一种磁性多孔木质纤维微球及其制备方法与应用

文档序号:10527361阅读:753来源:国知局
一种磁性多孔木质纤维微球及其制备方法与应用
【专利摘要】本发明属于生物质化学和可再生资源利用领域,具体涉及一种磁性多孔木质纤维微球及其制备方法与应用。本发明以木质纤维全组分为基材,以离子液体为溶剂体系直接溶解天然木质纤维,得到木质纤维溶液,然后通过包埋法负载磁性纳米粒子,以反相悬浮法制备磁性木质纤维微球。本发明制备的磁性多孔木质纤维微球分散性好,可直接利用原材料,产品后处理技术简单,能大规模、低成本的生产制备,简化工艺,减少制备过程中对环境的污染,可以应用于重金属吸附领域。
【专利说明】
一种磁性多孔木质纤维微球及其制备方法与应用
技术领域
[0001]本发明属于生物质化学和可再生资源利用领域,具体涉及一种磁性多孔木质纤维微球及其制备方法与应用。
【背景技术】
[0002]二十一世纪科学与技术已趋向于可再生的原料以及环境友好、可持续发展的过程与方法。木质纤维是地球上最丰富、最廉价的可再生资源,具有价廉、可生物降解、可衍生化、并对环境不产生污染等特点,因此若能把大量的农业纤维原料及工业纤维废料制备成高值化产品具有重要意义。木质纤维主要成分为纤维素、半纤维素和木质素,三者含量占其总量的90%以上。由于缺乏有效的分离途径,现有的木质纤维资源的利用是将其一种或两种组分转化利用,而其他组分结构被破坏,以废弃物的形式排放到环境中,这造成了资源的浪费和环境的污染。
[0003]随着资源、能源环境问题的日益严峻,木质纤维生物质的利用趋势是全组分利用。木质纤维全溶体系为其全组分利用带来了前所未有的机遇,拓展了木质纤维功能材料的开发与应用。全溶体系主要包括离子液体、二甲基亚砜/1-甲基咪唑和二甲基亚砜/氯化锂等。木质纤维全溶后可以通过一系列的化学改性,制备出不同用途的功能化高分子材料。
[0004]高分子微球是近二十多年来发展起来的一种新型功能化材料。高分子微球可进一步通过共混、表面改性等化学反应在其表面引入多种反应性功能基团,而具有特定反应性,如可通过共价键来结合酶、抗体、细胞等生物活性物质。在最初的研究中,一般选用纤维素为原料制备微球。由于缺乏木质纤维全组分溶剂体系,利用木质纤维全组分为原料制备微球一直以来未有报道。木质纤维全组分溶剂的开发为木质纤维微球的制备提供了可能,而直接利用木质纤维全组分为原料制备微球的方法尚未见报道。

【发明内容】

[0005]为了克服现有技术的不足与缺点,本发明的首要目的在于提供一种磁性多孔木质纤维微球的制备方法。
[0006]本发明的另一目的在于提供上述制备方法制备得到的磁性多孔木质纤维微球。
[0007]本发明的再一目的在于提供上述磁性多孔木质纤维微球的应用。
[0008]本发明的目的通过下述技术方案实现:
[0009]—种磁性多孔木质纤维微球的制备方法,包含如下步骤:
[0010](I)将木质纤维充分溶解于离子液体中,得到木质纤维溶液作为水相;
[0011](2)向步骤(I)制备的木质纤维溶液中加入磁流体,混合均匀,得到磁性功能化木质纤维溶液;
[0012](3)将步骤(2)制备的磁性功能化木质纤维溶液分散在油相与表面活性剂的混合溶液中,在温度为90?110°C,转速为300?600rpm的条件下搅拌3?5h,得到反相悬浮体系;
[0013](4)将步骤(3)制备的反相悬浮体系降温至45?60°C,加入交联剂,搅拌反应3?4h ;得到交联后的磁性木质纤维微球悬浮液;
[0014](5)将固化剂缓慢加入步骤(4)制备的交联后的磁性木质纤维微球悬浮液中,降温至25?30°C,悬浮液固化以便微球从离子液体中再生;分离微球,洗涤,得到磁性多孔木质纤维微球;
[0015]步骤(I)中所述的木质纤维为鹿渣、桉木和菊叶薯截等中的至少一种;
[0016]步骤(I)中所述的木质纤维优选做如下处理:粉碎过筛,球磨并干燥;
[0017]步骤(I)中所述的离子液体优选为1-丁基-3-甲基咪唑氯盐或者1-烯丙基-3-甲基咪唑氯盐;
[0018]步骤(I)中所述的木质纤维与离子液体的质量比优选为(2?6):100;
[0019]步骤(I)中所述的充分溶解的条件优选为在90?110°C、通氮气的条件下搅拌2?3h;
[0020]步骤(2)中所述的磁流体的无机物粒子为Fe、Fe203、Fe3(k和铁钴镍合金粒子中的至少一种;
[0021]步骤(2)中所述的磁流体与木质纤维溶液质量比优选(1:3)?(1:7);
[0022 ] 步骤(2)中所述的混合均匀的条件优选为在90?110 °C的条件下,300?600rpm搅拌30?90min;
[0023]步骤(3)中所述的油相为真空栗油、液体石蜡或者变压器油;
[0024]步骤(3)中所述的表面活性剂为Tween80和Span80中的至少一种;
[0025]步骤(3)中所述的油相与木质纤维溶液的体积比为3:1?7:1;
[0026]步骤(3)中所述的油相与表面活性剂的质量比为20:1?50:1;
[0027]步骤(4)中所述的交联剂为戊二醛;
[0028]步骤(4)中所述的交联剂与反相悬浮体系中的木质纤维的质量比为(0.05:1)?(0.2:1);
[0029 ] 步骤(5)中所述的固化剂为水、无水乙醇和丙酮中的至少一种;
[0030]步骤(5)中所述的洗涤优选采用去离子水洗涤;
[0031]所述的磁性多孔木质纤维微球可置于2°C的去离子水中保存或者冷冻干燥后备用;
[0032]—种磁性多孔木质纤维微球通过上述制备方法制备得到;
[0033]所述的磁性多孔木质纤维微球在生物质化学和可再生资源利用领域中的应用;
[0034]所述的磁性多孔木质纤维微球优选在重金属吸附领域中的应用;
[0035]本发明的原理:本发明以木质纤维全组分为基材,以离子液体溶剂体系直接溶解天然木质纤维,得到木质纤维溶液,然后通过包埋法负载磁性纳米粒子(例如:以铁钴镍类超顺磁性的无机物粒子为磁流体),以反相悬浮法制备磁性木质纤维微球。
[0036]本发明相对于现有技术具有如下的优点及效果:
[0037](I)本发明以木质纤维全组分为基材,以离子液体为溶剂,然后通过包埋法负载磁性纳米粒子(例如:以铁钴镍类超顺磁性的无机物粒子为磁流体),以反相悬浮法制备磁性木质纤维微球。
[0038](2)本发明可以通过改变磁性粒子含量来改变复合微球的磁响应性能,通过改变高分子溶液的浓度、表面活性剂等条件来控制微球的形态和尺寸。
[0039](3)本发明制备的磁性多孔木质纤维微球分散性好,可直接利用原材料,产品后处理技术简单,能大规模、低成本的生产制备,简化工艺,减少制备过程中对环境的污染。
【附图说明】
[0040]图1是实施例2制备的磁性多孔木质纤维微球的形态图。
[0041]图2是实施例1制备的磁性多孔木质纤维微球的扫描电镜图。
[0042]图3是实施例1制备的磁性多孔木质纤维微球重金属吸附率的结果分析图。
【具体实施方式】
[0043]下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
[0044]实施例1
[0045](I)甘蔗渣粉碎后过40目筛,球磨8h于65°C真空箱中干燥24h;将1.0g球磨干燥后的蔗渣分散到50.0g离子液体1-丁基-3-甲基咪唑氯化盐([BMHCCl)中,在105°C,通氮气条件下搅拌3h,得到浓度为1.96wt %的木质纤维溶液;
[0046](2)在 150mL的三口烧瓶中加入质量为5.34g的FeCl3.6H20和2.15g的FeCl2.4H20溶于10mL去离子水中,500r/min机械搅拌lOmin,迅速加入50mL氨水(25wt% ),待溶液完全变黑后继续搅拌2h,反应全过程通氮气进行保护;磁化分离产物,分离上层清液,得到具有超顺磁性的Fe3O4磁流体;
[0047](3)将步骤(2)制备的Fe3O4磁流体加入到步骤(I)制备的木质纤维溶液中,在90 V的条件下,300rpm搅拌90min使其混合均匀;得到磁性功能化木质纤维溶液,其中,木质纤维溶液与磁流体的质量比为3:1 ;
[0048](4)将步骤(3)制备的磁性功能化木质纤维溶液分散在含有3g Span80和IgTween80混合的10mL液体石錯中,在温度为110°C,转速为300rpm的条件下搅拌5h,得到反相悬浮体系,其中,液体石蜡与木质纤维溶液(磁性功能化木质纤维溶液中所含木质纤维溶液)的体积比为3:1;
[0049](5)将步骤(4)制备的反相悬浮体系降温至60°C,加入交联剂戊二醛,磁力搅拌4h,其中交联剂与反相悬浮体系中的木质纤维的质量比为0.15:1,得到交联后的磁性木质纤维微球悬浮液;
[0050](6)将固化剂无水乙醇缓慢加入步骤(4)制备的交联后的磁性木质纤维微球悬浮液中,慢慢降温至25°C,悬浮液固化以便磁性木质纤维微球从离子液体中再生,用磁铁将制得的微球从溶液中分离出来,用去离子水洗涤5次,得到磁性多孔木质纤维微球;
[0051 ]本实施例制备的磁性多孔木质纤维微球的粒径(X射线能谱仪EDS)大小为30?60微米(图2),磁性微球分布均勾,分散性好,磁性为20G.S;该微球可置于2°C的去离子水中保存或者冷冻真空干燥后备用;
[0052]磁性多孔木质纤维微球重金属吸附实验:分别配制100mg/L的PbW+和Cd2+离子溶液,将50mg本实施例制备的磁性多孔木质纤维微球加入到50mL的重金属溶液中,在25°C,200r/min振荡Ih,过滤,取清液用电感耦合等离子体原子发射光谱仪(ICP-OES)测定溶液重金属离子含量,结果见图3。
[0053]实施例2
[0054](I)甘蔗渣粉碎后过40目筛,球磨8h于65°C真空箱中干燥24h;将6.0g球磨干燥后的蔗渣分散到10g离子液体1-烯丙基-3-甲基咪唑氯盐([AMnCCl)中,在95°C,通氮气条件下搅拌2h,得到浓度为5.67wt %的木质纤维溶液;
[0055](2)在250mL的三口烧瓶中加入质量为11.68g的FeCl3.6H20和4.30g的FeCl2.4H20溶于200mL去离子水中,500r/min机械搅拌lOmin,迅速加入20mL氨水(25wt% ),待溶液完全变黑后继续搅拌2h,反应过程通氮气进行保护;磁化分离产物,分离上层清液,得到具有超顺磁性的Fe3O4磁流体;
[0056](3)将步骤(2)制备的Fe3O4磁流体加入到步骤(I)制备的木质纤维溶液中,在110 °C的条件下,600rpm搅拌30min使其混合均匀;得到磁性功能化木质纤维溶液,其中,木质纤维溶液与磁流体的质量比为7:1;
[0057](4)将步骤(3)制备的磁性功能化木质纤维溶液分散在含有3g Span80的10mL真空栗油中,在温度为90°C,转速为600rpm的条件下搅拌3h,得到反相悬浮体系,其中,真空栗油与木质纤维溶液(磁性功能化木质纤维溶液中所含木质纤维溶液)的体积比为7:1;
[0058](5)将步骤(4)制备的反相悬浮体系降温至55°C,加入交联剂戊二醛,磁力搅拌3h,其中戊二醛与反相悬浮体系中的木质纤维的质量比为0.2:1,得到交联后的磁性木质纤维微球悬浮液;
[0059](6)将固化剂无水乙醇缓慢加入步骤(4)制备的交联后的磁性木质纤维微球悬浮液中,慢慢降温至30°C,悬浮液固化以便磁性木质纤维微球从离子液体中再生,用磁铁将制得的微球从溶液中分离出来,用去离子水洗涤3次,得到磁性多孔木质纤维微球;
[0060]本实施例制备的磁性多孔木质纤维微球的粒径大小为270?1000微米(图1),磁性微球分布均勾,分散性好,磁性为26G.S ;该微球置于2 0C的去离子水中保存或者冷冻真空干燥后备用。
[0061 ] 实施例3
[0062](I)甘蔗渣粉碎后过40目筛,球磨8h于65°C真空箱中干燥24h;将3.0g球磨干燥后的蔗渣分散到10g离子液体1-烯丙基-3-甲基咪唑氯盐([AMnCCl)中,在90°C,通氮气条件下搅拌3h,得到浓度为2.84wt %的木质纤维溶液;
[0063](2)在250mL的三口烧瓶中加入质量为11.68g的FeCl3.6H20和4.30g的FeCl2.4H20溶于200mL去离子水中,500r/min机械搅拌lOmin,迅速加入20mL氨水(25wt% ),待溶液完全变黑后继续搅拌2h,反应过程通氮气进行保护;磁化分离产物,分离上层清液,得到具有超顺磁性的Fe3O4磁流体;
[0064](3)将步骤(2)制备的Fe3O4磁流体加入到步骤(I)制备的木质纤维溶液中,在100°C的条件下,450rpm搅拌60min使其混合均匀;得到磁性功能化木质纤维溶液,其中,木质纤维溶液与磁流体的质量比为6:1 ;
[0065](4)将步骤(3)制备的磁性功能化木质纤维溶液分散在含有6g TWeen80的10mL真空栗油中,在温度为100°c,转速为500rpm的条件下搅拌4h,得到反相悬浮体系,其中,真空栗油与木质纤维溶液(磁性功能化木质纤维溶液中所含木质纤维溶液)的体积比为6:1 ;
[0066](5)将步骤(4)制备的反相悬浮体系降温至45°C,加入交联剂戊二醛,磁力搅拌4h,其中戊二醛与反相悬浮体系中的木质纤维的质量比为0.05:1,得到交联后的磁性木质纤维微球悬浮液;
[0067](6)将固化剂无水乙醇缓慢加入步骤(4)制备的交联后的磁性木质纤维微球悬浮液中,慢慢降温至28°C,悬浮液固化以便磁性木质纤维微球从离子液体中再生,用磁铁将制得的微球从溶液中分离出来,用去离子水洗涤4次,得到磁性多孔木质纤维微球;
[0068]本实施例制备的磁性多孔木质纤维微球的粒径大小为100?200微米,磁性微球分布均匀,分散性好,磁性为22G.S;该微球置于2°C的去离子水中保存或者冷冻真空干燥后备用。
[0069]上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
【主权项】
1.一种磁性多孔木质纤维微球的制备方法,其特征在于包含如下步骤: (1)将木质纤维充分溶解于离子液体中,得到木质纤维溶液作为水相; (2)向步骤(I)制备的木质纤维溶液中加入磁流体,混合均匀,得到磁性功能化木质纤维溶液; (3)将步骤(2)制备的磁性功能化木质纤维溶液分散在油相与表面活性剂的混合溶液中,在温度为90?110°C,转速为300?600rpm的条件下搅拌3?5h,得到反相悬浮体系; (4)将步骤(3)制备的反相悬浮体系降温至45?60°C,加入交联剂,搅拌反应3?4h;得到交联后的磁性木质纤维微球悬浮液; (5)将固化剂缓慢加入步骤(4)制备的交联后的磁性木质纤维微球悬浮液中,降温至25?30°C,悬浮液固化微球再生;分离微球,洗涤,得到磁性多孔木质纤维微球。2.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于: 步骤(I)中所述的木质纤维为蔗渣、桉木和菊叶薯蓣中的至少一种。3.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于: 步骤(I)中所述的离子液体为1-丁基-3-甲基咪唑氯盐或者1-烯丙基-3-甲基咪唑氯盐; 步骤(I)中所述的木质纤维与离子液体的质量比为(2?6): 100。4.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于: 步骤⑵中所述的磁流体的无机物粒子为Fe、Fe203、Fe304和铁钴镍合金粒子中的至少一种; 步骤(2)中所述的磁流体与木质纤维溶液质量比为(1:3)?(1:7)。5.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于: 步骤(3)中所述的油相为真空栗油、液体石蜡或者变压器油; 步骤(3)中所述的表面活性剂为Tween80和Span80中的至少一种。6.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于: 步骤(3)中所述的油相与木质纤维溶液的体积比为3:1?7:1; 步骤(3)中所述的油相与表面活性剂的质量比为20:1?50:1。7.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于: 步骤(4)中所述的交联剂为戊二醛; 步骤(4)中所述的交联剂与反相悬浮体系中的木质纤维的质量比为(0.05:1)?(0.2:Do8.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于: 步骤(5)中所述的固化剂为水、无水乙醇和丙酮中的至少一种。9.一种磁性多孔木质纤维微球,其特征在于:通过权利要求1?8任一项所述的制备方法制备得到。10.权利要求9所述的磁性多孔木质纤维微球在生物质化学和可再生资源利用领域中的应用。
【文档编号】B01J20/30GK105885066SQ201610239971
【公开日】2016年8月24日
【申请日】2016年4月18日
【发明人】张爱萍, 谭晓华, 冯竟洋, 谢君
【申请人】华南农业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1