具有铁氧体磁铁电机的多模式电动可变变速器及操作方法
【专利摘要】一种混合动力车辆,包括内燃发动机、铁氧体磁铁电机和稀土磁铁电机。当车辆以稳定速度巡航时,变速器的电动可变变速器模式配置稀土磁铁电机构,以给铁氧体磁铁电机提供反作用力,使得铁氧体磁铁电机在高速度/低扭矩条件下操作,从而将铁氧体磁铁电机中的扭矩相关损失最小化。当车辆在较高速度加速时,第一扭矩传递机构给铁氧体磁铁电机提供反作用扭矩,以消除铁氧体磁铁电机中的扭矩相关损失。
【专利说明】具有铁氧体磁铁电机的多模式电动可变变速器及操作方法【技术领域】
[0001]本发明总体涉及用于混合动力车辆的动力总成,以及涉及操作该动力总成的方法。
【背景技术】
[0002]车辆包括动力总成,该动力总成可包括电量维持或电量耗尽(CS/CD)混合动力推进构造(其可或可不设计为从外部电源,即混合动力系统中的插头接收电池充电功率)或增程型纯电动推进构造,以推进车辆。在任一配置中,动力总成包括内燃发动机和电动可变变速器,电动可变变速器包括第一电动机/发电机和第二电动机/发电机。在增程型电动车辆(EREV)中使用的增程型纯电动配置必须能够仅以电池功率来推进车辆,直到耗尽电池电量。在那时,其转换为与传统的混合动力车辆类似的操作策略,在传统的混合动力车辆中,在一些驱动条件期间,发动机操作以提供驱动功率,并维持电池的充电状态。CS/⑶混合动力配置一般需要发动机操作,以提供全部车辆功率,并且,CS/CD被设计为能够仅在低功率下,以电动车辆操作。在任一配置中,车辆推进力可来自于内燃发动机、第一电动机/发电机、第二电动机/发电机中的任一个或为它们的任一组合。任一配置也能够在发动机操作时通过将一个或两个电机都作为发电机操作,来将电池充电。与利用纯电动推进配置的车辆相比,混合动力推进配置一般需要较大的内燃发动机,并且使用更小的电池。例如,利用纯电动推进配置的小客车可包括具有大于100KW的功率输出的电池,而利用混合动力推进配置的车辆可仅需要具有在30至40KW之间的功率输出的电池。额外可用的电池功率可被用于减少从发动机所需的功率,以提供相同的车辆性能。
[0003]不同的推进系统之间的不同的操作策略导致电机/发电机的明显不同的使用。例如,纯电动推进配置的电机/发电机在作为电动车辆操作期间趋向于以较高速度和较高功率操作,而混合动力推进配置的电机/发电机趋向于以较低速度和较低功率操作。此外,通常,在纯电动推进配置中的一个或两个电动机/发电机需要高扭矩能力,以提供足够的前进和倒退爬坡能力性能。需要来自电动机/发电机的高扭矩趋向于降低电动机/发电机在高速度情况下的功率和效率。因此,纯电动推进配置和混合动力推进配置一般采用不同的变速器功率流,并且利用不同的电机。
[0004]通常,混合电动可变变速器包括强稀土永磁电机,或大的感应电机,以达到期望的效率。稀土磁铁是昂贵的,因此增加了稀土永磁电机的成本,而感应电机则是较大的,且需要额外的包装空间。
【发明内容】
[0005]提供一种用于混合动力车辆的动力总成。该动力总成包括铁氧体磁铁电机、稀土磁铁电机、内燃发动机以及变速器。变速器包括配置为将扭矩传递至车辆的至少一个车轮的输出部。第一行星齿轮组连接至输出部、铁氧体磁铁电机以及内燃发动机。第二行星齿轮组连接至输出部和稀土磁铁电机。第一扭矩传递机构选择地接合及脱离第二行星齿轮组。当第一扭矩传递机构被接合时,第一扭矩传递机构将第二行星齿轮组连接至固定构件,因此提供反作用扭矩。第二扭矩传递机构选择地连接及分离铁氧体磁铁电机和第二行星齿轮的连接至稀土磁铁电机的节点之间的扭矩传递。变速器可以固定齿轮模式以及两种电动可变变速器模式操作。当以固定齿轮模式时,第一扭矩传递机构和第二扭矩传递机构二者都被接合,并且内燃发动机被操作。当以固定齿轮模式操作时,来自固定构件的被传递通过第一和第二扭矩传递机构的反作用扭矩允许铁氧体磁铁电机处于零扭矩的状态,消除了铁氧体磁铁电机中的扭矩相关损失。第一电动可变变速器模式主要用于车辆前进以及高加速度。当以第一电动可变变速器模式时,第一扭矩传递机构被接合,第二矩传递机构被脱离,并且内燃发动机操作。当以第一电动可变变速器模式操作时,车辆前进扭矩主要由稀土磁铁电机提供。第二电动可变变速器模式主要用于低加速度和在高速度下的恒定速度。当以第二电动可变变速器模式时,第一扭矩传递机构被脱离,第二扭矩传递机构被接合,并且内燃发动机操作。当以第二电动可变变速器模式操作时,稀土磁铁电机向发动机提供大部分反作用扭矩,以使得铁氧体磁铁电机在高速度/低扭矩条件下操作,从而将铁氧体磁铁电机中的扭矩相关损失最小化。
[0006]还提供了用于具有内燃发动机的混合动力车辆的变速器。该变速器包括铁氧体磁铁电机,其选择地操作以提供扭矩,从而驱动混合动力车辆;以及稀土磁铁电机,其选择地操作以提供扭矩,从而驱动混合动力车辆。输出部配置为将扭矩传递至车辆的至少一个车轮。第一行星齿轮组连接至输出部和铁氧体磁铁电机。第二行星齿轮组连接至输出部和稀土磁铁电机。第一扭矩传递机构选择地将第二行星齿轮组连接至固定构件和与固定构件分离。当第一扭矩传递机构被接合时,第一扭矩传递机构向第二行星齿轮组提供反作用扭矩。第二扭矩传递机构选择地连接和分离铁氧体磁铁电机和第二行星齿轮的连接至稀土磁铁电机的节点之间的扭矩传递。当以第一电动可变变速器模式时,第一扭矩传递机构被接合,第二矩传递机构被脱离,并且内燃发动机机操作。当以第一电动可变变速器模式操作时,车辆前进扭矩主要由稀土磁铁电机提供。变速器可以第二电动可变变速器模式操作,其中第一扭矩传递机构被脱离,并且第二扭矩传递机构被接合。当车辆以稳定的速度巡航并且以第二电动可变变速器模式操作时,稀土磁铁电机给发动机提供大部分反作用扭矩,以使得铁氧体磁铁电机在高速度/低扭矩条件下操作,以将铁氧体磁铁电机中的扭矩相关损失最小化。
[0007]还提供一种控制具有内燃发动机、稀土磁铁电机和铁氧体磁铁电机的混合动力车辆的动力总成的方法。该方法包括:接合内燃发动机,以给变速器的输出部提供扭矩。当车辆在较高速度下加速时,执行变速器的固定齿轮模式。在车辆以稳定速度巡航时,其中内燃机的旋转速度小于输出部的旋转速度,稀土磁铁电机以低或负旋转速度操作,并且铁氧体磁铁电机以比输出部的旋转速度高的旋转速度操作,则执行电动可变变速器模式。执行固定齿轮模式包括接合第一扭矩传递机构,以给第二行星齿轮组提供反作用扭矩;以及接合第二扭矩传递机构,以允许铁氧体磁铁电机和固定构件之间的通过第一扭矩传递机构的扭矩传递。来自固定构件的反作用扭矩允许铁氧体磁铁电机以零扭矩的状态操作,消除了铁氧体磁铁电机中的扭矩相关损失。执行第二电动可变变速器模式包括脱离第一扭矩传递机构,以及接合第二扭矩传递机构,以允许铁氧体磁铁电机和稀土磁铁电机之间的扭矩传递。脱离第一扭矩传递机构以及接合第二扭矩传递机构允许稀土磁铁电机给发动机提供大部分反作用扭矩,以使铁氧体磁铁电机在高速度/低扭矩条件下操作,从而将扭矩相关损失最小化。
[0008]铁氧体磁铁电机趋向于具有与稀土磁铁电机相比较闻的扭矩相关损失,以及与稀土磁铁电机相比较低的速度相关损失。动力总成被设计为允许稀土磁铁电机不论单独地,还是与内燃发动机组合,都提供大部分电动产生的扭矩,以驱动车辆,并且使用铁氧体磁铁电机在需要时补充功率。当作为电动车辆操作,其中发动机关闭时,接合第一扭矩传递机构以为第二行星齿轮组提供反作用扭矩允许稀土磁铁电机推进车辆,消除了铁氧体磁铁电机的扭矩相关损失,并且使得铁氧体磁铁电机适合用作补充电机。当在发动机开启的情况下加速车辆时,车辆可以固定齿轮模式操作,其中铁氧体磁铁电机处于零扭矩状态。当车辆以稳定速度巡航时,稀土磁铁电机给发动机提供大部分反作用扭矩,以将铁氧体磁铁电机的扭矩相关损失最小化,由此使得铁氧体磁铁电机适合用作补充电机。因此,该控制混合动力车辆的动力总成的方法允许使用一个铁氧体磁铁电机和仅一个稀土磁铁电机,因此减少了动力总成的制造成本,同时仍然在混合动力总成中保持了高效率。
[0009]当结合附图理解时,通过以下对用于实现本发明的最好方式的详细描述,本发明的上述特征和优点,以及其他特征和优点变得显而易见。
【专利附图】
【附图说明】
[0010]图1为车辆的在固定齿轮模式中的动力总成的杠杆示意图;
[0011]图2为在电动可变变速器模式中的动力总成的杠杆示意图;
[0012]图3为在电动车辆模式中的动力总成的杠杆示意图;
[0013]图4为示出了在车辆作为混合动力车辆操作时,动力总成的不同操作模式的曲线图;
[0014]图5为示出了在车辆作为增程型电动车辆操作时,动力总成的不同操作模式的曲线图。
【具体实施方式】
[0015]本领域普通技术人员将认识到,诸如“上方”、“下方”、“向上”、“向下”、“顶部”、“底
部”等术语用于描述附图,并且不表示对如所附权利要求所限定的本发明范围的限制。
[0016]参考附图,其中相似的数字表示遍及几个视图的相似部分,动力总成总体被示为
20。动力总成20用于混合动力车辆,其中内燃发动机22和至少一个电机24、26的组合用于驱动车辆;或者用于增程型电动车辆,所述增程型电动车辆能够作为纯电动车辆操作,其中至少一个电机24、26用于驱动车辆,直到将电池能量消耗至预定水平。
[0017]参考图1至3,以杠杆示意图形式示出了动力总成20。杠杆示意图为诸如自动变速器30的机械装置的部件的示意图。每一个单独的杠杆表示行星齿轮组或外部齿轮组。在行星齿轮组杠杆中,行星齿轮的三个基本机械部件每一个由节点表示。因此,单个行星齿轮组杠杆包括三个节点:一个用于太阳齿轮(sun gear)构件,一个用于行星齿轮架构件,以及一个用于环形齿轮构件。每一个行星齿轮组杠杆的节点之间的相对长度可用于表示每一个相应齿轮组的环形齿轮对太阳齿轮的比率。这些杠杆比率继而用于改变变速器30的齿轮比,以实现合适的比率和递进比。多个行星齿轮组的节点之间的机械结合部或互相连接部由细的水平线示出,并且诸如离合器和制动器的扭矩传递装置被显示为交叉的指状物。如果装置为制动器,则一组指状物被固接。具有固接的枢轴点的垂直虚线表示外部齿轮组。该杆杆示意图的形式、目的和使用的进一步说明,请参见由Benford、Howard和Leising、Maurice 于 1981 年在 SAE Paper810102 上所著的 “The Lever Analogy: A New Tool inTransmission30Analysis”,其以引用的方式完全并入本文中。
[0018]参考图1至3,动力总成20包括第一电机,以下称为铁氧体磁铁电机24 ;第二电机,以下称为稀土磁铁电机26 ;内燃发动机22 ;以及变速器30。铁氧体磁铁电机24和稀土磁铁电机26中的每一个连接至变速器30的一部分或结合在变速器30的一部分中。内燃发动机机22也连接至变速器30。变速器30选择地使铁氧体磁铁电机24、稀土磁铁电机26和内燃发动机22相互连接,以提供不同的操作模式。内燃发动机机22可包括任何合适尺寸及/或构造的发动机22,例如汽油发动机或柴油发动机。
[0019]动力总成20可进一步包括电池28和控制器32,其每一个都连接至铁氧体磁铁电机24和稀土磁铁电机26 二者。电池28给铁氧体磁铁电机24和稀土磁铁电机26 二者提供功率,或从二者接收功率。因此,可将铁氧体磁铁电机24和稀土磁铁电机26中的每一个限定为电动机/发电机。控制器32控制铁氧体磁铁电机24和稀土磁铁电机26的操作,并且也可进一步控制变速器30的操作。替代地,动力总成20可包括专用变速器控制器,用于控制变速器30的操作。控制器32配置为控制电池28、铁氧体磁铁电机24和稀土磁铁电机26之间的功率流。
[0020]变速器30包括输出部34,其将扭矩传至车辆的至少一个车轮。第一行星齿轮组36布置为与输出部34、铁氧体磁铁电机24和内燃发动机22扭矩传递连接。第二行星齿轮组38布置为与输出部34和稀土磁铁电机26扭矩传递连接。第一行星齿轮组36和第二行星齿轮组38每一个分别针对铁氧体磁铁电机24和稀土磁铁电机26提供到输出部34的独立的固定比率路径。
[0021]变速器30还包括第一扭矩传递机构40和第二扭矩传递机构42。附加地,变速器30还可包括第三扭矩传递机构44。如果所需的电动性能水平低,则可省略第三扭矩传递机构44,并且在所需的电动性能水平高时,可包括第三扭矩传递机构44。第一扭矩传递机构40选择地接合及脱离第二行星齿轮组38。当第一扭矩传递机构40被接合时,第一扭矩传递机构40给第二行星齿轮组38提供反作用扭矩,以允许稀土磁铁电机26通过第二行星齿轮组38将全部功率传送至输出部34。第二扭矩传递机构42选择地连接及断开铁氧体磁铁电机24和第二行星齿轮组38,由此连接及断开铁氧体磁铁电机24和稀土磁铁电机。第三扭矩传递机构44选择地接合及脱离第一行星齿轮组36。当关闭内燃发动机22,即其不运转并且处于零速度时,以及当第三扭矩传递机构44被接合时,第三扭矩传递机构44给第一行星齿轮组36提供反作用扭矩,以允许铁氧体磁铁电机24通过第一行星齿轮组36将全部功率传送至输出部34。
[0022]第一扭矩传递机构40、第二扭矩传递机构42和第三扭矩传递机构44可每一个包括但不限于离合器,例如旋转摩擦离合器、单向离合器(one-way clutch)、齿式离合器(adog clutch)或一些其他类似的扭矩传递机构中的一个。此外,第一扭矩传递机构40、第二扭矩传递机构42和第三扭矩传递机构44可每一个连接至固定构件,以限定制动器。如图所示,第一扭矩传递机构40和第三扭矩传递机构44每一个连接至固定构件,以限定制动器。[0023]参考图1,当车辆在高速度下加速或以适度的高负荷操作时,变速器30可以固定齿轮模式操作。当变速器30以固定齿轮模式操作时,内燃发动机22操作,第三扭矩传递机构44被脱离,第一扭矩传递机构40被接合,并且第二扭矩传递机构42被接合。当变速器30在内燃发动机22操作即运转的情况下以固定齿轮模式布置时,则稀土磁铁电机26可用于给输出部34提供功率,或将电池28充电,并且铁氧体磁铁电机24被锁定,以消除铁氧体磁铁电机24中的扭矩相关损失。
[0024]参考图2,当车辆在稳定状态条件下巡航或以高负荷下加速时,变速器30可以电动可变变速器模式操作。当车辆在稳定状态条件下巡航时,动力总成20通常在过驱动条件下,其中内燃发动机22的旋转速度小于输出部34的旋转速度,稀土磁铁电机26的旋转速度低或为负,并且铁氧体磁铁电机24的旋转速度大于输出部34的旋转速度。当变速器30以电动可变变速器模式操作时,内燃发动机22操作,即运转,第一扭矩传递机构40被脱离,第二扭矩传递机构42被接合,并且第三扭矩传递机构44被脱离。当变速器30在内燃发动机22操作即运转的情况下以电动可变变速器模式布置时,控制稀土磁铁电机26,以提供大部分反作用扭矩至发动机22,由此允许铁氧体磁铁电机24在高速度/低扭矩条件下操作,以将铁氧体磁铁电机24中的扭矩相关损失最小化。
[0025]参考图3,当车辆以低速操作时,变速器30可以稀土磁铁电机电动车辆模式来操作。当变速器30以稀土磁铁电机电动车辆模式操作时,内燃发动机22不操作,即被关闭,第一扭矩传递机构40被接合,第二扭矩传递机构42被脱离,并且第三扭矩传递机构44被脱离。当变速器30以稀土磁铁电机电动车辆模式布置时,仅稀土磁铁电机26被用于给变速器30的输出部34提供功率。
[0026]除了上述三种模式之外,变速器30还可以第二电动可变变速器模式、双电机电动车辆模式、以及铁氧体磁铁电机电动车辆模式操作。当以第二电动可变变速器模式布置,内燃发动机22操作时,第一扭矩传递机构40被接合,并且使第三扭矩传递机构44和第二扭矩传递机构42被脱离。当以双电机电动车辆模式布置时,内燃发动机22不操作时,第一扭矩传递机构40和第三扭矩传递机构44被接合,并且第二扭矩传递机构42被脱离。当以铁氧体磁铁电机电动车辆模式布置,内燃发动机22不操作时,第一扭矩传递机构40和第二扭矩传递机构42被脱离,并且第三扭矩传递机构44被接合。
[0027]还提供一种控制动力总成20的方法。当将车辆作为混合动力车辆操作时,车辆如图4所示操作。参考图4,车辆牵引力沿垂直轴50表示,并且车辆速度沿水平轴52表示。车辆作为混合动力车辆操作时的不同操作模式由图4的不同区域示出。该方法包括:接合内燃发动机22,以给变速器30的输出部34提供扭矩,和当以低速度或高牵引力前进时,执行第一电动可变模式(由区域55指示),当车辆处于中等牵引力(例如加速)时,执行固定齿轮模式(由区域56指示),当车辆以轻负荷巡航时,执行第二电动可变变速器模式(由区域58指示);或者仅在车辆以低速度和轻负荷操作时,执行稀土磁铁电机电动车辆模式(由区域60指示),从而以来自稀土电机26的扭矩来驱动车辆。
[0028]执行固定齿轮模式包括接合第一扭矩传递机构40,以给第二行星齿轮组38提供反作用扭矩,以及接合第二扭矩传递机构42,以允许铁氧体磁铁电机24和第二行星齿轮38的固接的节点之间的扭矩传递。来自第一扭矩传递机构40的反作用扭矩消除了铁氧体磁铁电机24中的扭矩相关损失。执行第二电动可变变速器模式包括脱离第一扭矩传递机构40,以及接合第二扭矩传递机构42,以允许铁氧体磁铁电机24和连接至稀土电机26的第二行星齿轮38的节点之间的扭矩传递。稀土电机26给发动机22提供大部分的反作用扭矩,使得铁氧体磁铁电机24在高速度/低扭矩条件下操作,以将扭矩相关损失最小化。执行稀土磁铁电机电动车辆模式包括脱离第三扭矩传递机构44和第二扭矩传递机构42 二者,脱离内燃发动机22,即关闭内燃发动机22,接合第一扭矩传递机构40,以及接合稀土磁铁电机26,以给变速器30的输出部34提供扭矩。执行第一电动可变变速器模式包括接合第一扭矩传递机构40,以及脱离第二扭矩传递机构42和第三扭矩传递机构44。
[0029]通过以上述方式控制动力总成20,可将铁氧体磁铁电机24中的扭矩相关损失最小化,在上述方式中,稀土磁铁电机26用于较高扭矩需求量的情形,例如在以低速度操作时,以纯电动模式驱动车辆,或在较高速度下的突然加速期间,从内燃发动机22来补充功率,则可最小化铁氧体磁铁发动机24中的扭矩相关损失。那么,必要时,铁氧体磁铁电机24可用于在启动车辆时控制发动机速度和/或在第一电动可变模式中提供主发动机反作用扭矩,或在第二电动可变模式中提供附加的反作用扭矩。
[0030]当将车辆作为电动车辆操作时,车辆如图5所示操作。参考图5,车辆牵引力沿垂直轴70表示,并且车辆速度沿水平轴72表示。车辆作为电动车辆操作时的不同操作模式由图5的不同区域示出。该方法包括:当在轻负荷、低速度条件下操作时,执行稀土磁铁电机电动车辆模式(由区域74指示);当在轻负荷、高速度条件下操作时,执行铁氧体磁铁电机电动车辆模式(由区域76指示);以及当在高负荷条件下操作时,执行双电机模式(由区域78指示)。
[0031]详细的描述以及示图或图表用于支持和描述本发明,但是本发明的范围不是由权利要求单独地限制的。虽然已经详细描述了一些用于实现主张的发明的最好的方式和其他实施例,但是仍存在多种替代设计和实施例,用于实践由所附权利要求限定的本发明。
【权利要求】
1.一种用于混合动力车辆的动力总成,所述动力总成包括:铁氧体磁铁电机;稀土磁铁电机;内燃发动机;以及变速器,包括:输出部,配置为用于将扭矩传递至所述车辆的至少一个车轮;第一行星齿轮组,连接至所述输出部、所述铁氧体磁铁电机和所述内燃发动机;第二行星齿轮组,连接至所述输出部和所述稀土磁铁电机;第一扭矩传递机构,选择地接合及脱离所述第二行星齿轮组,其中,当所述第一扭矩传递机构被接合时,所述第一扭矩传递机构向所述第二行星齿轮组提供反作用扭矩;以及第二扭矩传递机构,选择地连接及分离所述铁氧体磁铁电机和所述第二行星齿轮组的节点之间的扭矩传递,其中,所述第二扭矩传递机构在被接合时连接所述铁氧体磁铁电机和所述第二行星齿轮组以允许其之间的扭矩传递,以及其中,所述第二扭矩传递机构在脱离时分离所述铁氧体磁铁电机和所述第二行星齿轮组以阻止其之间的扭矩传递;其中,所述变速器能以固定齿轮模式操作,其中所述第一扭矩传递机构和所述第二扭矩传递机构二者都被接合,并且所述内燃机操作,以消除所述铁氧体磁铁电机中的扭矩相关损失;以及其中,所述变速器能以电动可变变速器模式操作,其中所述第一扭矩传递机构被脱离,所述第二扭矩传递机构被接合,并且所述内燃发动机操作,使得所述稀土磁铁电机给所述铁氧体磁铁电机提供反作用扭矩,以使所述铁氧体磁铁电机在高速度/低扭矩条件下操作,从而将所述铁氧体磁铁电机中的扭矩相关损失最小化。`
2.如权利要求1所述的动力总成,其中,所述变速器还包括第三扭矩传递机构,其选择地接合及脱离所述第一行星齿轮,其中,当所述第三扭矩传递机构被接合时,所述第三扭矩传递机构向所述第一行星齿轮提供反作用扭矩。
3.如权利要求2所述的动力总成,其中,所述变速器以稀土磁铁电机电动车辆模式操作,其中所述第三扭矩传递机构和所述第二扭矩传递机构都被脱离,所述第一扭矩传递机构被接合,并且所述内燃发动机不操作。
4.如权利要求1所述的动力总成,其中,当所述内燃发动机的旋转速度小于所述输出部的旋转速度,且所述铁氧体磁铁电机的旋转速度大于所述输出部的旋转速度时,所述变速器能以电动可变变速器模式操作。
5.如权利要求1所述的动力总成,还包括:电池,连接至所述铁氧体磁铁电机和所述稀土磁铁电机二者,且配置为用于向所述铁氧体磁铁电机和所述稀土磁铁电机二者提供功率,并且配置为从所述铁氧体磁铁电机和所述稀土磁铁电机中的至少一个接收功率;以及控制器,连接至所述铁氧体磁铁电机和所述稀土磁铁电机、所述电池和所述变速器,并且配置为用于控制所述铁氧体磁铁电机、所述稀土磁铁电机和所述变速器的操作,并且配置为用于控制所述电池、所述铁氧体磁铁电机和所述稀土磁铁电机之间的功率流。
6.一种用于具有内燃发动机的混合动力车辆的变速器,所述变速器包括:铁氧体磁铁电机,可选择地操作以提供扭矩,从而驱动所述混合动力车辆;稀土磁铁电机,可选择地操作以提供扭矩,从而驱动所述混合动力车辆; 输出部,配置为用于将扭矩传递至所述车辆的至少一个车轮; 第一行星齿轮组,连接至所述输出部和所述铁氧体磁铁电机; 第二行星齿轮组,连接至所述输出部和所述稀土磁铁电机; 第一扭矩传递机构,可选择地接合及脱离所述第二行星齿轮组,其中,当所述第一扭矩传递机构被接合时,所述第一扭矩传递机构向所述第二行星齿轮组提供反作用扭矩; 第二扭矩传递机构,选择地连接及分离所述铁氧体磁铁电机和所述第二行星齿轮组的节点之间的扭矩传递,其中,所述第二扭矩传递机构在接合时连接所述铁氧体磁铁电机和所述第二行星齿轮组,以允许所述铁氧体磁铁电机和所述第二行星齿轮组之间的扭矩传递,并且其中,所述第二扭矩传递机构在脱离时分离所述铁氧体磁铁电机和所述第二行星齿轮组,以阻止所述铁氧体磁铁电机和所述第二行星齿轮组之间的扭矩传递;以及 其中,在所述第一扭矩传递机构被脱离,以及所述第二扭矩传递机构被接合的情况下,所述变速器能以电动可变变速器模式操作,使得所述稀土磁铁电机给发动机提供反作用扭矩,以当所述车辆以稳定速度巡航时,使所述铁氧体磁铁电机在高速度/低扭矩条件下操作,从而将所述铁氧体磁铁电机中的扭矩相关损失最小化。
7.如权利要求6所述的变速器,其中,当所述内燃机的旋转速度小于所述输出部的旋转速度,以及所述铁氧体磁 铁电机的旋转速度大于所述输出部的旋转速度时,所述变速器能以所述电动可变变速器模式操作。
8.如权利要求6所述的变速器,当车辆在中等速率下加速时,该变速器能以固定齿轮模式操作,其中所述第一扭矩传递机构和所述第二扭矩传递机构被接合,以消除所述铁氧体磁铁电机中的扭矩相关损失。
9.如权利要求8所述的变速器,还包括第三扭矩传递机构,其可选择地接合及脱离所述第一行星齿轮组,其中,当所述第三扭矩传递机构被接合时,所述第三扭矩传递机构向所述第一行星齿轮组提供反作用扭矩。
10.如权利要求9所述的变速器,其能以稀土磁铁电机电动车辆模式操作,其中所述第三扭矩传递机构和所述第二扭矩传递机构被脱离,并且第一扭矩传递机构被接合,以使得所述稀土磁铁电机向所述输出部提供扭矩,从而驱动所述车辆。
【文档编号】B60K6/365GK103522891SQ201310280861
【公开日】2014年1月22日 申请日期:2013年7月5日 优先权日:2012年7月6日
【发明者】B.M.康伦, K.M.拉曼, T.J.布洛姆, S.朱尔科维克 申请人:通用汽车环球科技运作有限责任公司