使用可光活化胶粘膜粘合基材的方法

文档序号:3821760阅读:441来源:国知局
专利名称:使用可光活化胶粘膜粘合基材的方法
发明的领域本发明涉及一种使用可光活化胶粘膜粘合两层基材的方法,具体涉及一种将可光活化的各向异性导电胶粘膜连接电路的方法。
发明的背景在液晶显示装置中,玻璃显示板的电极和柔软电路通常称为TCP(带状载体包),其上面安装有使显示板工作的驱动集成电路(IC),是用一层各向异性导电胶粘膜来连接的。通常,导电胶粘膜是将导电颗粒分散在绝缘性粘合剂(例如环氧树脂)中,再将此分散体成形为膜来制备的。胶粘膜置于两层相对的电路之间,然后加热同时施加压力来完成粘合。此粘附作用达到了以下效果在两层相对的电路的连接端之间,导电颗粒在施加压力的方向(即胶粘膜的厚度方向)上相互之间能够导电,从而在两个相对的连接端之间具有导电性。
近年来,为了降低液晶显示板的重量和成本,已经开发了包含塑料基材或具有PET薄膜基材的柔软电路的液晶显示板。在使用常规的己知导电胶粘膜的情形下,加压粘合的温度可高至150到200℃。如果上述的液晶显示板和柔软电路在如此高的温度下进行粘合,产生的热损害可导致电极部分的变形和显示板电极处的开裂。因而这样的热损害会导致连接失效。在显示板和柔软电路的电极部分之间的连接间距通常是100到200μm,但是,现在的显示板要求更短的连接间距,例如50μm或更短。然而更短的连接间距会因胶粘膜的热压粘合过程中的加热导致柔软电路的变形,从而导致显示板电极图案的滑动。
为了解决这些问题,已经研制了一种可光活化胶粘膜,可在较低的温度下进行热压粘合,同时也研究了使用这种胶粘膜的连接方法。
例如,在日本未经审查的专利公开No.11-60899中,说明了一种使用可紫外光活化的各向异性导电胶粘膜进行电路连接的方法。这种方法包括以下步骤将具有可紫外光活化的各向异性导电胶粘膜置于第一有电路的基材上;使用高压汞灯的紫外光照射胶粘膜;将第二有有电的路的基材的电极与第一有电路的基材的电极对齐;在加热和加压的情形下进行粘附。
在日本未经审查的专利公开No.8-146436中,说明了一种生产液晶显示板的叠压方法,是使用可光固化的胶粘剂粘合两层透明基材。可光固化胶粘剂置于两个透明基材之间后,便使用紫外光进行固化。在这个方法中,波长为300nm或更短的紫外光必须除掉,以限制透明基材的变质。
此外,在日本未经审查的专利公开No.9-320131中说明了一种使用可紫外光固化胶粘剂粘附两片圆盘的方法,各片圆盘都由可透过紫外光的基材构成。这种方法是将可紫外光固化胶粘剂置于两层基材之间,再用紫外光透过基材照射紫外可光固化胶粘剂使粘合剂固化。在这个方法里,使用石英玻璃将2到3μm或更长波长的光滤除。这种方法也包括使用冷却空气来防止滤波器或紫外光源对基材的二次加热。
通常,已知的粘附方法包括使用可光固化胶粘剂,低的温度和短的热压粘合时间。但是,这些方法都包括使用光来使可光固化胶粘剂固化。当使用光来使可光固化胶粘剂固化时,使用高强度光源(例如高压汞灯和金属卤化物灯)可使固化时间缩短。在常规的粘附方法中,可光固化胶粘剂的辐照射是在置于一个基材上之后进行的。
使用高强度光源,例如上述的高压汞灯或金属卤化物灯,会对透明基材产生有害作用,因为透明基材同时受到辐照,根据制成透明基材的材料情况,会产生着色或变暗之类的质量变差现象。如果是树脂的基材,则这种材料会分解,并会产生裂纹。
此外,在辐照基材时,基材的温度会上升,根据基材材料和热膨胀系数的情况而产生膨胀。基材的热膨胀会导致粘附和固化时两层基材之间的滑动,并最终导致连接失效。
发明概述本发明的目的是为了解决上述问题,提供了一种使用可光活化胶粘膜来粘附基材的方法,此时不会照射到基材,尤其是有电路的基材,从而防止了基材的质量变差。
本发明提供一种粘附两层基材的方法,通过辐照可光活化胶粘膜来活化该胶粘膜。然后活化的胶粘膜的第一表面与第一基材进行接触,第二基材与其第二表面进行接触。两层基材之间再进行热压粘合。最好是使用可紫外光活化胶粘膜作为可光活化胶粘膜,使用紫外灯作为光源。
本发明也提供一种将两层基材上电路连接的方法。这种方法包括以下步骤辐照(最好是使用紫外光辐照)可光活化胶粘膜(最好是可紫外光活化胶粘膜)使其活化;活化的各向异性导电胶粘膜的第一表面与第一基材上的电路进行接触,而放置第二基材使其上面的电路与各向异性导电胶粘膜的第二表面进行接触。将这两层基材热压粘合,在第一和第二个基材的电路之间获得了各向异性的导电性粘合。
附图简述阅读下述的本发明实施方案的详细描述以及附图,将有助于更完全地理解本发明。附图包括

图1是按照本发明使用可光活化胶粘膜粘合基材过程的示意图。
发明的详细描述根据本发明的方法,在使用光照活化了可光活化胶粘膜后,将此胶粘膜转移至两层基材之间,随后进行热压粘合。因此,在活化可光活化胶粘膜时基材不会受到光照,从而避免由于光照可能引起的质量变差。
下面说明如图1所示的本发明的一个实施方案。可光活化胶粘膜连同可剥离带4一起从卷筒1解开,然后向加压粘合头3传送。在到达加压粘合头3之前,可光活化胶粘膜5受到了光源6的照射(最好是紫外光)从而被活化。活化后的胶粘膜5再被转移到第一个基材7上。随后,可剥离带被卷筒2卷回,已有活化的粘合膜在上面的基材7被传送到加压粘合头8上,此时第二基材在加压粘合头8的作用下粘合到基材7上。
如果在第一和第二基材上都有电路的话,可以使用可光活化的各向异性导电胶粘膜作为胶粘膜来进行电路连接。
这里的术语“可光活化的各向异性导电胶粘膜”是指具有以下性能的粘合剂形成的胶粘膜在一层有电路的基材叠压到另一层有电路的基材上后,这两层有电路的基层能粘合起来,并且这两层基材上的电路在胶粘膜的厚度方向上能导电,但在基材的平面方向上不导电,从而不会引起有的基材上的相邻电路之间发生短路。例如本文所用的可光学活化的各向异性导电胶粘膜是指在粘合过程后能够进行导电粘合的膜。各向异性导电性是发生在使用胶粘膜热压粘合两层基材时产生的现象,这是因为导电颗粒之外的非导电胶粘剂组分由于在热压粘合过程中产生的热和压力的作用下发生了液化。由于非导电颗粒液化的原因,两层面对的基材之间的电路可通过导电颗粒进行电路连通,而由于非导电粘合剂组分的存在,在基材的平面方向上则不具有电路连通性。
在日本未经审查的专利公开No.11-60899中所描述的导电粘合剂,是使用紫外光可活化的阳离子聚合催化剂作为使脂环族环氧树脂固化的催化剂,因而其可操作时间十分短。在此专利所阐述的方法中,使用紫外光照射粘合剂后立即就进行热压粘合,因此,粘合剂的可操作时间短不会带来什么问题。而在本文所阐述的方法中,是在经过辐照后将基材传送到加压粘合头。因此,粘合剂过分短的可操作时间会有不利影响。此外,可操作时间短的粘合剂不能应用于本发明中,因为该时间可包括用来安装半导体设备的维护时间,或者临时的停机时间,而这些时间要求胶粘剂的可操作时间为10分钟或更长。再有,本发明所使用的可光活化胶粘膜最好是由具有以下特性的粘合剂形成(1)室温下高的储存稳定性,例如可使用状态能维持至少30天;(2)粘合剂在辐照和活化前可能承受较高的温度,从而有利于在短时间内干燥和膜的形成;(3)粘合剂要能在活化后的热压粘合时,能在大约100到130℃的低温下快速地固化,较好是在一分钟内,更好是在30秒内,最好是在10秒内;(4)当基材相互连接好时,要有良好的连接稳定性。
较好的光学活性粘合剂可以包含环氧树脂作为其有效组分,该环氧树脂包含(1)脂环族环氧树脂;(2)含缩水甘油基团的环氧树脂;(3)光活化阳离子聚合催化剂;(4)阳离子阻聚剂。包含这些组分的粘合剂能均衡地具有上述的特性。用此类可光活化的各向异性导电粘合剂形成胶粘膜时可以添加热塑性弹性体或树脂。可光学活化的各向异性导电粘合剂可通过向可光活化胶粘膜里加入导电颗粒来获得。
尽管不打算拘泥于作什么理论解释,可以认为,脂环族环氧树脂与可光活化的阳离子聚合催化剂结合在一起时,在低温下能迅速固化。含缩水甘油基团的环氧树脂则可延长粘合剂被活化后的可操作时间。含缩水甘油基团的环氧树脂的反应活性比脂环族环氧树脂低。可光活化的阳离子聚合催化剂在光照下能催化环氧环的开环反应,产生诸如路易斯酸之类的阳离子活性物质。阳离子阻聚剂则通过置换一部分阳离子聚合催化剂并螯合路易斯酸或其它阳离子活性物质来延迟或抑制阳离子聚合反应,从而延长胶粘膜的可操作时间。
在使用可光活化的各向异性导电胶粘膜时,为了获得基材与基材之间良好的电连接性,粘合剂组分在热压粘合过程中必须充分液化,并且在导电颗粒之间以及导电颗粒与基材上的电路之间粘合剂组分可充分排除。粘合剂组分的流动性取决于粘合剂中树脂的本征粘度和伴随热固化反应中的粘度增加的情况。当粘合剂组分中含有脂环族环氧树脂和可光活化的阳离子聚合催化剂时,只有在催化剂被光照活化后聚合反应才能进行。因此,这样的粘合剂在室温下可维持可用状态和高的稳定性达30天。但是,在光照下被活化后,这种组合物在低温较短的时间内热固化。因为热固化反应在催化剂被活化后快速进行,并且由于热固化反应,粘合剂组分的粘度在较短的时间内增加,热压粘合过程必须快速完成。为了延迟固化反应,可以加入阳离子阻聚剂。然而,即使在加入了阻聚剂的情形下,如果光照和热压粘合之间间隔的时间比较长,例如要花时间使有电路的基材相互对齐,则会由于伴随着热固化反应进行时粘合剂组分的粘度增加,导电颗粒之间以及导电颗粒和有电路的基材的电路之间的粘合剂组分难以被充分排除。不能排除导电颗粒之间以及导电颗粒和有电路基材的电路之间的粘合剂组分便会导致不稳定的电路连接性。如果胶粘剂组合物中包含含缩水甘油基团的环氧树脂,则在光照后的热固化反应会相对进行得慢些。因此,可以延长光照后的可操作时间。但是为了获得满意的固化从而确保良好的电路连接性,需要或者提高热压粘合的温度或者延长热压粘合的时间。
由各向异性的导电粘合剂制成的各向异性的导电胶粘膜包含以下组分环氧树脂(包含脂环族环氧树脂和含缩水甘油基团的环氧树脂),可光活化的阳离子聚合催化剂和阳离子阻聚剂。由于含缩水甘油基团的环氧树脂和阳离子阻聚剂的存在,这种胶粘膜经光照后的粘度增加有限。因此,这种各向异性的导电胶粘膜在光照后具有较长的可操作时间。此外,由于脂环族环氧树脂和可光活化的阳离子聚合催化剂的存在,这种各向异性的导电胶粘膜即使在较低的温度下也能满意地固化,确保稳定的电路连接性。
根据如上所述,本文所阐述的可光活化胶粘膜和可光活化的各向异性导电胶粘膜与常规的胶粘膜片比具有许多优点。例如,在光照活化前固化反应不会进行,从而可增加室温下胶粘膜的存储稳定性。此外,在光照活化前,此胶粘膜可以承受高达大约80℃的温度而不会产生有害作用。这就允许该胶粘膜在较高的温度下快速干燥,而不会启动固化反应,从而使得胶粘膜的生产更有效率。在光照活化后,胶粘膜在室温下的可操作时间可以延长到10分钟或更长,较好的是30分钟或更长,以便热压粘合过程可满意地进行。再有,当进行电路连接时,使用了容易受热变形的材料构成的部件时,例如由以下材料制成的有电路的基材基于诸如聚酯或聚酰亚胺之类的聚合材料的FPC或TAB,或多氯联苯(PCB),或基于玻璃增强的环氧材料的聚碳酸酯或聚醚砜时,这些材料的变形可因热压粘合步骤能快速进行而降至最小。例如,包括本发明各向异性的导电胶粘膜的热压粘合步骤在大约100℃到130℃的温度下,可在1分钟内完成,较好是30秒,更好是10秒。除了上述的例子之外,本发明的可光活化胶粘膜还展示了较好的相互连接性。
构成本发明可光活化胶粘膜和可光活化的各向异性导电胶粘膜的组分分别描述如下脂环族环氧树脂如上所述,脂环族环氧树脂可以改善粘合剂成分固化的速率和温度。将此组分和可光活化的阳离子聚合催化剂结合使用,可以在较低的温度下快速固化。由于其具有低的粘度,也可使得胶粘剂组合物与基材之间接触紧密。这里的脂环族环氧树脂是每个分子至少平均含有两个脂环族环氧基团的环氧树脂。例如,可采用的脂环族环氧树脂包括以下含有两个环氧基团的树脂乙烯基环己烯二酮、3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯、己二酸双(3,4-环氧环己基)酯、2-(3,4-环氧环己基-5,5-螺环-3,4-环氧)环己烷-间-二噁烷。也可采用分子中含有3个,4个或更多环氧基团的多官能脂环族环氧树脂(例如Daicel Chemical Industries,Ltd.公司的产品Epolide GT)。
可采用的脂环族环氧树脂的环氧当量范围约为90到500,较好是大约100到400,更好是大约120到300,最好是大约210到235。环氧当量小于90的脂环族环氧树脂会降低组合物的耐用性和粘合强度,从而降低了连接的可靠性。环氧当量大于500的脂环族环氧树脂会增加组合物的粘度,以致于在热压粘合过程中流动性差,并且其反应能力降低,从而也会降低连接的可靠性。
含缩水甘油基团的环氧树脂如上所述,将含缩水甘油基团的环氧树脂与阳离子阻聚剂结合使用可以延长组合物光照活化后的可操作时间。此外,尽管含缩水甘油基团的环氧树脂具有的反应能力比脂环族环氧树脂低,但在较高的温度下仍能维持一定的反应能力。当胶粘膜中只含有脂环族环氧树脂而没有含缩水甘油基团的环氧树脂时,在较低的温度下(例如室温)也会发生固化反应,从而导致光照活化后只有较短的可操作时间。因此,如果活化和热压粘合之间的时间较长的话,例如要花时间对齐有电路的基材,由于过早的固化使得组合物粘度增加,阻碍了导电颗粒之间以及导电颗粒和每片基材上的导体之间的粘合剂组分的充分排除。这样便会形成不稳定的电路连接。含缩水甘油基团的环氧树脂正好弥补了脂环族环氧树脂的缺点。可采用的含缩水甘油基团的环氧树脂每个分子中平均至少含有两个缩水甘油基团,并且不含有阳离子阻聚基团(例如胺基、硫基或含磷基团)。可采用的含缩水甘油基团的环氧树脂,例如有由双酚A和表氯醇合成的双酚A类环氧树脂、低粘度的双酚F类环氧树脂、具有多个官能团的苯酚基酚醛环氧树脂、对-甲酚环氧树脂等等。也可采用缩水甘油酯类型的环氧树脂,例如六氢邻苯二甲酸缩水甘油酯。
可采用的含缩水甘油基团的环氧树脂的环氧当量,约为170到5500,较好约为170到1000,更好约为170到500,最好约为175到210。环氧当量小于170的含缩水甘油基团的环氧树脂会降低耐用性,并且粘合强度有限,环氧当量大于5500的含缩水甘油基团的环氧树脂则会使粘度增大。这样的含缩水甘油基团的环氧树脂在热压粘合过程中具有较低的反应能力和较差的流动性,从而会降低连接的可靠性。
脂环族环氧树脂和含缩水甘油基团的环氧树脂的混合比例脂环族环氧树脂和含缩水甘油基团的环氧树脂的结合使用,给本发明的组合物提供了满意的各种期望特性的均衡。具体地讲,由此形成的粘合剂具有以下两个方面的令人满意的特性脂环族环氧树脂低温下的快速固化能力和含缩水甘油基团的环氧树脂在室温下长的保存时间。脂环族环氧树脂与含缩水甘油基团的环氧树脂的重量比,通常约为20∶80到98∶2,较好约为40∶60到94∶6,更好约为50∶50到90∶10,最好为50∶50到80∶20。如果脂环族环氧树脂的量占这两种树脂总量的比例小于20%,就会降低低温下的固化能力,从而使得粘合强度和连接可靠性都不充分。如果脂环族环氧树脂量占这两种树脂总量的比例大于98%,则即使在室温下也可能发生固化反应,从而缩短了光照后胶粘膜的可操作时间。
可光活化的阳离子聚合催化剂可光活化的阳离子聚合催化剂的作用是在光照下通过产生诸如路易斯酸之类的阳离子活性物质来催化环氧化物的开环反应。可采用的聚合催化剂包括芳基重氮盐、二芳基碘鎓盐、三芳基硫鎓盐、三芳基硒盐、铁的芳烃络合物等等。特别可采用的阳离子聚合催化剂包括铁的芳烃络合物(因其具有较好的热稳定性)、六氟锑酸二甲苯-环戊二烯基铁(II)盐、六氟磷酸异丙基苯-环戊二烯基铁(II)盐、二甲苯-环戊二烯基铁(II)三(三氟甲基磺酰基)甲基化物。
以环氧树脂100重量份计,可光活化性的的阳离子聚合催化剂的量约为0.05到10.0重量份,较好约为0.075到7.0重量份,更好约为0.1到4.0重量份,最好约为1.0到2.5重量份。如果可光活化的阳离子聚合催化剂的量少于0.05重量份,就会降低低温下的固化能力,从而使得粘合强度和连接可靠性不够充分;如多于10.0重量份,在室温下就可能发生固化反应,从而缩短了在室温下的保存时间。
阳离子阻聚剂阳离子阻聚剂通过在阳离子聚合反应过程中取代阳离子聚合催化剂的一部分并螯合路易斯酸或其它阳离子活性物质来延迟或抑制阳离子聚合反应。可采用的阳离子阻聚剂包括冠醚如15-冠醚-5,1,10-菲咯啉及其衍生物、甲苯胺如N,N-二乙基-间甲苯胺、膦如三苯基膦、以及三嗪。
相对于可光活化的阳离子聚合催化剂而言,阳离子阻聚剂的量约为0.01到10.0当量,较好约为0.05到5.0当量,更好约为0.10到3.0当量,最好约为0.4到2.0当量。若含有的阳离子阻聚剂的量大于10.0当量,就会降低低温下的固化能力,从而使得粘合强度和连接可靠性不够充分。若含有的阳离子阻聚剂的量少于0.05当量,在室温下就可能发生固化反应,从而缩短了室温下的保存时间。
导电颗粒适用的导电颗粒包括碳颗粒或银、铜、镍、金、锡、锌、铂、钯、铁、钨、钼、焊剂等金属颗粒,或者表面上覆有金属导电涂层的这些颗粒。也可以使用不导电的聚合物颗粒、如聚乙烯、聚苯乙烯、酚树脂、环氧树脂、丙烯酰树脂(acrylresin)、苯胍胺树脂、玻璃、二氧化硅、石墨或陶瓷的颗粒、只要在它们表面上覆盖一层导电的金属涂层。
导电颗粒的平均颗粒大小根据连接用的电极的宽度以及相邻电极之间的间距而变化。例如,如果电极宽度是50μm,相邻电极之间的间距是50μm(电极中心距是100μm),那么平均颗粒大小约为3-20μm较合适。使用平均颗粒大小约为3-20μm的导电颗粒的各向异性导电胶粘膜,能在提供令人满意的导电性能的同时,可防止相邻电极之间的短路。在大多数情况下,由于用来连接两层有电路的基材之间的电极间距约为50-1000μm,因此导电颗粒的平均颗粒大小在2-40μm较好。如果导电颗粒的平均颗粒大小小于2μm,那它们可能埋没在电极表面的凹处从而失去导电颗粒的功能。如果导电颗粒的平均颗粒大小大于40μm,那它们可能在相邻两个电极之间产生短路。
导电颗粒的加入数量可以根据所用电极的面积和导电颗粒的平均颗粒大小而变化。一个令人满意的连接常常可以通过每个电极少量导电颗粒而达到,如2-10个颗粒。如果要求更低的电阻,导电颗粒在组合物中的量,可以是每个电极约为10-300个颗粒。如果在热压粘结过程中应用更高的压力,每个电极的导电颗粒数量可能增加到300-1000,因此要均匀地施加压力,以便达到令人满意的连接。导电颗粒的数量,以组合物总体积扣除导电颗粒的体积计,通常为0.1-30体积%,较好是0.5-10体积%,最好是1-5体积%。如果导电颗粒数量少于0.1体积%,那么连接时,增电极上缺乏导电颗粒的可能性增大,从而增大连接可靠性差的危险。如果导电颗粒数量多于30体积%,相邻电极之间可能发生短路。
热塑性弹性体或树脂当可光活化胶粘剂作为一种胶粘膜使用时,热塑性弹性体或树脂作为一种组分包含在内。热塑性弹性体或树脂会增加胶粘膜的成形性能,提高其冲击性,并减少由于固化反应产生的残余内应力,提高粘合的可靠性。有用的热塑性弹性体包括聚合物,由在低于某个温度时是坚硬的硬链段和具有类橡胶弹性的软链段所组成。有用的弹性体包括苯乙烯基热塑性弹性体以及是嵌段共聚物的苯乙烯基弹性体,其中硬链段中是苯乙烯单元,软链段中是聚丁二烯单元或聚异戊二烯单元。这些有用的弹性体实例包括苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)、苯乙烯-(乙烯-丁烯)-苯乙烯嵌段共聚物(SEBS)(其中软链段中的双烯组分发生了氢化)、还包括苯乙烯-(乙烯-丙烯)-苯乙烯嵌段共聚物(SEPS)。其他有用的弹性体包括带有反应基团的苯乙烯基热塑性弹性体,例如用甲基丙烯酸缩水甘油酯进行环氧化改性的弹性体、用共轭二烯的不饱和健进行环氧化的弹性体。在这些弹性体中存在的高极性反应基团增加了弹性体和环氧树脂的兼容性,使得其与环氧树脂的配伍范围变宽。另外这些弹性体中存在的高极性反应基团可以使得与环氧树脂进行交链反应,导致固化后粘合可靠性的增加,能够抗热抗潮。环氧化苯乙烯基弹性体的一个例子是EpofriendA1020(Daicel Chemical Industries,Ltd.)。在本发明中,热塑性树脂也可以用来代替热塑性弹性体。因为在粘合膜的热压粘合期间为了保证粘合的基材上导体之间有另人满意的电路连通,热塑性树脂必须通过液化除去,所以适用的热塑性树脂,其Tg不得高于热压粘合的温度。这些热塑性树脂例如包括聚苯乙烯树脂。
热塑性弹性体或树脂以100重量份环氧树脂计,其用量约为10-900重量份,较好约为20-500重量份,更好约为30-200重量份,最好约为0-100重量份。如果热塑性弹性体或树脂少于10重量份,那么胶粘剂的成膜性能就要降低。如果热塑性弹性体或树脂多于900重量份,那么胶粘剂的低温流动性会降低。当导电颗粒和有电路的基材粘合时接触不良,将导致增加电阻,降低电路连通的可靠性,并降低粘合强度。
其他添加剂本发明的可光活化胶粘膜除了含有上面提到的组分外,也可以包含一种添加的阳离子聚合反应促进剂。添加的反应促进剂能进一步提高低温固化性能和薄膜的快速固化性能。适用的反应促进剂包括草酸二叔丁酯。反应促进剂的量,以脂环族环氧树脂和含缩水甘油基团的环氧树脂100重量份计为0.01-5重量份,较好为0.05-3重量份,最好为0.1到2重量份。为了增加有电路的基材与胶粘剂组合物之间的粘合强度,也可以使用偶合剂,例如硅烷偶合剂,如γ-缩水甘油丙氧基三甲氧基硅烷以及β-(3,4-环氧环己基)乙基三甲氧基硅烷。
其他添加剂如抗氧剂,包括位阻酚基抗氧剂,例如二醇,包括双(苯氧基乙醇)芴,链转移剂,光敏剂,增粘剂,热塑性树脂,填充剂,流动改善剂,增塑剂,消泡剂等也可以添加,只要不危害本发明所要求的性质。
制备可光活化胶粘膜的方法可光活化胶粘膜可以通过以下方法制备在合适的溶剂如四氢呋喃(THF)中制备一种含有上述胶粘剂的涂布溶液,将溶液涂布到载体例如一种聚合物薄膜上,然后将此经涂布的薄膜干燥。可用的涂布方法包括任何合适的涂布方法,例如刮刀式涂布机。干燥过程在温度低于80℃时进行,使得溶剂的蒸发不会引起固化反应。形成的胶粘膜的厚度为5-100μm,当为的是有电路的基材通过热压粘合连接在一起时,避免连接部位之间的空隙,达到必要的和足够的紧密。
所得的可光活化胶粘膜提供在一层可剥离带上,用光照射,最好用紫外光源发出的紫外光活化此胶粘膜。例如使用高亮度,波长范围在300-400nm的水银灯,金属卤化物灯或水银-氙灯作为光源。水银灯和水银-氙灯一般是在365nm具有最高亮度。金属卤化物灯一般由金属卤化物,例如卤化镓、碘化铁或溴化铁在灯泡中构成,它在一定的波长范围内比水银灯的辐照效率更高。辐照剂量常常在100-10,000mJ/cm2的范围内调整,使得足够活化阳离子聚合催化剂。
在上述照射过程中,波长短于300nm的紫外光,具有更多能量,被薄膜吸收的效率较高,转化为热。这些热量能使胶粘膜以不同程度过早固化,缩短照射和随后加压粘合之间可操作的时间。滤去或衰减低于300nm的波长可以提高可操作时间。本发明中使用的光源也可以带有一个滤光片,滤去波长范围一般在450-600nm的可见光,或带有一个滤光片,能吸收波长范围一般为800-4000nm的红外光。
另外,胶粘膜在辐照期间可以使用一股空气在胶粘膜的表面吹来进行冷却,以进一步保护其免受产生的热量的不良影响。
经活化的胶粘膜随后通过热压头被转移到第一有电路的基材上,然后第二有电路的基材被传移到胶粘膜空的另一表面上,用热压头热压粘合之。热压温度在100-130℃,粘合压力根据粘合后要达到足够的电路连接而合适地选择。采用的压力通常为1-5Mpa。粘合时间约为10秒到一分钟或更长。
通过下列一些实例进一步说明本发明。这些实例并不意味着限制上面已充分阐述的本发明范围。
实施例各向异性导电胶粘膜的制备将5.6g脂环烃树脂(EpolideTMGT401购自Daicel Chemcal Industries Ltd.,Osaka Japan,环氧当量=219)、1.4g含有缩水甘油基团的环氧树脂(EpikoteTM154购自Yuka Shell Epoxy Ltd.,环氧当量=178)和3g苯乙烯-丁二烯-苯乙烯嵌段共聚物(EpofriendTMA1020购自Daicel Chemcal Industries Ltd.,环氧当量=510)混合,搅拌均匀。在苯并胍胺颗粒的表面上包覆一层镍,然后再包覆一层金制备导电颗粒,其平均颗粒大小约5μm。将此导电颗粒加入到环氧组合物中,其量占最后固体颗粒的3体积%,搅拌直到导电颗粒充分分散。另外将0.101g可紫外光活化阳离子结合聚合催化剂(IrgacureTM261购自Nippon Ciba Geigy Ltd.,六氟磷酸异丙基苯-环戊二烯基铁)、0.0308g阳离子阻聚剂(N,N-二甲基-m-甲苯胺)、0.084g反应促进剂(草酸二叔丁酯、0.2g硅烷偶合剂(A187购自Nippon UnicarCo.Ltd.,γ-环氧丙氧基三甲氧基硅烷)和0.6g甲基乙基酮混合,搅拌均匀。将此混合物加入到前述导电颗粒分散液中,搅拌得到可紫外活化各向异性导电胶粘剂。将此胶粘剂用一个刮刀式涂布器涂布在硅树脂处理过的聚合物薄膜上,此薄膜这里用作可剥离膜。在60℃下干燥10分钟,得到厚度为20μm的可紫外光活化各向异性导电胶粘膜。
有电路的基材连接测试条的制造如上所述制成一片2mm×4cm的可紫外光活化各向异性导电胶粘膜样品以356nm强度为150mW/cm2或180mW/cm2的紫外光照射20秒。样品照射所用的紫外光源如表1所示,照射时用一股空气冷却。表1所示的紫外光源2和3都带有一个滤光片,用来滤去波长为450-600nm的可见光以及波长不大于300nm的紫外光。
经紫外光照射的胶粘膜在30℃,1.0Mpa压力下,经4秒的时间,被预先粘贴在表面上有一层ITO(铟锡氧化物)膜的0.1mm厚的聚酯薄膜上。此聚酯薄膜是可剥离膜,除此聚酯薄膜从粘合膜上被除去。然后,将一柔软印刷电路(聚酰亚胺薄膜具有12μm厚35μm宽的镀金铜线,其间距为70μm)放在预先粘贴在ITO-聚酯膜上的粘合膜上。然后在120℃,1.0Mpa压力下热压10秒。当粘合头接触基材时,两层电路之间胶粘膜的温度在10秒内上升到120℃。
表1UV光源
测试用数字式万用表测量柔软电路与ITO-聚酯薄膜之间的电阻,结果列于表2。用显微镜(x100)对粘合线目测观察,看连接部位是否有空隙。所有连接部位都没有空隙。紫外光照射后在27℃,60%相对湿度下,分别暴露2分钟和15分钟再经热压粘合的电路,测出其连接电阻良好。但这些样品表现出基材质量有变差情况。
表2测试结果
权利要求
1.一种粘合两层基材的方法,包括辐照一层可光活化胶粘膜使其活化;将此活化的胶粘膜的第一表面与第一基材接触,将第二基材与所述活化的胶粘膜的第二表面接触;将此两层基材加压粘合之。
2.如权利要求1所述的方法,其特征在于可光活化胶粘膜包含脂环族环氧树脂、含缩水甘油基团环氧树脂、可光活化阳离子聚合催化剂、阳离子阻聚剂和热塑性弹性体或树脂。
3.如权利要求2所述的方法,其特征在于脂环族环氧树脂每个分子平均至少包含两个脂环族环氧基团。
4.如权利要求2所述的方法,其特征在于脂环族环氧树脂的环氧当量约为90-500。
5.如权利要求2所述的方法,其特征在于脂环族环氧树脂的环氧当量约为100-400。
6.如权利要求2所述的方法,其特征在于脂环族环氧树脂的环氧当量约为120-300。
7.如权利要求2所述的方法,其特征在于脂环族环氧树脂的环氧当量约为210-235。
8.如权利要求2所述的方法,其特征在于脂环族环氧树脂是乙烯基环己烯二酮,3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯、己二酸双(3,4-环氧环己基)酯、或2-(3,4-环氧环己基-5,5-螺-3,4-环氧)环己烷-间-二噁烷。
9.如权利要求2所述的方法,其特征在于含缩水甘油基团环氧树脂每个分子平均至少包含两个缩水甘油基团。
10.如权利要求2所述的方法,其特征在于含缩水甘油基团环氧树脂的环氧当量约为170-5500。
11.如权利要求2所述的方法,其特征在于含缩水甘油基团环氧树脂的环氧当量约为170-1000。
12.如权利要求2所述的方法,其特征在于含缩水甘油基团环氧树脂的环氧当量约为170-500。
13.如权利要求2所述的方法,其特征在于含缩水甘油基团环氧树脂的环氧当量约为175-210。
14.如权利要求2所述的方法,其特征在于含缩水甘油基团环氧树脂包含双酚A缩水甘油酯、双酚F缩水甘油酯、多官能线型酚醛环氧树脂、邻甲酚环氧树脂、或六氢化邻苯二甲酸缩水甘油酯。
15.如权利要求2所述的方法,其特征在于脂环族环氧树脂与含缩水甘油基团环氧树脂的重量比在20∶80到98∶2。
16.如权利要求2所述的方法,其特征在于脂环族环氧树脂与含缩水甘油基团环氧树脂的重量比在40∶60到94∶6。
17.如权利要求2所述的方法,其特征在于脂环族环氧树脂与含缩水甘油基团环氧树脂的重量比在50∶50到90∶10。
18.如权利要求2所述的方法,其特征在于脂环族环氧树脂与含缩水甘油基团环氧树脂的重量比在50∶50到80∶20。
19.如权利要求2所述的方法,其特征在于可光活化阳离子聚合催化剂是芳基重氮盐、二芳基碘鎓盐、三芳基硫鎓盐、三芳基硒盐、或铁-芳烃配合物。
20.如权利要求19所述的方法,其特征在于铁-芳烃配合物是二甲苯-环戊二烯铁(II)六氟锑酸盐、异丙基苯-环戊二烯铁(II)六氟磷酸盐或二甲苯-环戊二烯铁(II)三(三氟甲基硫酰)甲基化物。
21.如权利要求2所述的方法,其特征在于可光活化胶粘膜中,每100重量份环氧树脂使用约0.05-10.0重量份可光活化阳离子聚合催化剂。
22.如权利要求2所述的方法,其特征在于可光活化胶粘膜中,每100重量份环氧树脂使用约0.075-7.0重量份可光活化阳离子聚合催化剂。
23.如权利要求2所述的方法,其特征在于可光活化胶粘膜中,每100重量份环氧树脂使用约0.1-4.0重量份可光活化阳离子聚合催化剂。
24.如权利要求2所述的方法,其特征在于可光活化胶粘膜中,每100重量份环氧树脂使用约1.0-2.5重量份可光活化阳离子聚合催化剂。
25.如权利要求2所述的方法,其特征在于阳离子阻聚剂是冠醚、甲苯胺、膦或三嗪。
26.如权利要求2所述的方法,其特征在于可光活化胶粘膜中相对于可光活化阳离子聚合催化剂,约有0.01-10.0当量的阳离子阻聚剂。
27.如权利要求2所述的方法,其特征在于可光活化胶粘膜中相对于可光活化阳离子聚合催化剂,约有0.05-5.0当量的阳离子阻聚剂。
28.如权利要求2所述的方法,其特征在于可光活化胶粘膜中相对于可光活化阳离子聚合催化剂,约有0.1-3.0当量的阳离子阻聚剂。
29.如权利要求2所述的方法,其特征在于可光活化胶粘膜中相对于可光活化阳离子聚合催化剂,约有0.4-2.0当量的阳离子阻聚剂。
30.如权利要求2所述的方法,其特征在于可光活化胶粘膜进一步包含导电颗粒。
31.如权利要求2所述的方法,其特征在于可光活化胶粘膜中相对于组合物总体积减去导电颗粒体积,进一步包含0.1-30%体积的导电颗粒。
32.如权利要求2所述的方法,其特征在于可光活化胶粘膜中相对于组合物总体积减去导电颗粒体积,进一步包含0.5-10%体积的导电颗粒。
33.如权利要求2所述的方法,其特征在于可光活化胶粘膜中相对于组合物总体积减去导电颗粒体积,进一步包含1-5%体积的导电颗粒。
34.如权利要求2所述的方法,其特征在于可光活化胶粘膜是用紫外光辐照的。
35.一种电连接分别提供于两种基材各自表面上的电路的方法,包括用光辐照可光活化胶粘膜使其活化;将第一基材上的电路与活化的各向异性导电胶粘膜的第一表面接触;将第二种基材上的电路与所述活化的各向异性导电胶粘膜的第二表面接触;加压粘合这两层基材得到在所述第一第二基材上的所述电路之间各向异性的导电粘合。
36.如权利要求35所述的方法,其特征在于可光活化胶粘膜是用紫外光辐照的。
全文摘要
本发明提供一种在加工中使用可光活化胶粘膜连接基材而同时能防止基材质量变差的方法。本发明也提供一种连接电路的方法,包括对可光活化胶粘膜进行幅照;将活化的各向异性导电胶粘膜的第一表面接触在第一基材上的电路;将活化的各向异性导电胶粘膜的第二表面接触在第二基材上的电路;最后加压粘合这两层基材。
文档编号C09J5/06GK1505672SQ02804234
公开日2004年6月16日 申请日期2002年1月29日 优先权日2001年1月30日
发明者山口裕显, 北村哲 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1