一种有机复合相变储能材料的可控制备装置的制造方法
【技术领域】
[0001]本发明属于相变储能材料的制备装置技术领域,具体涉及一种有机复合相变储能材料的可控制备装置。
【背景技术】
[0002]相变储能是利用相变材料的相变潜热进行能量储存的一项新型环保节能技术。由于相变储能材料能够在发生相变的过程中吸收或放出大量的热有效存储和释放能量,并且具有热效率和储能密度高,贮热容器体积小,以及相变前后温度恒定等优点,在太阳能、建筑保温、蓄热调温织物以及医疗等领域有着广阔的应用前景。依据相变发生方式分为固-固、固-液、固-气、液-气相变材料,其中固-固与固-液相变材料具有较小的温度波动与高的单位储能密度,是极具实用价值的相变储能材料。
[0003]在实际的开发应用中,以有机低分子烷烃、脂类、酸类和醇类作为相变材料的储能介质具有独特的优势,如较高的相变焓、低的相变温度、低的过冷度、无毒、性能稳定、性价比高、长期使用可靠性等而得到广泛的关注。然而,这类相变材料也有着无法避免的不足就是在储能过程中的导热和封装问题,导热性差直接影响着相变放热反应时间长、储热利用率低、容易产生过热,从而降低了相变储能的效率,而相变过程中的液态流动可能会造成封装系统腐蚀和相变介质泄漏。通过吸附法或共混法将相变功能组份与热稳定性高的支撑组份复合而获得高导热高储能密度的定形相变储能材料,该制备方法加工工艺简单及生产过程无溶剂化且获得的相变储能材料可以保持相变过程的形状稳定,成为国内外研宄学者的研宄亮点。
[0004]由于相变功能组份通常都采用低熔点高相变焓的有机材料,同时其黏度较高,而热稳定性高的支撑材料一般采用高熔点聚合物或高导热的多孔粒子。如何降低熔融混合过程中的有机相变功能组份的热剪切破坏?如何提高相变功能组份与支撑组份间的分散混合性?因此,需要进一步寻求新的复合相变储能材料制备方法和装置解决上述问题,实现高速高效制备性能优异的相变储能材料。
【发明内容】
[0005]本发明的目的是提供一种有机复合相变储能材料的可控制备装置,解决了现有物理共混法或静态真空吸附法带来的低熔点有机相变组份热氧剪切破坏或吸附过程低分散流动性的问题。
[0006]本发明所采用的技术方案是,一种有机复合相变储能材料的可控制备装置,包括热压腔体,热压腔体的上部连接有上盖,上盖连接有真空泵和超声振荡器,真空泵和超声振荡器均伸入热压腔体内部,热压腔体的底部设置有冷却水槽,冷却水槽的两端分别为进水管和出水管,热压腔体的侧壁上设置有加热套,热压腔体的侧壁上还插有压力传感器和热电偶。
[0007]本发明的特点还在于,
[0008]冷却水槽由两个以上“U”型槽构成的。
[0009]本发明的有益效果是:本发明一种有机复合相变储能材料的可控制备装置,针对不同特性的多组份复合相变材料体系可以实现超声频率或真空度调控;本发明一种有机复合相变储能材料的可控制备装置,在分散及吸附过程可以实现超声振荡与真空吸附协同作用,以期达到均匀分散和高效吸附;本发明一种有机复合相变储能材料的可控制备装置,精确的控温系统可以实现精确而快速加热或冷却,以超声振荡、真空吸附及加工温度等外场的共同作用达到复合相变材料的无破坏高吸附高分散制备。
【附图说明】
[0010]图1是本发明一种有机复合相变储能材料的可控制备装置的结构示意图;
[0011]图2是本发明一种有机复合相变储能材料的可控制备装置的主视图;
[0012]图3是本发明一种有机复合相变储能材料的可控制备装置的俯视图。
[0013]图中,1.热压腔体,2.冷却水槽,3.加热套,4.真空泵,5.超声振荡器,6.压力传感器,7.热电偶,8.进水管,9.出水管,10.上盖。
【具体实施方式】
[0014]下面结合附图和【具体实施方式】对本发明进行详细说明。
[0015]本发明一种有机复合相变储能材料的可控制备装置,结构如图1所示,主视图如图2所示,俯视图如图3所示,包括热压腔体I,热压腔体I的上部连接有上盖10,上盖10连接有真空泵4 (真空泵4的一端通过螺纹与上盖10连接)和超声振荡器5 (超声振荡器5通过合金杆与上盖10连接,合金杆的一端通过螺纹连接在上盖10的正中部),真空泵4和超声振荡器5均伸入热压腔体I内部,热压腔体I的底部设置有冷却水槽2 (冷却水槽2由两个以上“U”型槽构成),冷却水槽2的两端分别为进水管8和出水管9,热压腔体I的侧壁上设置有加热套3 (加热套3设置有两个,两个加热套3之间留有空隙),热压腔体I的侧壁上还插有压力传感器6和热电偶7 (压力传感器6和热电偶7从两个加热套3之间的空隙中插入热压腔体I内)。
[0016]使用本发明一种有机复合相变储能材料的可控制备装置的制备方法,具体步骤为:
[0017]步骤1、将低熔点有机相变组份/聚合物复合材料(如聚乙二醇/高密度聚乙烯、聚乙二醇/热塑性聚氨酯、石蜡/高密度聚乙烯等)或低熔点有机相变组份/多孔粒子复合材料(如正十八烷/介孔二氧化硅、正十八烷/膨胀石墨、硬脂酸/膨胀石墨等)放至热压腔体I中,把上盖10盖紧,打开真空泵4抽真空,其相对真空度可以在-80kPa-0kPa调节;同时调节热压腔体I的温度,加热范围可以在常温_300°C之间;实现在真空条件下熔融塑化;
[0018]步骤2、打开超声振荡器5,调节振幅和频率,频率范围为20kHz-80kHz,低熔点有机相变组份/聚合物复合材料或低熔点有机相变组份/多孔粒子复合材料在真空熔融状态下进行5min-15min振荡分散混合;
[0019]步骤3、再次调节热压腔体I的真空度,使热压腔体I的真空度保持在-80kPa-(-70kPa),在振荡的条件下进行5min_60min的动态真空吸附,获得高分散低破坏的复合相变材料;
[0020]步骤4、从进水管8处向冷却水槽2中注入冷水,再从出水管9处流出,使步骤3得到的复合相变材料快速冷却定型;
[0021]步骤5、关闭超声振荡器5和真空泵4,打开上盖10,取出定型后的复合相变材料。
[0022]上述方法的基本原理为:利用一定真空度的环境下进行复合材料熔融,在真空条件降低了对低熔点高相变焓的功能组份的破坏;同时打开超声振荡器5进行振荡分散,使熔融态的复合材料在真空环境下充分振荡混合;另外在超声振荡作用下进一步调控真空度进行动态吸附可以提高熔融态的相变功能组份和聚合物组份间的作用,也可改善相变组份进入无机粒子的多孔结构中,通过超声振荡与真空吸附的高效协同可以有效地避免有氧高温剪切破坏和静态吸附下低流动分散性。
[0023]本发明一种有机复合相变储能材料的可控制备装置,将真空泵4和超声振荡器5联合使用,即完成了将真空熔融和超声振荡分散混合的有机结合。本发明一种有机复合相变储能材料的可控制备装置,加工简单,加工可控度高,投入成本低。
【主权项】
1.一种有机复合相变储能材料的可控制备装置,其特征在于,包括热压腔体(I),热压腔体(I)的上部连接有上盖(10),上盖(10)连接有真空泵(4)和超声振荡器(5),真空泵(4)和超声振荡器(5)均伸入热压腔体⑴内部,热压腔体⑴的底部设置有冷却水槽(2),冷却水槽⑵的两端分别为进水管⑶和出水管(9),热压腔体⑴的侧壁上设置有加热套(3),热压腔体(I)的侧壁上还插有压力传感器(6)和热电偶(7)。2.根据权利要求1所述的一种有机复合相变储能材料的可控制备装置,其特征在于,所述冷却水槽(2)由两个以上“U”型槽构成。3.根据权利要求1所述的一种有机复合相变储能材料的可控制备装置,其特征在于,所述加热套(3)设置有两个,两个加热套(3)之间留有空隙,所述压力传感器(6)和所述热电偶(7)从两个加热套(3)之间的空隙中插入热压腔体(I)内。
【专利摘要】本发明公开了一种有机复合相变储能材料的可控制备装置,包括热压腔体,热压腔体的上部连接有上盖,上盖连接有真空泵和超声振荡器,真空泵和超声振荡器均伸入热压腔体内部,热压腔体的底部设置有冷却水槽,冷却水槽的两端分别为进水管和出水管,热压腔体的侧壁上设置有加热套,热压腔体的侧壁上还插有压力传感器和热电偶。本发明一种有机复合相变储能材料的可控制备装置,加工简单,加工可控度高,投入成本低。
【IPC分类】C09K5/06
【公开号】CN104910869
【申请号】CN201510323884
【发明人】贾仕奎, 王 忠, 陈立贵, 付蕾, 朱艳, 杨昕
【申请人】陕西理工学院
【公开日】2015年9月16日
【申请日】2015年6月12日