一种多孔结构静电喷雾纳米微球的制备方法

文档序号:10564497阅读:1240来源:国知局
一种多孔结构静电喷雾纳米微球的制备方法
【专利摘要】本发明涉及一种微纳米尺度下具有多孔结构的聚合物微球的制备方法,该方法通过分别量取适量的N,N?二甲基甲酰胺(DMF)和丙酮,称取一定量干燥的聚偏氟乙烯(PVDF)粉末,制备得到静电喷雾前驱体溶液,将静电喷雾前驱体溶液进行静电喷雾实验,得到一种多孔结构静电喷雾纳米微球,微球的尺寸为0.5?11.5μm,微球多孔孔径为10.11?22.43nm,微球比表面积为3.94?15.18m2/g,微球多孔总孔体积为0.009?0.084cm3/g。将该聚合物多孔微球应用于物质的分离与富集、催化剂载体、医用生物材料、离子吸附、废水处理技术上。
【专利说明】
一种多孔结构静电喷雾纳米微球的制备方法
技术领域
[0001]本发明涉及一种微纳米尺度下具有多孔结构的聚合物微球的制备方法,属于纳米微球的制备技术领域。
【背景技术】
[0002]多孔微球具有比表面积大、孔隙率高、表面活性高、吸附性强同时孔隙连接良好等突出优点,由于其特殊的结构和尺寸,其应用范围十分广泛,在化学、生物、电、光、热、磁器件等许多领域具有巨大的发展潜力。
[0003]静电喷雾技术是电流体动力学射流技术中一个重要的分支,是通过高压静电作用使从针头喷出的聚合物液滴带电,然后通过液滴中溶剂挥发制备聚合物微纳米微球的一种简易方法。静电喷雾过程中由于液滴带电,同种电荷的库仑力排斥作用有效地阻止了液滴之间的团聚,同时使液滴穿透周围的气体介质变得更容易。液滴的运动轨迹可以通过在静电喷雾过程中改变施加电压的大小得到有效的控制,从而使得收集制备的微纳米颗粒变得更加方便。通过静电喷雾技术制备的微球单分散性好、纯度高而且直径可以达到微/纳米尺度,并且利用静电喷雾技术可以一步成型,不需要额外添加模板和后处理工艺。

【发明内容】

[0004]本发明的目的在于提出一种多孔结构静电喷雾纳米微球的制备方法,微球的尺寸为0.5-11.5μπι,微球多孔孔径为10.11-22.43nm,微球比表面积为3.94-15.18m2/g,微球多孔总孔体积为0.009-0.084cm3/go
[0005]为了解决上述技术问题,本发明提供一种多孔结构静电喷雾纳米微球的制备方法,依次包括以下步骤:
[0006]I)静电喷雾前驱体溶液的配制:分别量取适量的N,N_二甲基甲酰胺(DMF)和丙酮加入到10ml的螺口锥形瓶中,称取一定量干燥的聚偏氟乙烯(PVDF)粉末加入到装有DMF/丙酮混合溶剂的螺口锥形瓶中,加入一个磁转子,然后将锥形瓶置于数显恒温磁力搅拌器中水浴加热,同时以一定的转速搅拌,聚偏氟乙烯完全溶解于DMF/丙酮混合溶剂中,取出锥形瓶于室温下静置冷却,得到透明、均一、澄清的聚合物溶液,所得溶液即为静电喷雾前驱体溶液。
[0007]2)静电喷雾步骤:将步骤I中的静电喷雾前驱体溶液加入到螺口注射器中,将注射器安装到微量注射栗上,通过微量注射栗控制注射速度;通过高压直流电源装置调节喷雾电压;通过移动铁架台调节喷头至接收装置的距离;然后开始静电喷雾实验。
[0008]3)所得微球于室温下使残余溶剂完全挥发,使用场发射扫描电镜观察多孔微球形态,使用比表面积及孔径分析仪测量多孔微球的比表面积、孔径分布及总孔体积。
[0009]本发明以PVDF为静电喷雾基材,采用的溶剂自身具有较强的挥发性。所获得的多孔微球,拥有较大大的比表面积和活性位点,可以提高其负载和吸附能力,有望在物质的分离与富集、催化剂载体、医用生物材料、离子吸附、废水处理等技术上有所应用。
[0010]本发明的优点主要在于:提供了一种可用于制备具有表面通孔结构的多孔聚合物微球的制备方法,该方法仅仅通过物理过程就实现了多孔微球的制备,制备过程不包含任何化学反应,并且所得多孔微球具有表面通孔结构。该方法工艺简单,操作简便,制备条件易控,易于工业化生产。
[0011]所述PVDF的相对分子质量为300,000-900,000g.mol_l。
[0012]所述DMF/丙酮混合溶剂中DMF/丙酮体积比例为0:10-4:6。
[0013]所述静电喷雾前驱体溶液中PVDF用量为Iwt %-5wt %。
[0014]所述微量注射栗注射速度为2.0-6.0mL/h ο
[0015]所述静电喷雾电压为6_18kV。
[0016]所述喷头至接收装置的距离为9_21cm。
[0017]所述水浴加热温度为40-60°C。
[0018]所述搅拌速度为100-1000rpm。
[0019]所述搅拌时间为0.5_4h。
【附图说明】
[0020]图1为本发明中静电喷雾装置的结构示意图。
[0021 ]图2、图3为实施例1所得PVDF多孔微球的场发射扫描电镜(FESEM)图片。
[0022]图2为放大2000倍所得图片;图3为放大10000倍所得图片。
[0023]图4为实施例1所得的PVDF多孔微球的氮气等温吸附-脱附曲线。
[0024]图5为实施例1所得的PVDF多孔微球的孔径分布曲线。
[0025]图6为实施例1所得的PVDF多孔微球的粒径分布的直方图。
【具体实施方式】
[0026]实施例1
[0027]I)用量筒分别量取30ml丙酮加入到10ml的螺口锥形瓶中,即溶剂中DMF/丙酮体积比例为0:10;用电子分析天平称取0.73gPVDF粉末加入到装有丙酮的螺口锥形瓶中,加入一个磁转子,拧紧瓶盖,然后将锥形瓶置于数显恒温磁力搅拌器中在50°C水浴加热,同时以500rpm的转速搅拌2h,PVDF完全溶解于丙酮中,取出锥形瓶于室温下静置冷却,得到透明、均一、澄清的聚合物溶液,所得溶液即为3wt %的PVDF静电喷雾前驱体溶液。
[0028]2)将静电喷雾前驱体溶液加入到50ml的螺口注射器中,将注射器安装到微量注射栗上,通过微量注射栗控制注射速度为4.0ml/h;通过高压直流电源装置调节喷雾电压为12kV;通过移动铁架台调节喷头至接收装置的距离为15cm;然后开始静电喷雾实验。
[0029]3)所得微球于室温下放置一段时间使残余溶剂完全挥发;所得的PVDF多孔微球的场发射扫描电镜(FESEM)图片如图2、图3所示;所得的PVDF多孔微球的氮气等温吸附-脱附曲线如图4所示;所得的PVDF多孔微球的孔径分布曲线如图5所示;所得的PVDF多孔微球粒径分布的直方图如图6所示。
【主权项】
1.一种多孔结构静电喷雾纳米微球的制备方法,依次包括以下步骤: 1)静电喷雾前驱体溶液的配制:分别量取适量的N,N-二甲基甲酰胺(DMF)和丙酮加入至IJlOOml的螺口锥形瓶中,称取一定量干燥的聚偏氟乙烯(PVDF)粉末加入到装有DMF/丙酮混合溶剂的螺口锥形瓶中,加入一个磁转子,然后将锥形瓶置于数显恒温磁力搅拌器中水浴加热,同时以一定的转速搅拌,聚偏氟乙烯完全溶解于DMF/丙酮混合溶剂中,取出锥形瓶于室温下静置冷却,得到透明、均一、澄清的聚合物溶液,所得溶液即为静电喷雾前驱体溶液; 2)静电喷雾步骤:将步骤I中的静电喷雾前驱体溶液加入到螺口注射器中,将注射器安装到微量注射栗上,通过微量注射栗控制注射速度;通过高压直流电源装置调节喷雾电压;通过移动铁架台调节喷头至接收装置的距离;然后开始静电喷雾实验; 3)所得微球于室温下使残余溶剂完全挥发,使用场发射扫描电镜观察多孔微球形态,使用比表面积及孔径分析仪测量多孔微球的比表面积、孔径分布及总孔体积。2.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述PVDF的相对分子质量为300,000-900,000g.moF103.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述DMF/丙酮混合溶剂中DMF/丙酮体积比例为0:10-4:6。4.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述静电喷雾前驱体溶液中PVDF用量为lwt%-5wt%。5.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述微量注射栗注射速度为2.0-6.0mL/h。6.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述静电喷雾电压为6-18kV,所述喷头至接收装置的距离为9-21cm。7.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述水浴加热温度为40-60 °C。8.根据权利要求1所述的一种多孔结构静电喷雾纳米微球的制备方法,其特征在于:所述搅拌速度为I OO-1OOOrpm,所述搅拌时间为0.5_4h。9.采用权利要求1-8任一项的制备方法得到的一种多孔结构静电喷雾纳 球,微球的尺寸为0.5-11.5μπι,微球多孔孔径为10.11-22.43nm,微球比表面积为3.94-15.18m2/g,微球多孔总孔体积为0.009-0.084cm3/g。10.—种多孔结构静电喷雾纳米微球的应用,将权利要求9的多孔结构静电喷雾纳米微球应用于物质的分离与富集、催化剂载体、医用生物材料、离子吸附、废水处理技术上。
【文档编号】C08J3/12GK105924657SQ201610393087
【公开日】2016年9月7日
【申请日】2016年6月3日
【发明人】鲁圣国, 邓永茂, 陶涛, 梁波, 姚英邦
【申请人】广东工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1