混合车辆的制作方法

文档序号:3951574阅读:322来源:国知局
专利名称:混合车辆的制作方法
技术领域
本发明涉及一种混合车辆,其通过第1电动机/发电机、油泵、第1离合器、油压式自动变速器和第2离合器,将具有泵送损失(pumping loss)降低装置的发动机连接到第1驱动轮,并将第2电动机/发电机连接到第2驱动轮。
背景技术
在发动机和驱动轮之间配置第1电动机/发电机、油泵、第1离合器、皮带式无级变速器、第2离合器和第2电动机/发电机的混合车辆已通过日本特开2001-200920号公报为大家所知。上述以往的混合车辆利用发动机的驱动力进行发动或加速,并使第1电动机/发电机发挥作为电动机的功能以辅助发动机的驱动力,此外,在以常用速度行驶等时使发动机停止,使第2电动机/发电机作为电动机发挥功能使车辆行驶,而且在减速时,使第1、第2电动机/发电机作为发电机发挥功能,进行电能的回收。
另外,在发动机的运转中,可用由该发动机驱动的油泵产生用于使皮带式无级变速器变速的油压,但在由于停止发动机而利用第2电动机/发电机的驱动力行驶时,油泵不产生油压,因此从利用第2电动机/发电机驱动力的行驶切换到利用发动机驱动力的行驶时,在油泵产生油压使皮带式无级变速器能够变速之前存在时滞,可能会降低比率(ratio)控制的响应性,发生变速冲击。
因此,上述以往的混合车辆除设置用发动机驱动的油泵之外,还要设置电动油泵,通过在发动机停止时用电动油压泵产生油压,使从利用第2电动机/发电机驱动力的行驶切换到利用发动机驱动力的行驶时,皮带式无级变速器的实际比率与目标比率迅速一致。
但是,由于上述以往的混合车辆除设置用发动机驱动的油泵之外还必须具有电动油泵,因此存在与电动油泵和驱动它的电动机相应地,部件个数、成本、空间、重量等增加的问题。

发明内容
本发明是鉴于上述情况而提出的,其目的在于在可使发动机停止而用电动机/发电机进行行驶的混合车辆中,无需特别的电动油泵,在发动机停止期间可产生用于使自动变速器变速的油压。
为达到上述目的,根椐本发明的第1特征提出的混合车辆,其通过第1电动机/发电机、油泵、第1离合器、油压式自动变速器和第2离合器,将具有泵送损失降低装置的发动机连接到第1驱动轮,并将第2电动机/发电机连接到与上述第1驱动轮不同的第2驱动轮,其特征在于,当用第2电动机/发电机驱动或制动第2驱动轮进行行驶时,用泵送损失降低装置来降低已停止运转的发动机的泵送损失,并且在释放第2离合器的状态下,用第1电动机/发电机驱动油泵,使产生用于使自动变速器变速的油压。
根据上述结构,由于当停止发动机的运转而用第2电动机/发电机驱动或制动第2驱动轮进行行驶时,用泵送损失降低装置来降低发动机的泵送损失,并且在释放第2离合器的状态下,用第1电动机/发电机驱动油泵,因此无需设置特别的电动油泵,不仅可以用现有油泵产生的油压使自动变速器变速,而且还可以在起动发动机通过自动变速器驱动第1驱动轮时,将自动变速器的实际比率以良好的响应性控制成目标比率,可防止变速冲击的发生。而且利用第1电动机/发电机而旋转的发动机处于降低泵送损失的状态,并且通过第2离合器的释放切断了第1电动机/发电机与第1驱动轮的连接,因此不仅可以把第1电动机/发电机的耗电抑制到最小限度,而且可以通过点火控制和开始燃料供给快速地起动发动机。
此外,根据本发明的第2特征提出的混合车辆,除了上述第1特征之外,其特征还在于,当自动变速器的目标比率与实际比率的偏差超过规定值时,在间歇地连接第1离合器的同时使自动变速器变速。
根据上述结构,由于当目标比率与实际比率的偏差超过规定值时,间歇地接合第1离合器使自动变速器变速,因此与连续接合第1离合器进行变速的情况相比,可以将用第1电动机/发电机驱动自动变速器的时间抑制在最小限度,可以减少耗电。
此外,根据本发明的第3特征提出的混合车辆,除了上述第1特征之外,其特征还在于,当自动变速器的目标比率的变化率超过规定值时,在连续地接合第1离合器的同时使自动变速器变速。
根据上述结构,由于当自动变速器的目标比率的变化率超过规定值时,在连续接合第1离合器的同时使自动变速器变速,因此在必须进行快速变速时,可以无迟滞地进行变速。
此外,根据本发明的第4特征提出的混合车辆,除了上述第1特征之外,其特征还在于,当与第1、第2电动机/发电机连接的电池的剩余容量超过规定值、而车辆的要求驱动力未达到规定值、并可以降低发动机的泵送损失时,允许用第2电动机/发电机进行行驶。
根据上述结构,由于在电池的剩余容量充足时允许用第2电动机/发电机进行行驶,在不存在电池的剩余容量不足、车辆的要求驱动力小时允许用第2电动机/发电机进行行驶,在不存在车辆的驱动力不足、并且可以降低发动机的泵送损失时允许用第2电动机/发电机进行行驶,所以可以把驱动油泵和发动机的第1电动机/发电机的耗电抑制在最小限度。
此外,根据本发明的第5特征提出的混合车辆,除了上述第4特征之外,其特征还在于,当使泵送损失降低装置动作、用第2电动机/发电机进行行驶时,用第1电动机/发电机驱动油泵使其产生用于使自动变速器变速的油压。
根据上述结构,由于在降低发动机的泵送损失的状态下用第2电动机/发电机进行行驶时,用第1电动机/发电机驱动油泵使其产生用于使自动变速器变速的油压,因此既可以把第1电动机/发电机的耗电抑制在最小限度,同时又可以为由发动机驱动的行驶做准备使自动变速器快速变速。
此外,根据本发明的第6特征提出的混合车辆,除了上述第1特征之外,其特征还在于,当由第1电动机/发电机驱动油泵使其产生用于使自动变速器变速的油压时,释放第1离合器。
根据上述结构,由于当由第1电动机/发电机驱动油泵时释放第1离合器,因此可以防止用第1电动机/发电机的驱动力拖曳自动变速器,可以降低耗电。
另外,实施例的皮带式无级变速器M对应于本发明的自动变速器,实施例的前部电动机/发电机MG1和后部电动机/发电机MG2分别对应于本发明的第1电动机/发电机和第2电动机/发电机,实施例的前轮Wf和后轮Wr分别对应本发明的第1驱动轮和第2驱动轮。


图1~图13是表示本发明的一个实施例的图,图1是混合车辆的动力传输系统的整体结构图,图2是运转模式判定程序的流程图,图3是模式转变程序的流程图,图4是停止模式处理程序的流程图,图5是电动慢行(creep)模式处理程序的流程图,图6是减速模式处理程序的流程图,图7是发动机模式处理程序的流程图,图8是电动模式处理程序的流程图,图9是停止模式转变处理程序的流程图,图10是电动慢行模式转变处理程序的流程图,图11是减速模式转变处理程序的流程图,图12是发动机模式转变处理程序的流程图,图13是电动模式转变处理程序的流程图。
具体实施例方式
以下根椐附图,对本发明的实施例进行说明。
如图1所示,在所有汽缸可停止的发动机E的曲柄轴11上,串联连接有前部电动机/发电机MG1;减震器12;油泵13;第1离合器14;皮带式无级变速器M的输入轴15;在设置于该输入轴15上的主动轮16和设置在变速箱输出轴17上的从动轮18上,绕有环形皮带19。当从发动机E急剧传输扭矩时,减震器12具有抑制扭矩冲击、和抑制曲柄轴11的扭曲振动的振幅的功能。变速箱输出轴17通过第2离合器20、最终主动齿轮21和最终从动齿轮22、前差动齿轮23和左右车轴24、24,与左右前轮Wf、Wf连接。此外,后部电动机/发电机MG2通过后差动齿轮25和左右车轴26、26,与左右后轮Wr、Wr连接。
前部和后部电动机/发电机MG1、MG2通过电力驱动单元27与电池28连接。
在正常运转时,发动机E的进气阀与曲柄轴的旋转联动地被控制开闭,但在停缸(休缸)运转时,为了降低发动机E的泵送损失,利用泵送损失降低装置将进气阀维持在闭阀状态。从而,当把发动机E置于停缸状态,用前部电动机/发电机MG1使发动机E的曲柄轴11旋转时,可以将其驱动负荷抑制在最小限度。
在本实施例中,虽未特别图示,但发动机E、皮带式无级变速器M、前部电动机/发电机MG1、后部电动机/发电机MG2和电池28,分别由对应的ECU(电子控制单元)控制,并且,还设有将这些ECU综合起来的综合ECU。以下说明的图2~图13的流程图的控制在上述综合ECU中进行。
在混合车辆的运转模式中,存在5类模式即“停止模式”、“电动慢行模式”、“减速模式”、“发动机模式”和“电动模式”,这些模式根据图2的运转模式判定程序的流程进行判定。
即,在步骤S1,当车速Vcar为0,且制动开关Brk接通时,在步骤S2,将请求运转模式DriveModeReq设为“停止模式”。
当在上述步骤S1的回答为否(No)时,在步骤S3,如果油门踏板开度AP为全闭,制动开关Brk为断开,车速Vcar未达到慢行判定车速V_Crp,并且电池剩余容量SOC超过电动行驶许可剩余容量SOC_EV的话,在步骤S4,将请求运转模式DriveModeReq设为“电动慢行模式”。“电动慢行模式”是用第2电动机/发电机MG2的驱动力使车辆慢行行驶的模式。
当在上述步骤S3的回答为否时,在步骤S5,如果油门踏板开度AP为全闭,并且车速Vcar超过慢行判定车速V_Crp时,或者在步骤S6,当油门踏板开度AP为全闭,制动开关Brk接通,并且车速Vcar不为0时,在步骤S7,将请求运转模式DriveModeReq设为“减速模式”。
当在上述步骤S5、S6的回答都为否时,如果在步骤S8请求驱动力F_REQ达到或超过电动行驶允许驱动力F_EV,或者在步骤S9电池剩余容量SOC未超过电动行驶许可剩余容量SOC_EV,或者在步骤S10停缸许可标志KYUTOENB=i(停缸许可)不成立的话,在步骤S11,将请求运转模式DriveModeReq设为“发动机模式”。另外,当上述步骤S8~S10的回答全部为是(YES)时,在步骤S12,将请求运转模式DriveModeReq设为“电动模式”。“电动模式”是用第2电动机/发电机MG2的驱动力使车辆行驶的模式。
在上述步骤S8,当请求驱动力F_REQj小时允许由第2电动机/发电机MG2驱动的行驶,因此车辆的驱动力不会不足。此外,在上述步骤S9,由于当电池28的剩余容量充足时允许用第2电动机/发电机MG2进行行驶,因此电池28的容量不会不足。此外,在上述步骤S10,由于当发动机E可以停缸时允许用第2电动机/发电机MG2进行行驶,因此可以把使停缸状态的发动机E与油泵13一起旋转的第1电动机/发电机MG1的耗电抑制到最小限度。
其次,根据图3的流程图说明模式转变处理程序。
首先,在步骤S21,当当前的运转模式DriveMode与请求运转模式DriveModeReq一致时,在步骤S22,如果运转模式DriveMode是“停止模式”,则在步骤S23执行停止模式处理,在步骤S24,如果运转模式DriveMode是“电动慢行模式”,则在步骤S25执行电动慢行模式处理,在步骤S26,如果运转模式DriveMode是“减速模式”,则在步骤S27执行减速模式处理,在步骤S28,如果运转模式DriveMode是“发动机模式”,则在步骤S29执行发动机模式处理,在步骤S30,如果运转模式DriveMode是“电动模式”,则在步骤S31执行电动模式处理。
另一方面,在上述步骤S21中,当当前的运转模式DriveMode与请求运转模式DriveModeReq不一致时,在步骤S32,如果请求运转模式DriveModeReq是“停止模式”,则在步骤S33执行停止模式转变处理,在步骤S34,如果请求运转模式DriveModeReq是“电动慢行模式”,则在步骤S35执行电动慢行模式转变处理,在步骤S36,如果请求运转模式DriveModeReq是“减速模式”,则在步骤S37执行减速模式转变处理,在步骤S38,如果请求运转模式DriveModeReq是“发动机模式”,则在步骤S39执行发动机模式转变处理,在步骤S40,如果请求运转模式DriveModeReq是“电动模式”,则在步骤S41执行电动模式转变处理。
接下来,根据图4的流程图,说明图3的流程图中的步骤S23的“停止模式处理”的子程序。
首先,在步骤S51,释放第1离合器14,在步骤S52,释放第2离合器20。在随后的步骤S53,当电池剩余容量SOC未超过怠速停止许可容量SOC_IS(即使怠速停止发动机E也可以重新起动的剩余容量)时,即,当电池剩余容量SOC不足时,在步骤S54,如果发动机E已经完全爆炸,则在步骤S55,为了利用前部电动机/发电机MG1进行充电,将前部电动机/发电机驱动指令F_FrMot作为怠速充电指令F_IdlChg(负值),并在步骤S56,将发动机驱动指令F_ENG作为上述怠速充电指令F_IdlChg(正值)。从而,使在使发动机E运转的同时使前部电动机/发电机MG1发挥作为发电机的功能,对电池28进行充电。
此外,在上述步骤S54,如果发动机E没有完全爆炸,则在步骤S57,使前部电动机/发电机MG1发挥作为电动机的功能,驱动发动机E,在步骤S58,使发动机驱动指令F_ENG为0(无负荷节气门开度),起动发动机E。
接下来,根据图5的流程图,说明图3的流程图中的步骤S25的“电动慢行模式处理”的子程序。
首先,在步骤S71,释放第2离合器20,在步骤S72,通过将前部电动机/发电机MG1作为电动机进行驱动使处于停缸状态的发动机E空转,将发动机E的泵送损失抑制到最小限度,同时驱动油泵13使其产生用于使皮带式无级变速器M变速的油压。在随后的步骤S73,将后部电动机/发电机MG2的驱动力指令作为请求驱动力F_REQ,使后部电动机/发电机MG2发挥作为电动机的功能,使车辆电动慢行行驶。
在随后的步骤S74,根据油门踏板开度AP和车速Vcar,或根据请求驱动力F_REQ和车速Vcar,计算出皮带式无级变速器M的目标比率RatioObj。进而,在步骤S75,当目标比率变化率|ΔRatioObj |超过规定值时,即当目标比率变化率|ΔRatioObj |大时,在步骤S76,接合第1离合器14,在步骤S77,进行变速处理,使皮带式无级变速器M的实际比率Ratio与目标比率RatioObj一致。此时的油压,使用通过用前部电动机/发电机MG1驱动停缸状态的发动机E而由油泵13产生的油压。然后,在步骤S78,将比率确认定时器TmRatioChk(递减定时器)设定为规定时间TRATIOCHK。
即使在上述步骤S77进行变速处理后的结果是在上述步骤S75中目标比率变化率|ΔRatioObj |没有超过规定值,在随后的步骤S79,如果比率确认定时器TmRatioChk已到时间,则在步骤S80,接合第1离合器14。并且在步骤S81,当目标比率RatioObj和实际比率Ratio的偏差|RatioObj-Ratio|达到或超过规定值时,即偏差|RatioObj-Ratio|大时,在步骤S82,进行变速处理,使皮带式无级变速器M的实际比率Ratio与目标比率RatioObj一致。此时的油压,使用通过用前部电动机/发电机MG1驱动停缸状态的发动机E而由油泵13产生的油压。反之,在上述步骤S81,如果偏差|RatioObj-Ratio|未达到规定值时,在步骤S78,将比率确认定时器TmRatioChk设定为规定时间TRATIOCHK。并且,在上述步骤S79,如果比率确认定时器TmRatioChk没有到时间,在步骤S83,释放第1离合器14。
这样,当发动机E处于停缸状态时,如果目标比率变化率|ΔRatioObj|超过规定值,则接合第1离合器14,驱动油泵13,利用油泵13产生的油压将皮带式无级变速器M的实际比率Ratio控制成目标比率RatioObj,并且每经过规定时间TRATIOCHK,接合第1离合器14,驱动油泵13,这时,如果目标比率RatioObj和实际比率Ratio的偏差|RatioObj-Ratio|达到或超过规定值,则通过将皮带式无级变速器M的实际比率Ratio控制成目标比率RatioObj,可以防止皮带式无级变速器M的变速响应延迟。
接下来,根据图6的流程图,说明图3的流程图中的步骤S27的“减速模式处理”的子程序。
图6的流程图与图5的流程图实质上相同,当车辆减速时,与车辆的电动慢行行驶时相同,由于通过按规定的条件接合第1离合器14使皮带式无级变速器M的主动轮16和从动轮18旋转,来确认实际比率Ratio并使之变速到目标比率RatioObj,因此能够可靠地防止皮带式无级变速器M的变速响应延迟的发生。唯一的不同点在于,在图5的流程图的步骤S73,将后部电动机/发电机驱动力指令F_RrMot作为请求驱动力F_REQ,使后部电动机/发电机MG2发挥作为电动机的功能,使车辆电动慢行行驶,与此相对,在图6的流程图的步骤S73’,将后部电动机/发电机驱动力指令F_RrMot作为请求驱动力F_REQ(再生制动力),使后部电动机/发电机MG2发挥作为发电机的功能,使其产生再生制动力,同时将车辆的动量作为电能回收到电池28。
接着,根据图7的流程图,说明图3的流程图中的步骤S29的“发动机模式处理”的子程序。
首先,在步骤S91,接合第1离合器14(包含所谓半离合控制),在步骤S92,接合第2离合器20,在此状态下,在步骤S93,根据油门踏板开度AP和车速Vcar,或根据请求驱动力F_REQ和车速Vcar,计算出皮带式无级变速器M的目标比率RatioObj。进而,在步骤S94,进行变速处理,使皮带式无级变速器M的实际比率Ratio与目标比率RatioObj一致。
在随后的步骤S95,如果是辅助模式,则在步骤S96,将前部电动机/发电机驱动力指令F_FrMot作为前部请求辅助驱动力F_AstFrMot,将后部电动机/发电机驱动力指令F_RrMot作为后部请求辅助驱动力F_AstRrMot,将前部电动机/发电机MG1和后部电动机/发电机MG2作为电动机进行驱动,辅助发动机E的驱动力。此外,在步骤S97,如果是充电模式,则在步骤S98,将前部电动机/发电机驱动力指令F_FrMot作为充电部分的驱动力F_Chg,使后部电动机/发电机驱动力指令F_RrMot为0,将前部电动机/发电机MG1作为发电机驱动,对电池28进行充电。此外,在上述步骤S95、S97,如果既不是辅助模式也不是充电模式,则在步骤S99,使前部电动机/发电机驱动力指令F_FrMot和后部电动机/发电机驱动力指令F_RrMot都为0,只驱动发动机E。
并且,在步骤S100,通过从请求驱动力F_REQ减去前部电动机/发电机驱动力指令F_FrMot和后部电动机/发电机驱动力指令F_RrMot,计算出发动机E的驱动力指令F_ENG。即,使发动机E、前部电动机/发电机MG1和后部电动机/发电机MG2的总请求驱动力与请求驱动力F_REQ一致。
接下来,根据图8的流程图,说明图3的流程图中的步骤S31的“电动模式处理”的子程序。
图8的流程图与图5的流程图实质上相同,当车辆在电动行驶时,与车辆的电动慢行行驶时相同,由于通过按规定的条件接合第1离合器14使皮带式无级变速器M的主动轮16和从动轮18旋转,来确认实际比率Ratio并使之变速到目标比率RatioObj,因此能够可靠地防止皮带式无级变速器M的变速响应延迟的发生。唯一的不同点在于,在图5的流程图的步骤S73,后部电动机/发电机MG2的请求驱动力F_REQ是电动慢行行驶用的小的值,相对于此,在图8的流程图的步骤S73″,后部电动机/发电机MG2的请求驱动力F_REQ是电动行驶用的大的值。
接下来,根据图9的流程图,说明图3的流程图中的步骤S33的“停止模式转变处理”的子程序。
首先,在步骤S111,接合第1离合器14,在步骤S112,释放第2离合器20,在此状态下,在步骤S113,根据油门踏板开度AP和车速Vcar,或根据请求驱动力F_REQ和车速Vcar,计算出皮带式无级变速器M的目标比率RatioObj。进而,在步骤S114,如果目标比率RatioObj与实际比率Ratio的偏差|RatioObj-Ratio|达到或超过规定值,即偏差|RatioObj-Ratio|大时,在步骤S115,进行变速处理,使皮带式无级变速器M的实际比率Ratio与目标比率RatioObj一致。另一方面,在上述步骤S114,如果偏差|RatioObj-Ratio|未达到规定值,则使运转模式DriveMode为停止模式Stop。这样,在释放第2离合器20、接合第1离合器14的状态下,在使皮带式无级变速器M的实际比率Ratio与目标比率RatioObj一致后,转移到“停止模式”。
接下来,根据图10的流程图,说明图3的流程图中的步骤S35的“电动慢行模式转变处理”的子程序。
首先,在步骤S121,释放第1离合器14,在步骤S112,释放第2离合器20,在此状态下,在步骤S123,通过把前部电动机/发电机MG1作为电动机进行驱动,使处于停缸状态的发动机E空转,来将发动机E的泵送损失抑制到最小限度,同时驱动油泵13,使其产生用于使皮带式无级变速器M变速的油压。在后继的步骤S124,如果发动机转数Ne超过停缸下限转数,或者油泵13产生的油压超过停缸下限油压,则在步骤S125,使运转模式DriveMode为电动慢行模式EVCeep。
接下来,根据图11的流程图,说明图3的流程图中的步骤S37的“减速模式转变处理”的子程序。
在步骤S131,使运转模式DriveMode为减速模式Dec。
接下来,根据图12的流程图,说明图3的流程图中的步骤S39的“发动机模式转变处理”的子程序。
首先,在步骤S141,接合第1离合器14后,在步骤S142,断开停缸螺线管,解除发动机E的停缸状态,接通燃料喷射许可INJ,接通点火许可IG。在后续的步骤S143,根据油门踏板开度AP和车速Vcar,或根据请求驱动力F_REQ和车速Vcar,计算出皮带式无级变速器M的目标比率RatioObj,在步骤S144,根据目标比率RatioObj和车速Vcar,计算出目标发动机转数NeCmd。然后,在步骤S145,进行变速处理以使皮带式无级变速器M的实际比率Ratio变为目标比率RatioObj,并在步骤S146,为使发动机转数Ne变为目标发动机转数NeCmd,使前部电动机/发电机MG1作为电动机或发电机动作,以使发动机转数Ne变为目标发动机转数NeCmd。
在后续的步骤S147,当目标比率RatioObj和实际比率Ratio的偏差|RatioObj-Ratio|达到或超过规定值时,即偏差|RatioObj-Ratio|大时,或者在步骤S148,当目标比率变化率|ΔRatioObj|达到或超过规定值时,即当目标比率变化率|ΔRatioObj|大时,或者在步骤S149,当发动机E没有完全爆炸时,或者在步骤S150,目标发动机转数NeCmd与发动机转数Ne的偏差|NeCmd-Ne|达到或超过规定值时,即偏差|NeCmd-Ne|大时,在步骤S151,释放第2离合器20,在步骤S152,将后部电动机/发电机驱动力指令F_RrMot作为请求驱动力F_REQ,在步骤S153,使发动机驱动力指令F_ENG为0。
其中,节气阀打开的量与对应于发动机转数Ne的发动机E的无负载状态相对应。此处,节气阀的打开的量与无负载状态相对应的原因在于,使曲柄轴11的输出扭矩=0,即只使发动机E作与自身摩擦相对应的功。这样,在达到目标比率RatioObj和目标发动机转数NeCmd之前的时间内,使后部电动机/发电机MG2产生驱动力。
如果上述步骤S147~S150的回答都为是,即如果可以利用发动机E进行行驶,则在步骤S154,接合第2离合器20(包含所谓半离合),在步骤S155,将发动机驱动力指令F ENG作为请求驱动力F_REQ。在后续的步骤S156,根据发动机转数Ne和进气负压Pb(或者吸入空气量)计算出实际发动机驱动力F_ENG_ACT,在步骤S157,将后部电动机/发电机驱动力指令F_RrMot作为请求驱动力F_REQ-实际发动机驱动力fF_ENG_ACT。在后续的步骤S158,如果实际发动机驱动力F_ENG_ACT变为请求驱动力F_REQ,即变为后部电动机/发电机MG2停止、只有发动机产生驱动力的状态,则在步骤S159,将运转模式DriveMode设为发动机模式ENG。
接下来,根据图13的流程图,说明图3的流程图中的步骤S41的“电动模式转变处理”的子程序。
首先,在步骤S161,接合第1离合器14,在步骤S162,接合第2离合器20后,在步骤S163,断开停缸螺线管,解除发动机E的停缸状态,接通燃料喷射许可INJ,接通点火许可IG。在后续的步骤S164,根据油门踏板开度AP和车速Vcar,或者根据请求驱动力F_REQ和车速Vcar,计算出皮带式无级变速器M的目标比率RatioObj,在步骤S165,进行变速处理以使皮带式无级变速器M的实际比率Ratio达到目标比率RatioObj,在步骤S166,将发动机驱动力F_REQ设为0(无负荷节气门开度)。
在后续的步骤S167,根据发动机转数Ne和进气负压Pb(或者吸入空气量)计算出实际发动机驱动力F_ENG_ACT,在步骤S168,将后部电动机/发电机驱动力指令F_RrMot设为请求驱动力F_REQ-实际发动机驱动力F_ENG_ACT。在后续的步骤S169,如果实际发动机驱动力F_ENG_ACT为0,即如果要使后部电动机/发电机MG2产生全部请求驱动力F_REQ,在步骤S170,将运转模式DriveMode设为电动模式EV。
如上所述,根据本实施方式,当停止发动机E的运转,用后部电动机/发电机MG2驱动或制动后轮Wr、Wr行驶时,即在图5的“电动慢行模式”、图6的“减速模式”和图8的“电动模式”中,通过用泵送损失降低装置将发动机E的进气阀维持在闭阀状态,来降低泵送损失,并且在释放第2离合器20的状态下,用前部电动机/发电机MG1驱动油泵13。从而,即使发动机E处于停止状态,也可以用油泵13产生的油压使皮带式无级变速器M变速,当起动发动机E通过皮带式无级变速器M驱动前轮Wf、Wf时,能够以良好的响应性将皮带式无级变速器M的实际比率控制成目标比率,可以防止变速冲击的发生。
此时,由于利用前部电动机/发电机MG1旋转的发动机E处于降低泵送损失的状态,并且前部电动机/发电机MG1通过释放第2离合器20断开与前轮Wf、Wf的连接,因此可以降低前部电动机/发电机MG1的负荷,将耗电抑制到最小限度。此外,在由前部电动机/发电机MG1驱动时,通过释放第1离合器14,可以防止皮带式无级变速器M的拖曳,可以节约前部电动机/发电机MG1的耗电。而且,由于利用前部电动机/发电机MG1使发动机E空转,因此通过点火控制和开始燃料供给可以快速地起动发动机E,可以平稳快速地从利用后部电动机/发电机MG2进行行驶的状态转移到利用发动机E进行行驶的状态。
此外,当使发动机E停止、利用后部电动机/发电机MG2进行行驶时,当皮带式无级变速器M的目标比率与实际比率的偏差|RatioObj-Ratio|超过规定值时,由于间歇地接合第1离合器14使皮带式无级变速器M变速,因此与在发动机E停止中连续地接合第1离合器14进行变速的情况相比,可以把利用前部电动机/发电机MG1驱动皮带式无级变速器M的时间抑制到最小限度,可以降低耗电。而且,由于当皮带式无级变速器M的目标比率变化率|ΔRatioObj|超过规定值时,连续地接合第1离合器14进行变速,因此当皮带式无级变速器M需要快速变速时,可以无迟滞地进行变速。
以上说明了本发明的实施例,但只要在不偏离本发明的要旨的范围内,可以进行各种设计变更。
例如,在实施例中,作为自动变速器,示例了皮带式无级变速器,但本发明即使对除皮带式无级变速器以外的无级变速器和有级式自动变速器也可适用。
此外,也可以设置转矩转换器来代替减震器12。
此外,泵送损失降低装置并不仅限于实施例,可以采用使进气阀和排气阀两者全闭,或使节气阀全开等方法。
此外,关于车辆V的运转模式,除实施例所述之外,可以考虑用第1、第2电动机/发电机MG1、MG2的一方或两方来辅助发动机E的驱动力的模式,或者不用发动机E,只用第1、第2电动机/发电机MG1、MG2两者的驱动力进行行驶的模式。
权利要求
1.一种混合车辆,其通过第1电动机/发电机(MG1)、油泵(13)、第1离合器(14)、油压式自动变速器(M)和第2离合器(20),将具有泵送损失降低装置的发动机(E)连接到第1驱动轮(Wf)上,并将第2电动机/发电机(MG2)连接到与所述第1驱动轮(Wf)不同的第2驱动轮(Wr)上,其特征在于,当用第2电动机/发电机(MG2)驱动或制动第2驱动轮(Wr)进行行驶时,用泵送损失降低装置来降低停止运转后的发动机(E)的泵送损失,并且在释放第2离合器(20)的状态下,用第1电动机/发电机(MG1)驱动油泵(13)使其产生用于使自动变速器(M)变速的油压。
2.如权利要求1所述的混合车辆,其特征在于,当自动变速器(M)的目标比率与实际比率的偏差超过规定值时,在间歇地接合第1离合器(14)的同时使自动变速器(M)变速。
3.如权利要求1所述的混合车辆,其特征在于,当自动变速器(M)的目标比率的变化率超过规定值时,在连续地接合第1离合器(14)的同时使自动变速器(M)变速。
4.如权利要求1所述的混合车辆,其特征在于,当与第1、第2电动机/发电机(MG1、MG2)连接的电池(28)的剩余容量超过规定值、而车辆的要求驱动力未达到规定值、并且可以降低发动机(E)的泵送损失时,允许用第2电动机/发电机(MG2)进行行驶。
5.如权利要求4所述的混合车辆,其特征在于,当使泵送损失降低装置动作、用第2电动机/发电机(MG2)进行行驶时,用第1电动机/发电机(MG1)驱动油泵(13)使其产生用于使自动变速器(M)变速的油压。
6.如权利要求1所述的混合车辆,其特征在于,当用第1电动机/发电机(MG1)驱动油泵(13)使其产生用于使自动变速器(M)变速的油压时,释放第1离合器(14)。
全文摘要
一种混合车辆,可使发动机(E)停止而用电动机/发电机(MG1、MG2)进行行驶,其通过第1电动机/发电机(MG1)、油泵(13)、第1离合器(14)、皮带式无级变速器(M)和第2离合器(20),将可通过停缸来降低泵送损失的发动机(E)连接到前轮(Wf)上,并将第2电动机/发电机(MG2)与后轮(Wr)连接。当用第2电动机/发电机(MG2)驱动或制动后轮(Wr)进行行驶时,在使已停止运转的发动机(E)停缸,并且在释放第2离合器(20)的状态下,通过用第1电动机/发电机(MG1)驱动油泵(13),使其产生用于使皮带式无级变速器(M)变速的油压。从而,无需特别的电动油泵,在发动机(E)停止中可产生用于使皮带式无级变速器(M)变速的油压。
文档编号B60W10/10GK1681676SQ0382168
公开日2005年10月12日 申请日期2003年7月14日 优先权日2002年9月13日
发明者青木隆, 杉山哲, 吉良畅博 申请人:本田技研工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1