一种高耐磨抗拉环保型高铁电缆材料的制作方法

文档序号:10527715阅读:485来源:国知局
一种高耐磨抗拉环保型高铁电缆材料的制作方法
【专利摘要】本发明公开了一种高耐磨抗拉环保型高铁电缆材料,由以下重量份原料制成:锡铋合金粉6?8、聚丙烯26?33、丙三醇4?5、硬脂酸3?4、钛酸酯偶联剂0.5?0.7、水镁石粉10?14、聚乙烯醇4?5、VAE乳液8?11、抗氧化剂10100.3?0.5、腰壳果油6?8、吐温800.3?0.5、马来酸酐4?5、高耐磨炭黑7?9、碳化钛5?7、过硫酸铵0.2?0.4、硬脂酸钙0.2?0.4、甲基乙烯基硅橡胶65?70、聚氧基硅烷0.3?0.4、去离子水适量。制备的电缆材料生产工艺简单操作性高,生产过程能耗低,耐磨性高、抗拉强度好、柔韧性好,稳定性高,成本低,非常适用于高铁电缆对电缆的使用要求,值得推广。
【专利说明】
一种高耐磨抗拉环保型高铁电缆材料
技术领域
[0001 ]本发明涉及电缆材料技术领域,尤其涉及一种高耐磨抗拉环保型高铁电缆材料。
【背景技术】
[0002]聚合物由于其价格低廉、质地轻、比强度大,导热系数小和化学稳定性好等特点被广泛的应用于生产生活的各个领域。大多数的聚合物都是良好的电绝缘体,电阻率高,容易产生静电,从而限制其应用。抗静电的危害越来越大,如干扰飞机无线电设备的正常运转,影响飞机的运行,制药厂设备聚合物外壳容易静电吸附尘埃,影响药品纯度等,近几年,国家铁路交通发展迅速,铁路系统的控制越来越复杂,电气控制设备越来越多,对电缆需求量也越来越大。其中抗静电性显得尤其重要。
[0003]《导电_抗静电聚合物纳米复合材料的制备及其性能研究》一文中作者利用低熔点金属、碳纳米管等导电填料制备得到导电抗静电聚合物复合材料及纤维,提出了新的制备方法和新原理,采用电导率高、易加工的低熔点金属作为导电填料,通过熔融共混以及固相拉伸等方法,制备出复合纤维,得出聚合物/低熔点导电金属复合纤维具有电阻率随着拉伸倍率的提高而降低的性质,与未含有低导电熔点纤维的复合纤维比较,其复合纤维的强度和断裂伸长率都有所提高。通过在复合纤维中添加碳纳米管和纳米蒙脱土显著降低了金属颗粒粒径,使得复合纤维获得了更加优异的电性能和力学性能。虽然本发明能够解决电缆导电抗静电等方面的要求,但是随着机车技术的发展,对电缆的铺设环境和使用性能要求越来越高,单纯的单一性能已不能满足市场需求,本发明在这基础上进行改进,以期达到耐弯曲性能好、防火阻燃、绿色环保、耐老化等的特性,使其达到铁路工程中对电缆的使用要求。

【发明内容】

[0004]本发明目的就是为了弥补已有技术的缺陷,提供一种高耐磨抗拉环保型高铁电缆材料。
[0005]本发明是通过以下技术方案实现的:
一种高耐磨抗拉环保型高铁电缆材料,由以下重量份的原料制备制成:锡铋合金粉6-8、聚丙烯26-33、丙三醇4-5、硬脂酸3-4、钛酸酯偶联剂0.5-0.7、水镁石粉10-14、聚乙烯醇4-5、VAE乳液8-11、抗氧化剂10100.3-0.5、腰壳果油6_8、吐温800.3-0.5、马来酸酐4_5、高耐磨炭黑7-9、碳化钛5-7、过硫酸铵0.2-0.4、硬脂酸钙0.2-0.4、甲基乙烯基硅橡胶65-70、聚氧基硅烷0.3-0.4、去离子水适量。
[0006]所述一种高耐磨抗拉环保型高铁电缆材料,由以下具体步骤制备制成:
(I)将丙三醇、硬脂酸和钛酸酯偶联剂混合均匀后和水镁石粉混合搅拌活化,在室温下活化3-4h,再经过喷雾干燥后备用;将聚乙烯醇溶于去离子水制成20Wt%的浓度,加入VAE乳液和抗氧化剂1010混合搅拌均匀,搅拌均匀后加入上述备用的水镁石粉在捏合机中快速搅拌30-40min,升高温度在80-90 °C下快速搅拌40_60min,最后送入高细球磨机中球磨成细粉备用;
(2)将腰壳果油和吐温80混合加热至50-65°C,搅拌反应10-20min后加入马来酸酐,快速升高温度至90-100°C,加入高耐磨炭黑和碳化钛以600-800转/分下搅拌1-1.5h,自然降低温度至50-60°C时加入过硫酸铵,搅拌0.5-lh后干燥备用;
(3 )将聚丙烯在烘箱中80 0C下烘干6-8h,冷却后切成颗粒,将锡铋合金粉、步骤(2)制备的产物、硬脂酸钙和预处理的聚丙烯粒料按照配比在高速搅拌机中混合均匀,然后加到双螺杆挤出机挤出造粒,再将颗粒在80°C下烘干4-5h,之后置于毛细管流变仪中,制成混合原丝,将原丝夹持在夹具上,在170-180°C的环境加热箱内,以10mm/min的速度均匀拉伸纤维;
(4)将剩余其余的成分按照配方量和步骤(I)制备的产物通过密炼机熔融共混,温度为160-175°C,时间为15-25min,再使用开炼机将步骤(3)制备的产物混入上述复合材料中,最后通过单螺杆挤出机造粒,再将粒子在10-15m/min的挤出速率下,通过挤压模挤出成缆材冷却至常温即可。
[0007]本发明的优点是:本发明通过使用低熔点金属作为导电填料,结合熔融混合和固相拉伸的手段,制备了导电、抗静电复合纤维,使其拥有良好的强度和断裂伸长率,且具有优异的导电性能和力学性能,解决了金属与基体材料相容性差、容易氧化导致电导率下降的问题,利用改性剂对水镁石进行改性,提高了与高分子材料之间的相容性和分散性,改性后球磨处理提高了其在材料中发挥的阻燃性,无卤安全,本发明制备的电缆材料生产工艺简单操作性高,降低了生产工艺对设备的要求,生产过程能耗低,耐磨性高、抗拉强度好、柔韧性好,稳定性高,成本低,非常适用于高铁电缆对电缆的使用要求,值得推广。
【具体实施方式】
[0008]—种高耐磨抗拉环保型高铁电缆材料,由以下重量份(公斤)的原料制备制成:锡铋合金粉6、聚丙烯26、丙三醇4、硬脂酸3、钛酸酯偶联剂0.5、水镁石粉10、聚乙烯醇4、VAE乳液8、抗氧化剂10100.3、腰壳果油6、吐温800.3、马来酸酐4、高耐磨炭黑7、碳化钛5、过硫酸铵0.2、硬脂酸钙0.2、甲基乙烯基硅橡胶65、聚氧基硅烷0.3、去离子水适量。
[0009]所述一种高耐磨抗拉环保型高铁电缆材料,由以下具体步骤制备制成:
(1)将丙三醇、硬脂酸和钛酸酯偶联剂混合均匀后和水镁石粉混合搅拌活化,在室温下活化3h,再经过喷雾干燥后备用;将聚乙烯醇溶于去离子水制成20Wt%的浓度,加入VAE乳液和抗氧化剂1010混合搅拌均匀,搅拌均匀后加入上述备用的水镁石粉在捏合机中快速搅拌30min,升高温度在80 °C下快速搅拌40min,最后送入高细球磨机中球磨成细粉备用;
(2)将腰壳果油和吐温80混合加热至50°C,搅拌反应1min后加入马来酸酐,快速升高温度至90°C,加入高耐磨炭黑和碳化钛以600转/分下搅拌lh,自然降低温度至50°C时加入过硫酸铵,搅拌0.5h后干燥备用;
(3)将聚丙烯在烘箱中80°C下烘干6h,冷却后切成颗粒,将锡铋合金粉、步骤(2)制备的产物、硬脂酸钙和预处理的聚丙烯粒料按照配比在高速搅拌机中混合均匀,然后加到双螺杆挤出机挤出造粒,再将颗粒在80°C下烘干4h,之后置于毛细管流变仪中,制成混合原丝,将原丝夹持在夹具上,在170°C的环境加热箱内,以10mm/min的速度均匀拉伸纤维;
(4)将剩余其余的成分按照配方量和步骤(I)制备的产物通过密炼机熔融共混,温度为160 °C,时间为15min,再使用开炼机将步骤(3)制备的产物混入上述复合材料中,最后通过单螺杆挤出机造粒,再将粒子在lOm/min的挤出速率下,通过挤压模挤出成缆材冷却至常温即可。
[0010]该机车电缆材料的性能测试如下:
拉伸强度(MPa ): 14.8;断裂伸长率(%):389;体积电阻率(Ω.πι):3.7X1013;介电强度(MV/m): 28;氧指数(%): 31;载荷下伸长率(%):1O;永久变形率(%): O。
【主权项】
1.一种高耐磨抗拉环保型高铁电缆材料,其特征在于,由以下重量份的原料制备制成:锡铋合金粉6-8、聚丙烯26-33、丙三醇4-5、硬脂酸3-4、钛酸酯偶联剂0.5-0.7、水镁石粉10-14、聚乙烯醇4-5、VAE乳液8-11、抗氧化剂10100.3-0.5、腰壳果油6-8、吐温800.3-0.5、马来酸酐4-5、高耐磨炭黑7-9、碳化钛5-7、过硫酸铵0.2-0.4、硬脂酸钙0.2-0.4、甲基乙烯基硅橡胶65-70、聚氧基硅烷0.3-0.4、去离子水适量。2.根据权利要求1所述一种高耐磨抗拉环保型高铁电缆材料,其特征在于,由以下具体步骤制备制成: (1)将丙三醇、硬脂酸和钛酸酯偶联剂混合均匀后和水镁石粉混合搅拌活化,在室温下活化3-4h,再经过喷雾干燥后备用;将聚乙烯醇溶于去离子水制成20Wt%的浓度,加入VAE乳液和抗氧化剂1010混合搅拌均匀,搅拌均匀后加入上述备用的水镁石粉在捏合机中快速搅拌30-40min,升高温度在80-90 °C下快速搅拌40_60min,最后送入高细球磨机中球磨成细粉备用; (2)将腰壳果油和吐温80混合加热至50-65°C,搅拌反应10-20min后加入马来酸酐,快速升高温度至90-100°C,加入高耐磨炭黑和碳化钛以600-800转/分下搅拌1-1.5h,自然降低温度至50-60°C时加入过硫酸铵,搅拌0.5-lh后干燥备用; (3 )将聚丙烯在烘箱中80 0C下烘干6-8h,冷却后切成颗粒,将锡铋合金粉、步骤(2 )制备的产物、硬脂酸钙和预处理的聚丙烯粒料按照配比在高速搅拌机中混合均匀,然后加到双螺杆挤出机挤出造粒,再将颗粒在80°C下烘干4-5h,之后置于毛细管流变仪中,制成混合原丝,将原丝夹持在夹具上,在170-180°C的环境加热箱内,以10mm/min的速度均匀拉伸纤维; (4)将剩余其余的成分按照配方量和步骤(I)制备的产物通过密炼机熔融共混,温度为160-175°C,时间为15-25min,再使用开炼机将步骤(3)制备的产物混入上述复合材料中,最后通过单螺杆挤出机造粒,再将粒子在10-15m/min的挤出速率下,通过挤压模挤出成缆材冷却至常温即可。
【文档编号】C08L23/12GK105885430SQ201610289672
【公开日】2016年8月24日
【申请日】2016年5月4日
【发明人】李训祥, 王兴祥, 胡云昌, 李贻凤, 周志梅, 李如宝
【申请人】安徽省康利亚股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1