专利名称:车辆加速度的限制的制作方法
技术领域:
本发明一般涉及对动力系(powertrain)的控制,并且特别涉及实现车辆加速和减速目标的动力系控制。
背景技术:
车辆的操作者通常通过预先选定变速器换挡特性、例如通过选择可用的齿轮速比范围,例如前进挡(F)3-2-1,并驱动加速器和制动踏板来控制车辆加速度。车辆的加速度在很大程度上取决于车辆质量、车辆载荷、路面坡度等因素。车辆加速或减速过程中的加速度变化率是受车辆载荷影响,尤其是公共交通工具、越野(overroad)商用车和重型农用和建筑车辆,这些车辆的车辆载荷变化很大。例如,在一定油门踏板行程量的情况下,载重较轻的车辆的加速要比载重较重的车辆加速要快。类似的,对于一个给定的制动踏板力,载重较轻的车辆的减速要满载的车辆减速要快。加速度和减速度的变化会影响在重型车辆中的乘员舒适性。加速度和减速度的变化可能影响商用车和重型农用和建筑车辆的载重稳定性和换挡。加速度和减速度的变化可能影响所有车辆的稳定性。这就要求操作者必须总是掌握车辆的载重因素和道路坡度因素,以便能调节油门踏板和制动力以便获得适当的加速度和减速度。
而且,尽管内燃机在其的工作速度范围内提供相对较高的最大转矩,但是电动机在其速度范围内的低端才具有最大转矩。使用电动机的混合动力系的低速转矩能力是众所周知的。这转换成明显可用的车辆启动转矩和明显可用的再生制动转矩。考虑到车辆推力变化的不良影响,混合动力系的明显的低速转矩能力对实现乘员舒适性、载荷稳定性和车辆稳定性都带来额外的挑战。
现在需要的是一种方法和一种装置能限制车辆的加速度和减速度以便优化乘员舒适性,并减少对车辆载荷的影响,并提高车辆稳定性,而不用考虑加速度和减速度变化的影响因素例如车辆载荷和路面坡度。
发明内容
本发明提供一种对现有动力系控制系统的改进,其通常可以根据操作者的需要提供恒定量的输出转矩。这种改进包括一种方法和一种装置,用于控制车辆的加速度和减速度。根据本发明,可以控制车辆的加速度以便提供更加一致和可预测的车辆响应。这样的一种控制方法包括监视车辆的加速度,以及闭环限制车辆输出转矩作为预定的加速限制值和车辆加速度的函数。最好,仅当车辆加速度超过预定值的时候闭环限制才发挥作用。有利地,本发明能有效地控制车辆的加速度和减速度,并且能适应车辆各种不同的有效齿轮比。在本领域的普通技术人员在阅读和理解随后对具体实施例的详细说明后,本发明的上述和其他方面就更明显了。
现在将参照附图通过举例的方式描述本发明,其中图1是用于实现本发明的示意性动力系系统的原理图;图2是根据本发明一个优选实施例的控制原理图;图3A和3B是响应数据曲线,表示了根据本发明所执行的控制;图4是表示根据本发明对应于不同的制动力而确定减速限定值的示意图。
具体实施例方式
下面参照附图,其中附图仅仅是为了说明本发明的目的,而不是要限定本发明的目的,图1显示了根据本发明的一个实施例使用的的示意性系统的机械结构原理图。该示意性的系统最好包括一个动力系系统11,其带有一个发动机14和一个电动变速器(EVT)10。
EVT10最好包括多模式、复合分段式的电动变速器,该变速器包括一个或多个行星齿轮组和根据不同转矩传递装置的应用和释放建立的耦合通路。EVT10通过一个输入部件连接到发动机14上,该输入部件带有一个设置在上述两个部件之间的瞬间转矩减震器16。该瞬间转矩减震器可以是跟一个转矩传递装置(未示出)合成一体或连接在一起,以便使得发动机14与EVT10可选择地接合。EVT10还包括一对电动机MA56和MB72以及一个输出轴64,输出轴连接到车辆的动力传动系统(未示出)上。车辆的动力传动系统可以包括普通的动力传动系统部件例如差动齿轮组、传动轴、万向节、末级传动齿轮组,车轮和轮胎。电动机从能量储存系统接收电能,并将电能提供给能量储存系统,能量储存系统包括在电池组模块(BPM)21中的一个或多个电池,或者包括任何能双向传递电流的适当能量储存装置。发动机、动力传动系统和电动机转矩可以在任意一个方向。也就是说,其中每一个都可以给动力系提供双向转矩贡献。该系统还包括一个双动力转换模块(DPIM)19、一个发动机控制模块(ECM)23、一个系统控制器43和一个控制器局域网(CAN)总线25。
在所示的实施例中,发动机14可以是内燃机,最好是压燃式发动机,被ECM23电子控制。ECM23是一个常规的基于微处理器的发动机控制器,其包括此类常规的部件诸如微处理器、只读存储器ROM、随机存储器RAM、电可编程只读存储器(EPROM)、高速时钟、模数(A/D)和数模(D/A)电路和输入/输出电路和装置(I/O)和适当的信号调节和缓冲电路,这些都是本领域的普通技术人员所公知的。ECM23的功能是从很多传感器中获得数据,然后通过很多的分离的线路分别控制发动机14上的很多驱动器。为了简单起见,所示的ECM23通过集合线35与发动机14双向连接。ECM23所检测到的各种不同参数是油箱和发动机冷却液温度、发动机转速、涡轮压力、和周围空气的温度及压力。通常被ECM23控制的多个驱动器包括燃油喷射器、风扇控制器、和包括电热塞和栅格状进气加热器在内的发动机预热器。ECM23最好根据系统控制器43所提供的发动机转矩指令(Te_cmd)为发动机14提供公知的基于转矩的控制,这点将在下面进行详细介绍。这样的发动机电子设备、控制和性能对于本领域的技术人员是公知的,并不需要在这里进行详细介绍。
DPIM19包括一对功率变换器和各自的电动机控制器,电动机控制器用来接收电动机控制指令,并根据其控制变换器的状态,以便提供电动机驱动或再生功能。第一电动机MA56和第二电动机MB72最好包括三相AC电机。因此,DPIM19所使用的功率变换器最好包括互补的三相功率电子设备,如普通技术人员所公知的那样。第一电动机MA56和第二电动机MB72都通过高压相线29和31连接到DPIM19上。MA56和MB72各自的单独电动机速度信号Na和Nb都被DPIM19从电动机相位信息或常规的旋转传感器中导出。这样的电动机、电子设备、控制和性能对于本领域的技术人员是公知的,并不需要在这里进行详细介绍。
DPIM19通过高压直流电(DC)线路27连接到BPM21上,从而能在二者之间传递一定量的电能。电流形式的电能可以根据BPM21的充电和放电在BPM21和DPIM19之间传递。
EVT10和DPIM19可以在电动机控制模式和再生控制模式下工作。当处于电动机控制模式下的时候,各自的变换器从DC线路接收电流,并将AC电流通过高压相线29和31提供给各自的电动机。当处于再生模式下的时候,各自的变换器通过高压相线29和31从电动机接收AC电流,然后将电流提供给DC线路27。供给变换器或从变换器输出的净DC电流决定BPM21是处于充电或放电模式。
系统控制器43是一种基于微处理器的控制器,其包括此类常规部件诸如微处理器、只读存储器ROM、随机存储器RAM、电可编程只读存储器EPROM、高速时钟、模数(A/D)和数模(D/A)电路、数字信号处理器(DSP)和输入/输出电路和装置(I/O)和适当的信号调节和缓冲电路。在示意性实施例中,系统控制器43包括一对基于微处理器的控制器,其作为车辆控制模块(VCM)15和变速器控制模块(TCM)17。VCM和TCM可以提供,例如与EVT和对车辆底盘相关的很多控制和诊断功能,包括,例如提供给发动机转矩指令、输入速度控制、与再生制动协调的输出转矩控制、防抱死制动以及牵引力控制。
上述的各种模块(也就是,系统控制器43、DPIM19、BPM21、ECM23)通过控制器局域网(CAN)总线25进行通讯。CAN总线25影响在各种模块和控制器之间的控制参数和指令的通讯。所使用的通信协议是根据应用特定的,在这里就不详细介绍了。例如,重型车辆所使用的最好的协议是汽车工程协会标准J1939。CAN总线和适当的协议在系统控制器43、ECM23、DPIM19、BPM21和其他例如防抱死制动和牵引力控制器等控制器之间提供强状信息交换(robust messaging)和多控制器接口。
特别是关于EVT功能,系统控制器43的功能是作为从多个传感器直接获取数据,然后通过多个的分离线路分别直接控制EVT的多个驱动器。为了简单起见,所示的系统控制器43通过集合线33与EVT双向连接。特别需要说明的是,系统控制器43从输入和输出部件旋转传感器中接收频率信号,应用处理成使用在EVT10的控制中的输入速度(Ni)和输出速度(No)。还表示了用户界面(UI)的块13,其包括对系统控制器43的输入,例如车辆油门位置、用于可用驱动范围选择的按钮换挡选择器(PBSS)、制动力和高速空转请求等。车辆传感器,包括旋转传感器、PBSS传感器和位置传感器对于本领域的技术人员是公知的,并且没有在图中详细地示出。
通常来说,系统控制器43确定了使用在动力系的控制中的命令输出转矩(To_cmd)。对(To_cmd)的确定是依据操作者输入因素,例如油门踏板位置和制动踏板位置和车辆动力学条件例如车速。其他操作者输入因素例如换挡选择器位置和动力输出要求、其他操作条件例如温度、电压、电流和部件速度也可以影响确定输出转矩。系统控制器43还可以确定是由发动机和电动机合成还是分别构成输出转矩。这种控制最好根据所选择的发动机转矩和速度工作点来完成。发动机转矩控制是通过发动机控制器根据系统控制器所确定的命令发动机转矩(Te_cmd)来进行处理,发动机转速控制是直接通过控制电动机转矩的速度控制来处理的。优选地确定发动机转速和发动机转矩以及控制发动机转速的方法在共同拥有以及未审结的美国专利申请号10/686511(代理号№GP-304140)、10/686508(代理号№GP-304193)、10/686034(代理号№GP-304194)和10/799531(代理号№GP-304338)中公开,这些申请被全部结合在这里都作为参考。
动力系控制的一般目标是满足操作者对转矩的要求。根据本发明,车辆加速度变化率和减速度变化率的动力学条件还会影响对输出转矩的确定。在本发明中,通过提供本发明所确定的受限的命令输出转矩来将动力系控制适用于本发明。
上述的示意性系统包括带有发动机14的车辆,发动机可工作地连接到电动变速器10上,电动变速箱可操作地连接到车辆的动力传动系统。所示的示意性系统可以控制车辆的加速度变化率,如参照图2、3A、3B和4所描述的。
如下所述,系统控制器43根据车辆加速度(No_dot)和加速度限制值(No_dot_lim)确定了命令输出转矩(To_cmd)。另外一个确定To_cmd的依据是预先选择的变速器换挡选择器位置。系统控制器43可以用来确定加速度限制值(No_dot_lim)、测量车辆加速度(No_dot)并确定预先设定的变速器按钮换挡选择器位置(PBSS),如上所述。系统控制器43根据命令输出转矩(To_cmd)控制了电动变速器,包括再生制动。该方法最好是在上述系统控制器43中执行,采用的形式是带有控制逻辑、算法和预定的标度的控制系统50(图2)。
向控制系统50中的输入包括车辆加速度(No_dot)、加速度限制值(No_dot_lim)、操作者输出转矩要求(To_req)和加速度阈值预触发(No_dot_trigger)。从控制系统50中的输出包括命令输出转矩(To_cmd)。EVT控制使用命令输出转矩(To_cmd)来建立输出转矩。
控制系统50通过计算EVT输出轴64的输出速度(No)改变的时间变化率来确定车辆加速度(No_dot)。控制系统通过监视用户界面13所测量的操作者输入来确定加速度限制值(No_dot_lim),操作者输入包括油门踏板位置和制动力(Brk_Op)。控制系统50通过监视用户界面13所测量的操作者输入的变化来确定操作者输出转矩要求(To_req),操作者输入包括油门踏板位置和制动力(Brk_Op)。加速度限制值(No_dot_lim)和对应的阈值预触发(No_dot_trigger)在推进的时候是预定的标度值,其是在车辆开发和校准的时候依据特定的车辆、动力系和特定应用确定的。加速度限制值(No_dot_lim)和预触发(No_dot_trigger)在减速和制动的时候是被确定为换挡选择器位置和制动力的函数的值。
再次参照附图2并且参照图3A和3B和图4,下面将说明控制系统的工作,包括正加速、没有制动的负加速(或减速)也就是减速和带有制动的负加速(或减速)。
当操作者要进行正加速、例如压下油门踏板的时候,为了确定命令输出转矩(To_cmd),系统确定了加速度限制值(No_dot_lim)、操作者输出转矩要求(To_req)和车辆加速度(No_dot),如上所述。车辆加速度(No_dot)与标定的加速度阈值预触发(No_dot_trigger)比较来进行正加速(见图3A)。当车辆加速度(No_dot)大于标定的加速度阈值预触发(No_dot_trigger)的时候,块66的输出通过锁存器(latch)58设置软件标记Accel_Active,这样来显示主动的加速控制。计算加速误差项Acc_err,包括加速度限制值(No_dot_lim)和车辆加速度(No_dot)之间的差。(见块65)加速误差项Acc_err被输入到比例积分(PI)控制器54,并确定一个受限的输出转矩项To_lim。下面将介绍在加速控制初期使用的初始PI设定。将限定的输出转矩(To_lim)与操作者输出转矩要求(To_req)进行比较,二者中比较小的那个被选择作为命令输出转矩(To_cmd)(见块55)。当车辆加速度(No_dot)不大于标定的加速度阈值预触发(No_dot_trigger)的时候,PI控制器54就根据每个控制环使用一个标度来再校准,标度稍微大于系统的转矩斜率(torque ramp rate),PI输出状态被重新设定到操作者输出转矩要求(To_req)。当加速限定没有启动的时候,这样的再校准影响对下个启动加速限制控制的快速系统响应,而不会影响任何输出转矩限制值。PI控制器及其标度对于本领域的技术人员是公知的,并不需要在这里进行详细介绍。当车辆加速度(No_dot)小于标定加速度阈值预触发(No_dot_trigger)(见块66和67),并且操作者输出转矩要求(To_req)小于或等于受限的输出转矩项(To_lim)的时候(见块62),块60的输出就通过锁存器58复位软件标记Accel_Active,这样就可以给PI控制器54一个复位信号,来影响环到环的重新标定并如上所述的复位。
当操作者命令负加速、例如通过单独释放加速器踏板或与制动踏板力结合的时候,为了确定命令输出转矩(To_cmd),系统将确定加速度限制值(No_dot_lim)、操作者输出转矩要求(To_req)和车辆加速度(No_dot),如上所述。
参照附图4,操作者命令负加速(减速)的时候,要根据用户界面13的输入来确定加速度限制值(No_dot_lim),用户界面的输入包括换档选择器的位置、减速器踏板压下和制动踏板力。图4表示的是在系统控制器43中执行的过程。当车辆在没有制动踏板力也就是为0%的情况下,可以使用表80的内容来确定加速度限制值(No_dot_lim),表80的内容最好是提前标定过。这样,在该实施例中,当按钮换档选择器(PBSS)=F的时候,对应的加速度限制值(No_dot_lim)=-125rpm/s;PBSS=1,对应的加速度限制值(No_dot_lim)=-200rpm/s;PBSS=2,对应的加速度限制值(No_dot_lim)=-175rpm/s;PBSS=3,对应的加速度限制值(No_dot_lim)=-150rpm/s。当车辆用制动踏板压下来减速的时候,可以使用表80和82中的内容以及曲线图84所示的二者之间插值来确定加速度限制值(No_dot_lim)。要确定加速度限制值(No_dot_lim)首先要根据按钮换挡选择器(PBSS)确定换档选择器的位置,以及使用制动和不使用制动在对应的减速率之间进行插值,其中插值是根据用最大制动力的百分比所表示的制动力(Brk_Op)。这样,在该实施例中,当换档选择器的位置是F的时候,加速度限制值(No_dot_lim)就在-125rpm/s(见80,对应F)和-200rpm/s(见82,对应F)之间,并且其根据操作者所命令的制动力(Brk_Op)的百分比来确定。
再次参照附图2,车辆加速度(No_dot)与用于负加速的标定加速度阈值预触发(No_dot_trigger)相比较(见图3B)。当车辆加速度(No_dot)的幅度大于标定的加速度阈值预触发(No_dot_trigger)的幅度的时候,块66的输出通过锁存器58置位软件标记Accel_Active,这样来显示主动的加速控制。计算加速误差项Acc_err,包括加速度限制值(No_dot_lim)和车辆加速度(No_dot)之间的差。(见块65)。计算加速误差项Acc_err,包括加速度限制值(No_dot_lim)(参照对附图4的描述)和车辆加速度(No_dot)之间的差。加速误差项Acc_err被输入到比例积分(PI)控制器54,并确定了受限的输出转矩项(To_lim)。如上所述的、在加速控制初期使用的初始PI设定是关于在推进期间的加速控制。将受限的输出转矩项(To_lim)与操作者输出转矩要求(To_req)进行比较,小的那项(数量上)被系统控制器选择作为命令输出(To_cmd)(见块55)。
当车辆加速度(No_dot)的幅度不大于标定加速度阈值预触发(No_dot_trigger)的时候,PI控制器54就根据每个控制环使用一个标度来再再校准,该标度稍微大于系统的转矩斜率(ramp_rate),PI输出状态被重新设定为操作者输出转矩要求(To_req)。这也是为了达到与先前关于相应的加速度限制值控制的描述相同的目的。PI控制器及其标度对于本领域的技术人员是公知的,并不需要在这里进行详细介绍。当车辆加速度(No_dot)的幅度小于标定加速度阈值预触发(No_dot_trigger)的幅度,(见块66和67),并且操作者输出转矩要求(To_req)的幅度小于或等于受限的输出转矩项(To_lim)的时候(见块62),块60的输出就通过锁存器58复位软件标记Accel_Active,这样就可以给PI控制器54提供一个复位信号,来影响环到环的重新标定并如上所述的重新设定。
然后,命令输出转矩(To_cmd)被系统控制器43用来控制EVT10和发动机14。
已经关于特定的示范性的混合动力系结构描述了本发明。本领域的普通技术人员将认识到其它混合和常规动力系结构可以和本发明结合使用。例如,传统的电动-液压控制、多速变速器可以与本发明结合使用。
虽然相对于特定殊优选实施例和应用描述本发明,但是可以理解的是,在本发明内容的精神和范围内,可以作出很多变形。因此,本发明不应该被所公开的实施例限定,其整个的范围由随后的权利要求的语言来限定。
权利要求
1.控制车辆加速度的方法,包括监视车辆加速度;和闭环限制车辆输出转矩作为预定加速度限制值和车辆加速度的函数。
2.如权利要求1所述的用于控制车辆加速度的方法,其中上述闭环限制只有在车辆的加速度超过预定值的时候才起作用。
3.如权利要求1所述的用于控制车辆加速度的方法,其中上述闭环限制包括提供一个加速度误差给比例积分控制器来建立一个输出转矩限制值并当所请求的输出转矩超过输出转矩限制值的时候建立输出转矩来作为输出转矩限制值。
4.如权利要求1所述的用于控制车辆加速度的方法,其中上述预定加速度限制值被确定为在车辆减速期间的制动力的函数。
5.如权利要求1所述的用于控制车辆加速度的方法,其中上述预定加速度限制值被确定为在车辆减速期间的换挡选择器位置的函数。
6.控制装备有用于给车辆动力传动系统提供输出转矩的电动变速器的车辆的加速速率的方法,包括确定操作者对输出转矩的需求;测量车辆的加速度;限制到车辆动力传动系统的输出转矩为操作者需要的输出转矩和输出转矩限制值中较小的一个,所述输出转矩限制值被确定为车辆加速度和预定加速度限制值的函数。
7.如权利要求6所述的方法,其中确定输出转矩限制值包括根据加速度限制值和所测量的车辆加速度来计算加速度误差;将加速度误差输入到可编程控制器以便加速度转矩限制值包括可编程控制器的输出。
8.如权利要求6所述的方法,其中确定操作者对输出转矩的需求包括解析油门踏板输入。
9.如权利要求6所述的方法,其中确定操作者对输出转矩的需求包括解析制动踏板输入。
全文摘要
一种控制装有每个可操作地连接到车辆动力传动系统的电动变速器和再生制动系统的车辆的加速的方法和装置。所述方法和装置包括确定命令变速器预选的换挡选择器位置的哪一个、确定操作者对加速的要求、使用油门踏板和制动踏板的输入。测量车辆的加速度,根据命令的预选的换挡选择器位置、操作者对加速的要求和所测量的车辆加速度来控制从电动变速器和再生制动系统传递给车辆动力传动系统的命令转矩的幅度。
文档编号B60K6/02GK1733522SQ200510098040
公开日2006年2月15日 申请日期2005年5月13日 优先权日2004年5月14日
发明者J·-J·F·萨, T·M·斯泰因梅茨, T·-M·希, L·T·尼茨 申请人:通用汽车公司