温度范围内保持大约I分钟到大约200分钟的时间段,然后将其抑制到所述范围以下的温度。
29.根据权利要求23-28中任意一项所述的方法,其中,该方法进一步包括将所述提取混合物分离为含有溶解的半纤维素的可溶部分和含有源自所述去淀粉的玉米纤维中的纤维素的不可溶部分。
30.根据权利要求29所述的方法,其中,所述纤维素的重量占所述去淀粉的玉米纤维重量的大约15%到大约30%。
31.根据权利要求29或权利要求30所述的方法,其中,该方法进一步包括从所述提取液中分离溶解的半纤维素。
32.—种分离去淀粉的玉米纤维的一种或多种成分的方法,该方法包括通过控制提取混合物的温度在大约120°C到大约150°C的范围内保持大约2分钟到大约10分钟的时间段,然后将其抑制到所述范围以下的温度,将半纤维素从所述去淀粉的玉米纤维中溶解并溶入所述提取混合物中的提取液中,所述提取混合物含有大约6.5重量份的去淀粉的玉米纤维和大约100重量份的提取液,所述提取液含有浓度范围在大约0.01M到大约0.05M范围内的柠檬酸,从而使(a)溶解的半纤维素的重量占所述去淀粉玉米纤维重量的大约50%到大约60%,(b)所述溶解的半纤维素含有(i)总重量占所述溶解的半纤维素重量的大约30%到大约40%范围内的单糖和二糖,(ii)总重量占所述溶解的半纤维素重量的低于大约5%的低聚糖,和(iii)总重量占所述溶解的半纤维素重量的大约55%到大约70%范围内的多糖。·
【文档编号】C08B37/00GK103717622SQ201280033590
【公开日】2014年4月9日 申请日期:2012年7月5日 优先权日:2011年7月7日
【发明者】R·A·枚徳何卡尔, A·J·霍夫曼, X·韩 申请人:泰特&莱尔组分美国公司