含氟液晶弹性体及其制备方法和应用与流程

文档序号:21042257发布日期:2020-06-09 20:44阅读:471来源:国知局
含氟液晶弹性体及其制备方法和应用与流程

本发明涉及含氟液晶弹性体及液体运输领域,尤其涉及一种含氟液晶弹性体及其制备方法和应用。



背景技术:

近年来,光作为一种新型刺激模式,具备了远程操作性,瞬时性,精确控制性等独特的优势,在众多传统的刺激模式下脱颖而出。因此,基于光响应的软致动器逐渐成为科学领域的一大研究热点,相应的光响应聚合物也如雨后春笋般应运而生。早在上个世纪,就有关于光响应聚合物材料的先驱报道,研究者们发现非晶态的含偶氮苯的聚合物可以在光照条件下实现1%的收缩。经过研究者们几十年来的不懈努力,人们发现有序的液晶聚合物具备熵弹性和可逆性变等特点,在制备和设计软致动器方面有很大的应用前景。

最早报道的光致形变交联液晶弹性体(phys.rev.lett.2001,87,015501.)可以实现20%的收缩,但仅仅局限于简单的收缩和扩张。随着不断的研究发展,人们逐渐实现了弯曲、扭曲、振荡等各种更为复杂的3d致动模式。这些液晶弹性体的分子结构和加工技术大相径庭,但其致动原理主要分为两种:可逆的光化学异构化和光热效应。前者主要利用液晶聚合物中的光致异构液晶元进行可逆的光化学异构化来实现材料的宏观形变,其中最典型的代表就是偶氮苯,其可以在可见光以及紫外光的照射下,实现棒状反式异构体和弯曲顺式异构体之间的相互转变。后者则在液晶聚合物中加入高效的光热转换分子,通过被照射区域的温度变化来实现液晶弹性体各向同性与各向异性之间的转变。

无论基于哪种致动原理,研究光致形变液晶弹性体的最终目的是要制备出相应的光控致动装置,从而代替某些危险的人工操作或实现生物医学上的应用。迄今为止,已经报道的光响应机械运动模型有基于液晶弹性体的微型机械臂(nature2017,546,632.),微型马达(adv.mater.2017,29,1606467.),滚轮(softmatter2010,6,3447.),微型机器人(angew.chem.,int.ed.2008,47,4986.)等。而在生物医学方面的应用,俞燕蕾教授报道的光控微流体运输具有里程碑式的意义(nature2016,537,179.)。总结过去十年致动器的发展,研究者们更趋向于研究更小尺寸的致动器,致动器的尺寸范围也从微米级延伸至纳米级,并且其光响应速度也相对比较缓慢。然而,对用实际工业应用,人们应当追求更大尺寸,响应速度更快更稳定的致动器,并使其在完全没有任何人工操作的情况下,去完成某项工作。

杨宏教授最近报道了一种快速响应主链交联液晶弹性体(j.am.chem.soc.2017,139,11333.),这使得实现快速响应的光控“泵”成为了可能,但是该主链交联液晶弹性体的工作持久性有待提高。

cn201610063858.1、cn201710840585.1、cn201910579630.1公开了一种在可见光照条件下利用自由基逐步转移-加成-终止制备含氟交替共聚物的聚合方法、通过光催化剂制备含氟交替聚合物的聚合方法额主链型“半氟”交替共聚物的嵌段共聚物的光照聚合法。以上制备的备含氟交替共聚物或“半氟”交替共聚物的嵌段共聚物均不具有光响应行为。开发新的机械性能好且光响应性的含氟液晶弹性体十分必要。



技术实现要素:

为解决上述技术问题,本发明的目的是提供一种含氟液晶弹性体及其制备方法和应用,本发明提供了一种光响应材料含氟液晶弹性体,其机械性能好且在近红外光的照射下发生收缩,可用于制备致动器。

本发明的一种含氟液晶聚合物,其结构式如式(1)所示:

其中,x=5-12。

本发明还提供了一种式(1)所示的含氟液晶聚合物的制备方法,包括以下步骤:

在无氧条件下,将式11所示的化合物与1,6-二碘全氟己烷在有机光催化剂和促进剂的作用下,在有机溶剂中于光照条件下反应,反应完全后得到式(1)所示的含氟液晶聚合物,式11如下:

进一步地,反应温度为15-20℃,光照波长为390-590nm,优选地为440-480nm,更优选为460nm。

进一步地,有机光催化剂为三联吡啶氯化钌。

进一步地,促进剂为抗坏血酸钠。

进一步地,式11所示的化合物与1,6-二碘全氟己烷的摩尔比为1-1.4:1,优选地为1.2:1。

本发明还提供了一种含氟液晶弹性体的制备方法,包括以下步骤:

(1)在保护气氛下,将式(1)所示的含氟液晶聚合物与式(2)所示的近红外染料在grubbs催化剂的作用下,在有机溶剂中于58-65℃(优选为60℃)下反应1.5-2.5h,得到初步交联聚合物;

(2)向初步交联聚合物施加外力,并在该外力作用下使初步交联聚合物在110-130℃(优选为120℃)下反应,反应完全后得到含氟液晶弹性体;其中,式(1)-(2)分别如下:

其中,x=5-12。

进一步地,在步骤(1)中,含氟液晶聚合物与近红外染料的摩尔比为4:1-6:1。

进一步地,在步骤(1)中,初步交联聚合物呈膜状,在步骤(2)中,外力为拉伸力,在外力作用下,膜状的初步交联聚合物沿其长度方向发生形变。

近红外染料分子在近红外波段具有特定吸收,可以将光能转化为热能,从而实现材料的可逆宏观形变。为了使近红外染料分子融入到含氟液晶弹性体中,本发明利用四臂结构的式(2)所示的近红外染料,该染料简称nir823,其具体合成路线下:

紫外吸收光谱表明nir823的最大吸收峰值在823nm,符合近红外波段的设定。进一步地,在外力作用下,膜状的初步交联聚合物伸长至原长的1.5-1.8倍。通过施加外力,使得初步交联聚合物进一步取向,从而得到含氟液晶弹性体。

本发明的含氟液晶弹性体的制备采用了自由基逐步转移-加成-终止聚合新方法。利用这种方法聚合有三种独特的优势:(1)聚合物链末端的双键可以完好的保留,以作为交联网络的反应位点。(2)含氟链段严格交替排列在聚合物结构中,这与液晶分子结构刚性链与柔性链交替排列的结构不谋而合。(3)聚合过程中产生的c-i键提高了该聚合物在有机溶剂中的溶解度,有利于弹性体薄膜的制备。

值得注意的是,若式(1)所示的含氟液晶聚合物中不含有c-i键时,其无法溶于有机溶剂,因此无法实现其与式(2)所示的近红外染料的聚合,则无法得到含氟液晶弹性体。本发明还要求保护采用以上方法所制备的含氟液晶弹性体,其包括式(1)所示的含氟液晶聚合物与式(2)所示的近红外染料的共聚物,含氟液晶弹性体中的共聚物发生取向。

本发明还开了上述含氟液晶弹性体在近红外光和/或热响应的致动器中的应用。

优选地,致动器应用于制备机械臂、微型马达、滚轮、微型机器人、液体运输泵等等。

优选地,致动器为近红外光响应。相比于其它波段的光源,近红外光由于具有能量低、穿透能力强的特点使其具有更大的潜在应用价值。相比于热响应材料,光响应材料的照射区域和响应速度可更方便控制。

本发明还公开了一种近红外光控液体运输泵,包括本发明上述含氟液晶弹性体、用于产生近红外光并照射含氟液晶弹性体的光源以及用于输送液体的液体输送管,液体输送管的两端分别与第一容器和第二容器流体连通,第一容器和第二容器用于盛放液体,液体输送管还连接有储水单元,储水单元分别与第一容器和第二容器流体连通,储水单元内设有活塞杆,活塞杆与含氟液晶弹性体连接,第一容器和储水单元之间以及第二容器和储水单元之间各设有一个单向阀(也被称为止回阀),控制光源的开启或关闭,含氟液晶弹性体发生收缩和回复,以带动活塞杆发生往复运动,活塞杆带动第一容器内的液体通过储水单元进入第二容器中。

进一步地,光源开启时,含氟液晶弹性体发生收缩时,带动活塞杆运动,使第一容器内的液体经液体输送管被吸入储水单元中,当光源关闭时,含氟液晶弹性体逐渐回复原长,带动活塞杆运动,使储水单元中的液体经液体输送管被输送至第二容器中,由于第一容器和储水单元之间以及第二容器和储水单元之间各设有一个单向阀,因此液体不会再次流入第一容器中。

进一步地,储水单元为注射器。

借由上述方案,本发明至少具有以下优点:

本发明首先制备了光响应含氟液晶聚合物,并将其与近红外染料分子共聚,制备出光响应材料含氟液晶弹性体。该含氟液晶弹性体在近红外光照下,由于材料的光-热转换效应而发生收缩,可广泛用于致动器领域。本发明的含氟液晶聚合物将含氟链段引入到液晶聚合物交联网络,提高了材料的机械性能,大大延长了光控致动器的工作时间。

此外,基于往复活塞泵的工作原理,本发明还提供了完全由近红外光控制的高效近红外光控液体运输泵,实现光控条件下的液体运输。该光控“泵”可实现液体快速、精确、持久的光控运输。在这个设计中,采用的光源为近红外光,因为相比于紫外光源,近红外光具备更大的应用潜质。

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。

附图说明

图1是nir823的1hnmr图;

图2是nir823的紫外吸收光谱图;

图3是含氟液晶聚合物cfci666的1hnmr图;

图4是含氟液晶弹性体制备过程的流程示意图;

图5是实施例3制备的含氟液晶弹性体的应力-应变图;

图6是实施例3制备的含氟液晶弹性体在光照(1.50w·cm-2,825nm)下拉升25克重物示意图;

图7是实施例3制备的含氟液晶弹性体的光照时间与薄膜长度变化对照图;

图8是近红外光控液体运输泵的结构示意图;

图9是近红外光控液体运输泵的实物图;

图10是光照(0.65w·cm-2,825nm)时间与近红外光控液体运输泵中含氟液晶弹性体表面温度变化曲线图;

图11是近红外光控液体运输泵中含氟液晶弹性体薄膜长度随光照时间的变化曲线;

附图标记说明:

1-含氟液晶弹性体;2-光源;3-液体输送管;4-第一容器;5-第二容器;6-单向阀;7-储水单元内液体;8-储水单元;20-近红外光;80-活塞杆。

具体实施方式

下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。

实施例1:nir823的合成

制备化合物3:在250ml三颈圆底烧瓶中依次加入3.60克丙烯酸,7.80克9-癸烯-1-醇,0.61克4-二甲基氨基吡啶,9.60克1-乙基-(3-二甲基氨基丙基)羰基二酰亚胺盐酸盐,13.90毫升三乙胺以及150毫升二氯甲烷。在氮气保护下,室温搅拌反应12小时。反应结束后,用旋转蒸发仪除去溶剂。随后将粗产物通过柱色谱法纯化(石油醚:乙酸乙酯=4∶1),得到化合物3。

制备化合物5:在100ml圆底烧瓶中依次加入3.15克化合物3,545毫克3-氨基苯酚和150毫升乙酸.反应混合物在80℃下搅拌反应5小时。随后将粗产物通过柱色谱法纯化(石油醚:乙酸乙酯=4∶1),得到化合物5。

制备nir823:在100ml圆底烧瓶中依次加入0.74克化合物5,100毫克巴豆酸6和15毫升甲苯。整个反应在氮气保护下进行,并在90℃下搅拌回流5小时。反应结束后,通过真空蒸馏除去溶剂。粗产物随后通过柱色谱法纯化(石油醚:乙酸乙酯=10∶1),得到黑色固体nir823。

图1为以上方法所制备的nir823的核磁图。

图2为nir823的紫外吸收光谱图,其最大吸收峰值在823nm,处于近红外波段。

实施例2:含氟液晶聚合物的制备

制备化合物9:向250毫升三颈烧瓶中依次加入9.74克对苯二酚(式7),10克对羟基苯甲酸(式8),0.35克硼酸,0.5毫升硫酸,10毫升二甲苯以及40毫升甲苯。混合物在137℃下回流反应5小时。反应结束后,抽滤,除去溶剂并将固体产物水洗至无色。产物可直接用于下一步反应。

制备化合物11:向250毫升三颈烧瓶中依次加入4.60克化合物9,13.8克碳酸钾,6.52克6-溴-1-己烯和100毫升乙腈。90℃下回流反应5小时,反应结束后,抽滤,除去碳酸钾,粗产物采用柱状层析法(石油醚:乙酸乙酯=4:1)分离得到白色固体为化合物11。

聚合操作:向25毫升schlenk管中依次加入2.37克化合物11,2.77克1,6-二碘代十二氟己烷,0.495克抗坏血酸钠和0.064克三联吡啶氯化钌,并使用6毫升1,4-二氧六环和2毫升甲醇的混合溶剂。通过至少四个冷冻-泵-解冻循环将反应混合物脱气以完全消除溶解的氧气,然后在室温搅拌下用蓝色led光照射schlenk管。光照波长还可在390-590nm内调节。反应12小时后,产物用3毫升四氢呋喃溶解后滴入250毫升甲醇中沉淀析出。最后采用甲醇抽提48小时以除去未反应的小分子,从而得到含氟聚合物(命名为cfci666)。

图3是以上方法制备的含氟聚合物cfci666的1hnmr图。

实施例3:含氟液晶弹性体的制备

用2毫升甲苯溶解30毫克nir823,300毫克cfci666和6毫克grubbs二代催化剂并超声处理2分钟,将其倒入定制的聚四氟乙烯模具中(图4a),在氮气保护氛围下加热至60℃,反应两小时后,将模具冷却至室温并小心取下聚合物薄膜(图4b-c)以完成第一次初步交联,得到初步交联产物。在一定外力作用下将薄膜沿长轴方向拉伸至原来长度的1.5-1.8倍并固定薄膜(图4d),将其放入120℃真空烘箱反应48小时以完成第二次交联(图4e),反应结束了将薄膜冷却至室温,得到相应的含氟液晶弹性体薄膜(图4f)。以上制备过程的流程示意图如图4所示。图4f中,圆点代表液晶弹性体薄膜中的nir交联点,交联点之间的线段代表含氟液晶聚合物。

对含氟液晶弹性体薄膜进行杨氏模量测试(如图5所示),该弹性体的杨氏模量高达216.63mpa,远远高于一般的液晶弹性体。除此之外,本发明还通过实物测试对材料的性能进行表征。如图6所示,在薄膜下悬挂25克的重物,在光照(1.50w·cm-2,825nm)条件下,重物被拉起(图6a),关闭光照,重物被放下(图6b)。上述过程可以循环进行,如图7所示,l表示液晶弹性体薄膜的实时长度,liso表示液晶弹性体薄膜处于各向同性时的长度,即常温下的最小长度,图中的“niron”表示光照开启点,“niroff”表示光照关闭点,如无特殊说明,以下附图中的含义同此处。图7表明,在重复多次光照开启-关闭的循环动作后,液晶弹性体薄膜在负重条件下的伸缩性能仍基本保持不变,说明其具有优异的光响应行为,且机械性能良好。

实施例4:近红外光控液体输送泵

基于往复式活塞泵的工作原理,本发明设计了完全由近红外光调控的液体运输装置,实现了快速持久的定量光控液体运输。其结构示意图如图8示。

该近红外光控液体运输泵,包括本发明的含氟液晶弹性体1、用于产生近红外光20并照射含氟液晶弹性体1的光源2以及用于输送液体的液体输送管3。图8中光源2的形状可根据需要进行设置,保证其发出的近红外光20照射到含氟液晶弹性体1表面即可。优选的,光源呈环形(如图9所示),其中央放置含氟液晶弹性体1。液体输送管3的两端分别与第一容器4和第二容器5流体连通,第一容器4和第二容器5用于盛放液体,液体输送管3还连接有储水单元7,储水单元7优选为注射器,注射器分别与第一容器4和第二容器5流体连通,注射器内设有活塞杆80,活塞杆80与含氟液晶弹性体1连接,第一容器4和储水单元7之间以及第二容器5和储水单元7之间各设有一个单向阀6,控制光源2的开启或关闭,含氟液晶弹性体1发生收缩和回复,以带动活塞杆80发生往复运动,活塞杆80带动第一容器4内的液体由第一容器4经储水单元7进入第二容器5中。

当光源2开启时,含氟液晶弹性体1发生收缩时,带动活塞杆80运动,使第一容器4内的液体经液体输送管3单向阀6被吸入储水单元7中,当光源2关闭时,含氟液晶弹性体1逐渐回复原长,带动活塞杆80运动,使储水单元7中的液体经液体输送管3被输送至第二容器5中,由于第一容器4和储水单元7之间以及第二容器5和储水单元7之间各设有一个单向阀6,因此液体不会再次流入第一容器4中。图8a、b、c图示了液体在近红外光20控液体运输泵中的整个运输过程。

在上述近红外光控液体运输泵中,增加近红外染料的在弹性体中的占比或者提高近红外光20的功率,都可以提高材料的光响应速度,进而提高液体的运输速率。但是随着近红外染料的增加或者光源2功率的增加,材料的机械性能会受到一定程度的影响,而材料的机械性能直接决定着光控装置的工作寿命。因此,在不同的工作要求下,可以采用不同强度的光源2。

为了更贴合实际应用,兼顾响应速率和工作寿命,本发明将近红外染料的质量分数控制在8.93%,将光源2的功率控制在0.65w·cm-2。设备实物图如图9所示,图9a、b、c依次为光源2刚开启、光源2开启15s后刚刚关闭及光源2关闭后20s的设备实物状况图;且图中设备已连续工作12h以上。图9中,注射器上标记的两虚线之间的距离为注射器中的液体水平面的高差。图9中,第一容器4和第二容器5均为烧杯。近红外染料的质量分数控制在8.93%的含氟液晶弹性体1薄膜(实施例3的终产物)在该功率光源2下,如图10所示,薄膜表面温度达到最高需要15秒,恢复到室温需20秒。以此为基准,本发明将近红外光控液体运输泵的工作周期设定为35秒。除此之外,设备的循环工作周期必须稳定,因为只有在稳定的循环工作周期下,才可以设置光源2的开关周期,从而达到全自动运输。近红外光控液体运输泵的实际工作周期与本发明设计的一样,其循环工作周期为35秒,其中光开启状态为15秒,关闭状态为20秒。光照状态下,液晶弹性体膜收缩从而将液体吸入注射器中,光关闭状态下,液晶弹性体膜还原从而将液体输送到其它地方。为了验证该装置的工作稳定性,发明人实时记录了该装置中含氟液晶弹性体1薄膜的实时长度随光照时间的变化曲线图,如图11所示,从实验数据中,我们可以得到结论:在该0.65w·cm-2的光源2强度下,该设备可以连续工作至少12小时,完全达到了实际应用的要求。

以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1