一种以Pickering高内相乳液为模板制备的3D多孔支架材料的制作方法

文档序号:10606167阅读:713来源:国知局
一种以Pickering高内相乳液为模板制备的3D多孔支架材料的制作方法
【专利摘要】本发明涉及一种以Pickering高内相乳液为模板制备的3D多孔支架材料及其制备方法。本发明以明胶纳米颗粒为乳液稳定剂,水为连续相,有机溶剂为分散相,将可聚合的功能单体、引发剂和交联剂溶于连续相,采用均质乳化形成水包油型(O/W)Pickering高内相乳液,再通过聚合反应制得3D多孔支架材料。本发明制备的3D多孔支架材料不仅具有较高的孔隙率和丰富的多层次孔道结构,而且具有良好的机械性能和生物相容性,可作为细胞培养支架广泛用于生物医学材料领域。
【专利说明】
一种以P i cker i ng高内相乳液为模板制备的3D多孔支架材料
技术领域
[0001]本发明涉及生物医学材料领域,具体是一种以Pickering高内相乳液为模板制备的3D多孔支架材料。【背景技术】
[0002]用于细胞培养最常见的材料多为由聚苯乙烯或玻璃合成的2D平面基底。然而2D培养基底的主要缺陷在于它不能精确反映许多复杂的生物学反应。为解决这些问题,非常有必要设计一些与细胞真实生长环境极为类似的组织支架材料,因此,近年来开始发展许多能够提供更多生理学相关生长环境的3D培养基质用于体外细胞培养。
[0003]简单的3D培养基模型是将细胞置于一种具有良好亲水性和生物相容性的支架材料中进行培养。为成功实现细胞的粘附、迀移和活化,支架材料原则上应该选择自身生物相容性良好,可降解和可体内吸收的材料来制备,同时所形成的材料应具有高孔隙率、高表面积和完全相互贯通的几何结构以及独特的三维形状。目前制备支架材料的方法有溶剂浇铸 (solvent casting),冷冻干燥,电纺丝,相反转以及基于恪化的技术。然而上述提及的许多方法虽然能成功制造高度多孔的3D基质,但所制备的材料内部的孔道连通性较差,限制了细胞的进入以及妨碍营养物质和废弃产物的扩散和渗透。
[0004]近来,利用高内相乳液(high internal phase emuls1ns,HIPEs)为模板合成具有多层次孔道结构的3D多孔支架材料成为一种独特的制备技术。高内相乳液通常是粘稠的浓缩乳液,其分散相体积分数高于74%。聚高内相乳液(Poly-HIPEs)是基于在高内相乳液的连续相中加入聚合物单体,通过引发聚合反应形成交联网络而固化连续相,随后除去嵌入整个材料中的分散液滴而获得。这种方法所生产的材料不仅具有多层次的孔道结构,还具有超高的孔隙率和渗透性,有时孔道孔隙率能达到0.99。换而言之,聚高内相乳液结合了完全互相连通,高空隙率结构,低密度,高渗透性,高表面积以及力学完整性等一系列优点, 能够很好地为细胞的迀移和组织血管的生成提供基本空间。
[0005]目前大多数的聚高内相乳液是基于表面活性剂稳定的油包水(W/0)型高内相乳液为模板,通过在连续相添加疏水性单体聚合而得。比较普遍的聚高内相乳液是基于1986年 Barby和Haq所开发的聚苯乙稀/二乙基体系(Barby D,Haq Z.European Patent 60 138, March,3,1982.)。但采用这种方法制备的多孔材料具有低剪切阻力并且极易脆裂,并且,用疏水性聚合物单体制备的材料有时并不适合需要重点考虑3D多孔支架材料亲水性的生物医学领域。因此,通过添加亲水性单体到0/W型高内相乳液模板中制备3D多孔材料逐渐受到关注和重视。然而,由于0/W型高内相乳液需要更为细致的乳液稳定性和聚合反应,目前仅有少数应用实例。已报道的亲水性单体主要有丙烯酰胺,丙烯酸羟乙酯和甲基丙烯酸羟乙酯(Macromolecules 2007,40(22),8056-8060;Polymer Chemistry 2014,5,4227_4234; Journal of the American Chemical Society 2003,125(47),14473-14481;Polymer 2010,51(16),3612-3617)。
[0006]要成功制备高内相乳液,稳定剂是一个非常关键的组分。大多数用于稳定高内相乳液的乳化剂多为小分子表面活性剂,其用量巨大,体积分数可占到外相的50%,在超过一定的浓度之后所制备的多孔材料会引起细胞毒性,极不利于生物医学材料的应用。因此,近年来开始尝试采用固体两亲性胶体颗粒取代表面活性剂。采用固体颗粒稳定的高内相乳液称为Pickering高内相乳液,其中固体颗粒能够不可逆地吸附于油水界面上,并形成致密的粘弹性吸附层,以此阻碍液滴之间的聚并以及乳液的Ostwald成熟。Pickering高内相乳液不仅具有极强的稳定性,其液滴尺寸通常大于传统表面活性剂稳定的高内相乳液,因此它非常适合作为模板用于制备3D多孔支架材料。
[0007]本发明采用熟知的具有良好生物相容性和可生物降解性的明胶为基质材料,通过两步去溶剂法制备出一种具有较好单分散性的明胶纳米颗粒,并以其为唯一稳定剂构建Pickering高内相乳液模板,通过在连续相中添加可聚合功能单体引发聚合形成亲水性3D多孔支架材料。本发明所提供的方法不引入小分子表面活性剂,且所采用的稳定剂用量极少,可避免所制备材料潜在的细胞毒性。本发明所制备的3D多孔支架材不仅具有较高的孔隙率和丰富的多层次孔道结构,还具有良好的机械性能、亲水性和生物相容性,可作为细胞培养支架广泛用于生物医学材料领域。

【发明内容】

[0008]本发明的目的在于研制一种以明胶纳米颗粒稳定的Pickering高内相乳液为模板,通过在连续相添加可聚合功能单体并引发聚合形成一种具有良好亲水性和生物相容性的3D多孔支架材料。为实现以上目的,本发明采用以下技术方案:
[0009](I)采用两步去溶剂法制备明胶纳米颗粒,具体为将B型明胶充分溶于蒸馏水中,随后加入丙酮,将白色沉淀物复溶于蒸馏水中并调节PH值为12.0,然后滴加丙酮至白色沉淀物产生,加入戊二醛反应3?14小时;最后将反应后的混合液于1000g离心30?50分钟,将离心下层固体复溶于蒸馏水并缓慢蒸发掉残余丙酮;(2)配制由水,明胶纳米颗粒,功能单体、引发剂和交联剂组成的连续相,在9000?20000rpm搅拌条件下将连续相和分散相按照体积比1:3?1:9混合形成0/W型Pickering高内相乳液;(3)将所得产物通氮气15分钟并密闭,再在50°C条件下反应24?48小时;(4)分别用水和乙醇交替抽提24小时,最后将样品冷冻干燥得到3D多孔支架材料;在本发明中,功能单体为丙烯酰胺,丙烯酸羟乙酯和甲基丙烯酸羟乙酯中的任一种;引发剂可选择过硫酸铵,过硫酸钾和过氧化苯甲酰中的任一种;交联剂为N,M -亚甲基双丙烯酰胺;分散相可为正己烷,甲苯,对二甲苯,苯乙烯中的任一种。
[0010]上述制备方法不引入小分子表面活性剂,且所采用的稳定剂用量极少,可避免所制备材料潜在的细胞毒性。利用该方法制备的3D多孔支架材不仅具有较高的孔隙率和丰富的多层次孔道结构,还具有良好的机械性能、亲水性和生物相容性,为其作为细胞培养支架广泛用于生物医学材料领域奠定了基础。
[0011 ]采用本发明制备的材料具有以下优点:
[0012](I)本发明采用明胶为原料制备Pickering稳定剂,它具有良好的亲水性,且来源广泛,无致免疫性,以这种蛋白为基质材料制备的明胶纳米颗粒具有良好的可润湿性,且少量明胶纳米颗粒即可制备出极为稳定的高内相乳液。
[0013](2)本发明采用的明胶纳米颗粒稳定的Pickering高内相乳液模板具有极强的稳定性,能够在聚合反应中维持乳液的基本结构,利于3D多孔材料的形成。
[0014](3)本发明制备的3D多孔支架材料,其孔道尺寸、结构以及机械性能可通过调节稳定剂明胶纳米颗粒的浓度和聚合单体的含量灵活变化,便于满足各种应用的需要。[0〇15](4)本发明无需大量使用诸如Tween、Span以及Triton X-405等表面活性剂,能够有效降低材料的毒性风险。
[0016](5)本发明所制备的3D多孔支架材料的形状可通过调节模具的形式来实现,便于适应细胞培养对支架的形状要求。
[0017](6)本发明制备的3D多孔支架材料具有开放大孔结构和较高的孔隙率,还具有良好的机械性能、亲水性和生物相容性,利于细胞的生长繁殖以及营养物质和废气产物的扩散和渗透。
[0018](7)本发明中使用的原料来源广泛且成本低廉,制备工艺简单易行,生产周期短, 具有较大的应用推广价值。【附图说明】[0〇19]图丨实例i制备的3D多孔支架材料的扫描电镜(SEM)图;
[0020]图2对比实施例1制备的互通多孔材料的扫描电镜(SEM)图。【具体实施方式】[〇〇21]下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚,但实施例仅是范例性质的,并不对本发明的范围构成任何限制。为了证明本申请制备得到的3D多孔支架材料相对于目前现有技术制备的3D多孔支架材料具有孔道结构完整和孔道层次丰富的优点,本申请中以高内相乳液为模板制备了明胶互通多孔材料作为对比实施例。[〇〇22] 实施例1[〇〇23] 取1.25g B型明胶充分溶于25mL蒸馏水中,然后加入25mL去溶剂化试剂丙酮,去掉上清液,将白色沉淀物复溶于25mL蒸馏水中并调节其pH值为12.0,滴加丙酮至白色沉淀物产生,随后加入250yL戊二醛溶液(25 %水溶液)交联反应3小时。最后使用离心机将反应后的混合液于l〇〇〇〇g离心35分钟,将离心下层固体复溶于水中并缓慢蒸发掉残余丙酮。[0〇24] 配制3mL连续相的水溶液,其中,Pickering稳定剂明胶纳米颗粒,功能单体丙稀酰胺,引发剂过硫酸铵和交联剂N,f-亚甲基双丙烯酰胺的浓度分别为5mg/mL,2.5mol/L, 3.18mg/mL,1.77mg/mL。取12mL正己烧作为分散相,将连续相和分散相于9000rpm搅拌条件下形成高内相乳液,然后向所得产物的容器中通氮气15分钟并密闭,再在50°C条件下反应 24小时。反应结束后将所得材料分别用水和乙醇交替抽提24小时,最后将样品冷冻干燥得到3D多孔支架材料。[〇〇25] 实施例2[〇〇26] 取2.5g B型明胶充分溶于50mL蒸馏水中,然后加入50mL去溶剂化试剂丙酮,去掉上清液,将白色沉淀物复溶于50mL蒸馏水中并调节其pH值为12.0,滴加丙酮至白色沉淀物产生,随后加入500yL戊二醛溶液(25 %水溶液)交联反应6小时。最后使用离心机将反应后的混合液于l〇〇〇〇g离心35分钟,将离心下层固体复溶于水中并缓慢蒸发掉残余丙酮。
[0027] 配制3mL连续相的水溶液,其中,Picker ing稳定剂明胶纳米颗粒,功能单体丙稀酰胺,引发剂过硫酸钾和交联剂1^-亚甲基双丙烯酰胺的浓度分别为51^/1^,2.511101/1,3.18mg/mL,1.77mg/mL。取12mL甲苯作为分散相,将连续相和分散相于12000rpm搅拌条件下形成高内相乳液,然后向所得产物的容器中通氮气15分钟并密闭,再在50°C条件下反应24小时。反应结束后将所得材料分别用水和乙醇交替抽提24小时,最后将样品冷冻干燥得到3D多孔支架材料。
[0028]实施例3
[0029]取1.25g B型明胶充分溶于25mL蒸馏水中,然后加入25mL去溶剂化试剂丙酮,去掉上清液,将白色沉淀物复溶于25mL蒸馏水中并调节其pH值为12.0,滴加丙酮至白色沉淀物产生,随后加入250yL戊二醛溶液(25%水溶液)交联反应14小时。最后使用离心机将反应后的混合液于1000g离心35分钟,将离心下层固体复溶于水中并缓慢蒸发掉残余丙酮。
[°03°]配制3mL连续相的水溶液,其中,Pickering稳定剂明胶纳米颗粒,功能单体丙稀酸羟乙酯,引发剂过硫酸铵和交联剂N,Y -亚甲基双丙烯酰胺的浓度分别为10mg/mL,5.0mol/1,2.9mg/ mL,11.6mg/mL。取12mL对二甲苯作为分散相,将连续相和分散相于15000rpm搅拌条件下形成高内相乳液,然后向所得产物的容器中通氮气15分钟并密闭,再在50°C条件下反应24小时。反应结束后将所得材料分别用水和乙醇交替抽提48小时,最后将样品冷冻干燥得到3D多孔支架材料。
[0031 ] 实施例4
[0032]取2.5g B型明胶充分溶于50mL蒸馏水中,然后加入50mL去溶剂化试剂丙酮,去掉上清液,将白色沉淀物复溶于50mL蒸馏水中并调节其pH值为12.0,滴加丙酮至白色沉淀物产生,随后加入500yL戊二醛溶液(25 %水溶液)交联反应8小时。最后使用离心机将反应后的混合液于1000g离心35分钟,将离心下层固体复溶于水中并缓慢蒸发掉残余丙酮。
[0033]配制3mL连续相的水溶液,其中,Picker ing稳定剂明胶纳米颗粒,功能单体甲基丙烯酸羟乙酯,引发剂过氧化苯甲酰和交联剂N,Y -亚甲基双丙烯酰胺的浓度分别为15mg/mL,3.0moI/L,2.0mg/mL,20mg/mL。取12mL苯乙稀作为分散相,将连续相和分散相于15000rpm搅拌条件下形成高内相乳液,然后向所得产物的容器中通氮气15分钟并密闭,再在50°C条件下反应24小时。反应结束后将所得材料分别用水和乙醇交替抽提30小时,最后将样品冷冻干燥得到3D多孔支架材料。
[0034]实施例5
[0035]取2.5g B型明胶充分溶于50mL蒸馏水中,然后加入50mL去溶剂化试剂丙酮,去掉上清液,将白色沉淀物复溶于50mL蒸馏水中并调节其pH值为12.0,滴加丙酮至白色沉淀物产生,随后加入500yL戊二醛溶液(25%水溶液)交联反应14小时。最后使用离心机将反应后的混合液于1000g离心35分钟,将离心下层固体复溶于水中并缓慢蒸发掉残余丙酮。
[0036]配制5mL连续相的水溶液,其中,Pickering稳定剂明胶纳米颗粒,功能单体甲基丙烯酸羟乙酯,引发剂过氧化苯甲酰和交联剂N,Y -亚甲基双丙烯酰胺的浓度分别为1mg/mL,4.0moI/L,1.3mg/mL,13.3mg/mL。取15mL苯乙稀作为分散相,将连续相和分散相于15000rpm搅拌条件下形成高内相乳液,然后向所得产物的容器中通氮气15分钟并密闭,再在50°C条件下反应24小时。反应结束后将所得材料分别用水和乙醇交替抽提24小时,最后将样品冷冻干燥得到3D多孔支架材料。
[0037]对比实施例1
[0038] 一种以高内相乳液为模板制备的明胶互通多孔材料,其制备方法为将0.5g明胶与 5mg京尼平溶于5mL水中组成水相,将5mL水相加入20mL正己烧中,在9000rpm搅拌条件下形成高内相乳液,将所得样品室温反应24小时,随后分别用水和乙醇分别抽提24小时,最后将样品冷冻干燥得到互通多孔支架材料。[〇〇39]根据实施例1和对比实施例1制备的多孔材料的SEM图分别如图1和图2所示。从图中可以看出,在相同的原料配比(连续相固含量一致)和技术参数情况下,本发明实施例1获得的多孔材料具有更加完整的孔道和更加丰富的孔道层次结构,同时,孔壁面积更大,利于实际应用中细胞的粘附和迀移。
【主权项】
1.一种以Pickering高内相乳液为模板制备的3D多孔支架材料,其特征在于制备方法为: (I)配制由水,明胶纳米颗粒,功能单体、引发剂和交联剂组成的连续相,其中明胶纳米颗粒和功能单体的浓度范围分别为5?15mg/mL和2.5?5.0mol/L;(2)在9000?20000rpm搅拌条件下将连续相和分散相按照体积比1:3?1:9混合形成0/W型Pickering高内相乳液;(3)将所得产物通氮气15分钟并密闭,再在50°C条件下反应24?48小时;(4)分别用水和乙醇交替抽提24小时,最后将样品冷冻干燥得到3D多孔支架材料。2.根据权利要求1所述的3D多孔支架材料,其特征在于所述明胶纳米颗粒是通过两步去溶剂法制得,具体为将B型明胶充分溶于蒸馏水中,随后加入丙酮,将白色沉淀物复溶于蒸馏水中并调节PH值为12.0,然后滴加丙酮至白色沉淀物产生,加入戊二醛反应3?14小时得到混合溶液;最后将混合液于1000g离心30?50分钟,将离心下层固体复溶于水中并缓慢蒸发掉残余丙酮。3.根据权利要求2所述制备明胶纳米颗粒的方法,其特征在于:B型明胶的质量与蒸馏水或丙酮的体积的比值为0.05:1,其中B型明胶质量单位为g,水或丙酮体积单位为mL,B型明胶与戊二醛的质量比为1:0.05。4.根据权利要求1所述的3D多孔支架材料,其特征在于所述功能单体为丙烯酰胺,丙烯酸羟乙酯和甲基丙烯酸羟乙酯中的任一种。5.根据权利要求1所述的3D多孔支架材料,其特征在于所述引发剂为过硫酸铵,过硫酸钾和过氧化苯甲酰中的任一种;引发剂的用量为功能单体质量的0.2?0.8%。6.根据权利要求1所述的3D多孔支架材料,其特征在于所述交联剂为N,Y-亚甲基双丙烯酰胺;交联剂的用量为功能单体质量的I?10%。7.根据权利要求1所述的3D多孔支架材料,其特征在于所述分散相为正己烷,苯,甲苯,对二甲苯和苯乙稀中的任一种。8.根据权利要求1所述的3D多孔支架材料,其特征在于制备得到的3D多孔支架材料具有良好的开放大孔和多层次孔道结构,并具有良好的机械性能和生物相容性。9.根据权利要求1-8任一项所述方法制备得到的3D多孔支架材料在细胞培养支架方面的用途,该用途不作为疾病的诊断或治疗。
【文档编号】C08F289/00GK105968402SQ201610392975
【公开日】2016年9月28日
【申请日】2016年6月7日
【发明人】谭欢, 魏涛, 林炜, 穆畅道, 隗晶晶
【申请人】成都大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1