压缩机的制作方法

文档序号:4117486阅读:195来源:国知局
专利名称:压缩机的制作方法
技术领域
本发明涉及一种用于汽化的液化天然气的旋转式压缩机。本发明还涉及一种压缩汽化天然气的方法。
背景技术
液化天然气需要存储在隔热的罐体中。尽管进行了隔热,但是其中总是存在来自周围环境的热量流入,这导致液化天然气以适度速率进行沸腾。所形成的汽化的液化天然气可被压缩并再次液化,或者可用作燃料。汽化的天然气用作燃料通常需要对其压缩。例如,已经提出了利用了来自船上的液化天然气存储罐的汽化的天然气以便向燃气涡轮机提供燃料,该燃气涡轮机形成轮船的推进系统的一部分。这种燃气涡轮机通常需要将该汽化的天然气压缩到数量级为20-40巴的压力。在另一示例中,天然气与柴油在采用这两种燃料的发动机中一起使用。在该示例中,天然气被压缩到5-7巴的范围内。
如果需要获得高达40巴的压力,常规的用于汽化天然气的压缩机需采用串联的六个压缩级。在每一级中天然气的压缩将产生热量。因此,天然气在每一成对的连续级之间借助水通过间接热交换来冷却。这种设备通常需要大型马达并具有大量的功率消耗。

发明内容
本发明的目的在于提供一种用于汽化的液化天然气的压缩机,其具有减小的尺寸和功率消耗。
依据本发明,提供了一种旋转式的汽化的液化天然气的压缩机,其具有至少两个串联的压缩级,一气体通道延伸穿过所述串联的压缩级,该气体通道延伸穿过在该对压缩级或每一成对的压缩级之间的至少一个冷却装置并且与所述冷却装置成热交换关系,其特征在于,该冷却装置或冷却装置中的至少一个是深冷冷却装置,并且设置有用于控制深冷冷却剂流入该深冷冷却装置的阀装置,该阀装置响应于在该深冷冷却装置下游的下一个压缩级的入口温度或相关参数来控制,以便在使用中,将所述入口温度保持在选定的低于周围环境的温度或保持在选定的低于周围环境的温度限制的之间。
本发明还提供了一种操作旋转式的汽化的液化天然气的压缩机的方法,该压缩机具有至少两个串联的压缩级和延伸穿过所述串联的压缩级的气体通道,该方法包括借助在所述压缩级中的一个压缩级下游且在另一压缩级上游的深冷冷却剂来冷却该被压缩的汽化天然气,监控在进入另一压缩级的入口处被压缩的天然气的入口温度或相关参数,并调节深冷冷却剂的流率以便将所述入口温度保持在选定的低于周围环境的温度或保持在选定的低于周围环境的温度限制的之间。
特别是在每一对顺序连接的压缩级之间,通过使用本发明的深冷冷却剂,可增加每一压缩级的出口压力与入口压力之间的压力比,并且由此通常可减少实现特定压力所需的压缩级的数量。例如,借助本发明的压缩机和方法可使得汽化的液化天然气的压力从1巴增大到大致40巴,这仅通过四个压缩级即可实现,然而,使用非深冷冷却例如水冷的相应的常规压缩机通常需要六个压缩级按理实现这样高的压力。因此,在这种情况下本发明以较小的设备且使用较少的压缩级和较低的功率消耗即可实现相同的压力升高。
该深冷冷却装置或每一深冷冷却装置可以是间接冷却装置或直接冷却装置,间接冷却装置例如为单独流程的热交换器,直接冷却装置例如为气体通道延伸穿过一引入有深冷液体的腔,该引入形式例如为喷射。优选的是,该直接冷却装置位于每一对压缩级之间。如果设置有三个或多个压缩级,优选的是,至少一个深冷冷却装置是间接深冷冷却装置,至少一个其它的冷却装置是直接深冷冷却装置。在一个优选实施形式中,深冷液体在间接深冷冷却装置中仅部分地蒸发,并且一通道使得直接深冷冷却装置的入口与间接深冷冷却装置的出口连通。
直接或间接的深冷冷却装置还可设置在最终压缩级的下游。如果是间接,深冷冷却装置具有与上游直接深冷冷却装置连通的出口。
深冷冷却剂的源优选为同一液化天然气存储罐或存储罐阵列,汽化的天然气在其中产生。这种存储罐通常设置有所谓的抽吸泵,其用于将深冷液体供应到深冷冷却装置。或者,可使用专用的深冷冷却剂供应泵。
在第一压缩级的上游可设置有深冷冷却装置。该深冷冷却装置通常不工作,这是由于汽化的天然气通常处于深冷温度,但是当液化天然气存储罐基本上排空时,被接收的该汽化天然气通常处于不希望的高温,因此该深冷冷却装置可能需要工作,这种情况通常出现在液化天然气远洋船只已经将其装载的液化天然气排出到岸基终端之后。当管道温度较高时,上游冷却装置也可使用。
为了增加压缩天然气的流率,本发明的压缩机可具有与液化天然气强迫蒸发器连通的中间入口。
如果需要,该强迫蒸发器和深冷冷却装置可共用一用于深冷液体供应的公用泵。
每一压缩级的入口温度优选为保持在零下50到零下140摄氏度的范围内。这样,可实现每一压缩级两侧的压力比在2.15∶1到3∶1的范围内,通常在2.5∶1到3∶1的范围内。特别希望的是,避免进入任何压缩级的天然气中出现任何液滴。因此,如果采用任何直接深冷冷却装置,所获得的冷却的天然气可流经用于分离液体微滴的装置。


参照对优选实施例的下列描述并结合附图,可以更好地理解本发明的压缩机和压缩机的使用方法,在附图中图1-5示出了流程的示意图;和图6示出了如图2、4、5所示的压缩机的任何直接冷却级的变型。
具体实施例方式
参照图1,其示出了液化天然气存储罐2。为了简明,在图1和其它附图中没有示出与存储罐2相关的各种管路和阀,例如其填充管和其液化天然气排出管。然而,这种液化天然气存储罐的结构和操作在现有技术中是已知的。存储罐2通常位于远洋轮船的船上。所示的存储罐2包含一定容积的液化天然气4。在存储罐2中在一定容积的液化天然气4的液面上具有液面上部空间6。存储罐2是借助真空隔热的或具有与其相关的其它隔热形式,以便使得来自周围环境的热量进入液化天然气4的流率保持较低。尽管存储罐2具有隔热装置,但是由于液化天然气会在深冷温度下汽化,因此液化天然气从其周围环境中吸收热量并且液化天然气连续地蒸发到液面上部空间6中。这样,汽化的天然气从存储罐2流入通道8。该通道8使得天然气流入到多个级的离心式天然气压缩机10。除了用于冷却在每一压缩机10的级下游的天然气的结构以及用于冷却其第一级上游的天然气的可选结构之外,基本上是常规的,而且由适于在深冷温度下使用的材料制成。也就是说,与氮气压缩机不同,天然气压缩机10构造成防爆的。由于天然气压缩机10的多个部件是常规的,因此在图1中没有示出这些部件。因此,没有示出了例如在单独压缩级中旋转式装置。
如图所示,离心式压缩机10具有四个串联的压缩级12、14、16和18。每一压缩级12、14、16和18的(未示出的)旋转件安装在同一驱动轴20上并且由电机22驱动。然而,对于所有压缩级而言不必安装在同一轴上。如果需要,一些压缩级可安装在第一轴上,而其它压缩级安装在第二轴上,从一个轴到另一轴的驱动由齿轮箱来传递。相似地,不必使用电机22来驱动该轴。作为替代,可使用其它类型的马达,或者可采用其它形式的驱动装置例如蒸气涡轮机。然而,如果采用电机22的话,最好是单速的类型,或者该电机可采用变频器以便改变转速并由此优化压缩机的性能。
在每一压缩级12、14、16和18中对天然气的压缩使得其温度升高。通常,温度升高越大,则压缩的热力效率越低。在每一压缩级中的入口温度越高,则在压缩天然气中所消耗的功率就越大。另外,当天然气的温度升高时其密度下降。天然气的密度越大,则实现给定压力升高所需的压缩级就越小。这对应于在较低或较高温度时的焓变化。
依据本发明,第一深冷级间热交换器26设置在第一压缩级12与第二压缩级14之间;第二深冷级间热交换器28设置在第二压缩级14与第三压缩级16之间;并且第三深冷级间热交换器30设置在第三压缩级16与最后压缩级18之间。热交换器26、28、30用于当天然气顺序流经压缩级12、14、16和18时实现天然气的级间深冷冷却。另一深冷热交换器32位于最后压缩级18下游,并且再一深冷热交换器24按顺序位于第一压缩级12的上游。因此,通道8依次地延伸经过上游深冷热交换器24、第一压缩级12、第一深冷级间热交换器26、第二压缩级14、第二深冷级间热交换器28、第三压缩级16、第三深冷级间热交换器30、最后压缩级18、和下游深冷热交换器32。
对于从存储罐2中的一定容积的液化天然气4产生的汽化天然气的冷却是在每一级间热交换器26、28、30中实现的。该冷却处于深冷状态,以便使得按顺序进入下一个压缩级的天然气温度降低到范围为零下50到零下140摄氏度的温度。上游热交换器24还可用于将天然气冷却到第一压缩级12上游的相似温度,尽管天然气通常已经处于该温度,这样在正常工作过程中该热交换器24被旁通绕过或不工作。然而,当从存储罐2中排出液化天然气的正常操作是使得小部分液化天然气保留在其中,以便在回程中保持存储罐2。因此,在回程中,汽化天然气的温度往往明显高于当存储罐2充满时,并且所希望的是使得上游热交换器24工作。相似地,下游热交换器可工作以便使得离开压缩机10的最终级18的天然气冷却到范围为零下50到零下140摄氏度的温度,如果需要天然气处于该深冷温度的话。然而,如果所需的是处于环境温度,则可省去该深冷热交换器32。
如图1所示,所有的深冷热交换器24、26、28、30、32是间接热交换器。如以下描述,一些或所有的热交换器可以替代为直接热交换器,也就是说,在热交换器中冷却剂流体与被冷却的流体混合。还应当注意,依据本发明可仅使得级间热交换器26、28、30中的一个热交换器以深冷状态工作,但是这种操作模式不是优选的。依据本发明,还可提供单个间接热交换器单元以便在两对或多对压缩级之间对汽化的天然气进行深冷冷却。例如,热交换器26、28、30可组合到单个单元中。另外,如果需要,热交换器24和32可包含在该单元内。
用于冷却热交换器24、26、28、30、32的深冷流体源是存储罐2本身。在存储罐2内的潜液泵34将液化天然气(LNG)泵送到主管道36。该主管道36分别借助分配器管38、40、42、44、46与热交换器24、26、28、30、32中的冷却通道连通。在每一所述热交换器中由液化天然气的部分或全部的蒸发来获得冷却,该液化天然气与被压缩的汽化天然气进行间接热交换。流入每一级间热交换器26、28、30的液化天然气的流动是受控的,以便将在顺序进入下一压缩级的入口处的汽化天然气的温度保持在选定数值或选定范围之间。第一级间热交换器26具有与流动控制阀50结合的分配管40,该流动控制阀50在操作上借助阀控制器70与温度传感器60相关,该温度传感器设置在通道8上位于离开热交换器26的被压缩的汽化天然气的出口与进入第二压缩级14的入口之间的区域中。控制阀领域的普通技术人员应当理解,流动控制阀50可设置成使得由传感器60感测的温度保持在选定数值,例如零下130摄氏度,或保持在选定限制之间,例如零下125和零下135摄氏度之间。大致相同的流动控制设备设置用于其它两个级间热交换器28和30并用于上游热交换器24和下游热交换器32。对于液化天然气流入热交换器28的控制是由分配管42中的流动控制阀52来提供的。温度传感器62定位在通道8中位于热交换器28的出口与下一个压缩级16的入口之间。阀控制器72适于调节阀52以便将所感测的温度保持在选定数值或选定温度之间;大致相同结构的流动控制阀54、温度传感器64、和阀控制器74设置用于第三级间热交换器30;大致相同结构的流动控制阀56、温度传感器66、和阀控制器76设置用于下游热交换器32;并且大致相同结构的流动控制阀48、温度传感器58、和阀控制器68设置用于上游热交换器24。
如果对于液化天然气的需求出现波动,过多的液化天然气经由返回管道78返回到存储罐中,该返回管道从主管道36分支出来。优选的是,在返回管道78中的流动控制阀79在操作上经由阀控制器82与压力传感器80相关,该压力传感器80在主管道36中位于所有的分配器管38、40、42、44、46的上游区域中,以便将液化天然气供应保持为恒定压力。如果需要,将液化天然气从存储罐2中泵送到主管道36中的流率可总是超过用于热交换器24、26、28、30、32所需的流率,以便使得液化天然气总是经由返回管道78返回到存储罐2中。
在图1所示的设备的操作中,流经热交换器24、26、28、30、32的液化天然气冷却剂以全部或部分地蒸发的形式经由管道86、88、90、92、94流向主返回管道84,管道86、88、90、92、94分别与热交换器24、26、28、30、32相关。如图所示的该主返回管道84使得冷的天然气从这些热交换器返回到存储罐的液面上部空间6中。或者,主返回管道84可终止于通道8的位于热交换器24上游的区域中,或甚至终止于通道8的位于热交换器32下游的区域中,如果液化天然气供应的压力足够高的话。
如上所述,经压缩的汽化天然气可调节为以零下60到零下140摄氏度的温度范围离开热交换器32。如果该天然气将被再次液化,则更低的温度是有利的。然而,如果天然气用作发动机的燃料以便提供远洋船只的推进,则较高的温度是可接受的,并且实际上如果需要的话,最终热交换器32可省去或由常规的水冷热交换器来替代。
每一压缩级12、14、16、18两侧的压力比可依据所需的最终出口压力来选择。对于燃气涡轮机而言,其需要40巴的天然气供应并且供应的汽化天然气气流的压力为1巴,每一压缩级可具有2.6∶1的压力比。然而,如果燃气涡轮机需要压力仅20巴的天然气,则每一压缩级两侧的压力比可以是2.1∶1。本发明的一个特别的优点在于,当采用常规的冷却时,难以实现天然气的高达2.6∶1的压力比。如果需要,每一压缩级两侧的压力比可以通过适当地设定压缩级的入口温度来改变。
图2-5示出了依据本发明的压缩机的一些可行的替代实施例。在图1-5中相同的附图标记表示相同的部件。
首先参照图2,压缩机和其中所示的相关设备及其操作大致与图1所示的对应压缩机和设备相同,但图1中的间接热交换器24、26、28、30、32分别由直接热交换器202、204、206、208、210替代。在每一直接热交换器202、204、206、208、210中,液化天然气直接喷射到来自存储罐2的汽化天然气气流中,并且对该气流进行补充。这样,汽化天然气不再循环到存储罐2中。因此,管道86、88、90、92、94以及返回管道84可从图2所示的设备中省去。
在图2所示的设备的操作的典型示例中,压缩级12、14、16和18的出口压力分别是2.6、6.3、15.4、和40巴。
尽管进入管道8的汽化的天然气没有重质的烃杂质,例如乙烷、丙烷、丁烷,但是由泵34供应的液化天然气通常含有这些杂质。因此,汽化天然气与液化天然气在直接热交换器202、204、206、208、210中的混合往往使得汽化天然气的露点升高。这样,所希望的是,施加温度控制以便防止液体微滴从混合腔被携带到压缩级中。如果需要,图2所示的压缩机可设置有用于使得液体微滴与汽化天然气分离的装置,其位于任何选定的直接热交换器与紧靠其下游的压缩级之间。例如,参照图6,混合腔600和与其相关的压缩级602之间设置有相分离容器604,其具有在入口606之上插入其中的除沫器608等。天然气流经除沫器608并使得任何液体微滴与其分离。相分离容器604在其地步具有用于被分离的液体的出口612。流动控制阀614位于出口612中并且可布置成在只要在相分离容器604中的液面到达液面传感器616时该流动控制阀614打开。阀控制器618可编程成使得所需的信号传输到阀614。该液化天然气可返回到存储罐2。
以上参照图6所述的结构可使用在图2所示的一个或多个压缩级的上游。
图3示出了对于图1所示的设备的另一替代实施例。当来自存储在存储罐2中的液化天然气的正常汽化率过低以至于不能提供用于船只推进的足够能量时,可使用图3所示的设备。例如,汽化天然气可在燃气涡轮机中燃烧或注入到双燃料的柴油机中。通常,大致50-60%的推进动力可由汽化天然气来提供。推进动力的其余部分可由油或柴油燃料来提供。当用于船只推进的能量中的更大部分或全部能量需由天然气燃烧而产生时,可使用图3所示的设备。图3所示的设备提供了除液化天然气自然汽化之外的强迫汽化,强迫汽化的蒸气用于至少一对压缩机级之间的深冷冷却。
图3所示的设备对于图1所示的设备而言增加了强迫蒸发器302,其具有使得液化天然气与管道36连通的入口,位于该管道36与分配器管38合并的上游,并且该强迫蒸发器302具有与气体通道8的区域连通的出口,位于第一压缩级12的出口与进入第一级间热交换器26的压缩的天然气入口之间。强迫蒸发器302用于增加来自第一压缩级12的出口的经压缩的天然气气流。强迫蒸发器302包括壳管式热交换器304和混合腔306,在壳管式热交换器304中来自存储罐2的液化天然气通过与水和乙二醇的热的混合物或流体进行间接热交换从而被蒸发,在混合腔306中所获得蒸发的天然气与旁通绕过壳管式热交换器304的液化天然气流动混合。为了提供液化天然气的旁通流动,设置有旁通通道308,该旁通通道308具有设置在其中的流动控制阀310。该流动控制阀310在操作上与从温度传感器314接收信号的阀控制器312相关,温度传感器314位于从混合腔306的出口延伸到气体通道8的在压缩级12和第一级间热交换器26之间的区域的管道316中。这种结构便于调节旁通的液化天然气的量以便将流向气体通道的温度保持在选定温度或在选定温度限制之间。液化天然气流入壳管式热交换器304的流动是由流动控制阀318来控制的,该流动控制阀318与响应于来自压力传感器322的对额外天然气的需求信号的阀控制器320在操作上相关,该压力传感器322在管道316中或位于热交换器32的下游。这种结构便于使得来自强迫蒸发器302的蒸发的天然气流动的压力大致等于第一压缩级12的出口压力。
现参照图4,其中示出了对于图3所示的设备的变型,其中采用了间接和直接热交换器的组合。这样,图3所示的间接热交换器24、26、28分别由直接热交换器402、404、406替代。另外,管道38、40、42、86、88、90由部分蒸发的天然气再循环管道408、410、412以及分别位于这些管道中的阀48、50、52所替代。与图3所示的设备的另一区别在于,强迫蒸发器302此刻与气体通道8的位于第二压缩级14的出口与进入级间直接热交换器406的入口之间的区域连通。
图4所示的设备的工作与图3所示的设备相似。在热交换器30和32中,供应给热交换器30和32的液化天然气仅部分地蒸发,并且所获得的冷的蒸气和液体的混合物再次循环到直接热交换器402、404、406。应当注意到,这种结构对于使得压缩机10的功率消耗保持较低是特别有效的。
现参照图5,其中所示的设备与图2所示的设备大致相同,但是采用了与图3相似的强迫蒸发器302,但该强迫蒸发器302与气体通道8的在最终压缩级18的出口下游且在直接热交换器210的上游的区域连通。在图5所示的实施例中,强迫蒸发器302的工作便于向气体通道8提供压力大致等于压缩机10的最终压缩级18的出口压力的天然气气流。
由此应当理解,图3所示的压缩机采用了较低压力的强迫蒸发器,然而图5所示的压缩机采用了较高压力的蒸发器,而图4所示的压缩机采用了在这两种压缩机的运行压力之间的压力下运行的强迫蒸发器。
图4和5所示的压缩机可进行变型,即,在任何压缩级下游设置相分离容器以便直接接收冷却的天然气,该相分离容器与图6所示的相分离容器604大致相同并且装配有除沫器。
权利要求
1.一种旋转式的汽化的液化天然气的压缩机,其具有至少两个串联的压缩级,一气体通道延伸穿过所述串联的压缩级,该气体通道延伸穿过在该对压缩级或每一成对的压缩级之间的至少一个冷却装置并且与所述冷却装置成热交换关系,其特征在于,该冷却装置或冷却装置中的至少一个是深冷冷却装置,并且设置有用于控制深冷冷却剂流入该深冷冷却装置的阀装置,该阀装置响应于在该深冷冷却装置下游的下一个压缩级的入口温度或相关参数来控制,以便在使用中,将所述入口温度保持在选定的低于周围环境的温度或保持在选定的低于周围环境的温度限制的之间。
2.如权利要求1所述压缩机,其特征在于,该深冷冷却装置包括间接冷却装置。
3.如权利要求1所述压缩机,其特征在于,该深冷冷却装置包括直接冷却装置。
4.如权利要求3所述压缩机,其特征在于,该直接冷却装置包括一具有用于引入深冷液体的入口的腔。
5.如权利要求4所述压缩机,其特征在于,该直接冷却装置的出口与一适于分离来自天然气的液体微滴的容器连通,该容器具有一使得天然气与所述下一个压缩级连通的出口。
6.如上述权利要求中任一项所述压缩机,其特征在于,在每一对顺序连接的压缩级之间设置有深冷冷却装置。
7.如上述权利要求中任一项所述压缩机,其特征在于,按顺序设置有至少三个压缩级,并且设置有至少一个直接深冷冷却装置和至少一个间接深冷冷却装置。
8.如权利要求7所述压缩机,其特征在于,直接冷却装置的入口与间接冷却装置的出口连通。
9.如上述权利要求中任一项所述压缩机,其特征在于,在最终压缩级的下游设置有深冷冷却装置。
10.如上述权利要求中任一项所述压缩机,其特征在于,在第一压缩级的上游设置有深冷冷却装置。
11.如上述权利要求中任一项所述压缩机,其特征在于,该压缩机具有与液化天然气强迫蒸发器连接的中间入口。
12.一种液化天然气存储罐,其具有用于使得汽化天然气与如上述权利要求中任一项所述压缩机连通的出口,所述深冷冷却装置与该存储罐中的液化天然气连通。
13.一种操作旋转式的汽化的液化天然气的压缩机的方法,该压缩机具有至少两个串联的压缩级和延伸穿过所述串联的压缩级的气体通道,该方法包括借助在所述压缩级中的一个压缩级下游且在另一压缩级上游的深冷冷却剂来冷却该被压缩的汽化天然气,监控在进入另一压缩级的入口处被压缩的天然气的入口温度或相关参数,并调节深冷冷却剂的流率以便将所述入口温度保持在选定的低于周围环境的温度或保持在选定的低于周围环境的温度限制的之间。
14.如权利要求13所述的方法,其特征在于,每一压缩级的入口温度保持在零下50到零下140摄氏度的范围内。
15.如权利要求14所述的方法,其特征在于,每一压缩级两侧的压力比在2.15∶1到3∶1的范围内。
16.如权利要求15所述的方法,其特征在于,每一压缩级两侧的压力比在2.5∶1到3∶1的范围内。
全文摘要
一种旋转式的汽化的液化天然气的压缩机(10),其具有串联的压缩级(12、14、16、18)。气体通道(8)延伸穿过所述串联的压缩级。该气体通道延伸穿过形式为间接热交换器的冷却装置(26、28、30)并且与所述冷却装置成热交换关系。每一热交换器(26、28、30)由来自管道(36)供应的液化天然气来冷却。设置有用于控制液化天然气分别流入热交换器(26、28、30)的流动控制阀(50、52、54)。所述阀(50、52、54)分别响应于温度传感器(60、62、64)来控制,以便将每一压缩级(12、14、16、18)的入口温度保持在选定的低于周围环境的温度或保持在选定的低于周围环境的温度限制的之间。
文档编号B63J99/00GK1910370SQ200580002631
公开日2007年2月7日 申请日期2005年1月13日 优先权日2004年1月16日
发明者J·波兹维尔, H·格尔斯滕德菲尔 申请人:克里奥斯塔股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1