专利名称:一种飞机主机翼前缘分离涡控制机构的制作方法
技术领域:
本发明涉及航空航天领域,是一种飞机主机翼前缘分离涡控制机构。
背景技术:
现代战机大量使用制导武器,而制导武器由机载雷达提供锁定信息,因此,尽快将 对方纳入己方雷达视野或尽快逃出对方雷达视野是攻防的要素。如果飞机只能进行常规状 态下的飞行,那么无论是转弯还是爬升都需要较长时间来完成,从而不利于机载雷达的锁 定和反锁定。因此,在近距空战格斗中,迅速瞄准敌机并使自己始终处于对手瞄准视线之 外,即在有效保存自己的前提下对敌实施快速的攻击,成为现代战机最重要的作战品质。现 代战斗机在中等速度下发动机还可以保持很大剩余功率,具有很好的加速性,因此可以在 超过自身失速迎角的大迎角状态下,对飞机的姿态做出快速的调整,从而达到瞬间改变敌 我态势的目的。战斗机迎角大大超过其失速迎角,并在低速飞行状态下仍然可以对飞机姿态进 行控制,从而迅速改变其飞行速度以及机头指向的战术机动称为"过失速机动",也被称 为"超机动",由赫伯斯特于20世纪80年代初首先提出。大量研究后,赫伯斯特认为,要 进行超机动,飞机必须要满足这样的一系列条件(1)飞机在俯仰、偏航和滚转三个通道应 具有足够的操纵能力,在马赫数低到0. 1、迎角达到70°时仍能保持较高的操纵效率;(2) 飞机需要采用闭环控制和先进的气动布局以便具有极好的低速、大迎角稳定性;(3)飞机 应能转得快、加减速快,即具有在很短时间内产生很大的瞬时角速度的能力。通过这种过失 速机动快速地获取改变自己姿态的优势,已经成为新一代战机的设计目标,并且被视为第 四代战斗机的特征之一。目前,已有很多国家对超机动战机进行了研究。美国和德国合作研制了一系列的 验证机,用来验证飞机的超机动能力。这些飞机都已飞入过失速区,都具有很好的机动性和 敏捷性。例如,X-29A最大迎角达到68°,X-31A和F-18HARV已飞至70°迎角,并完成了一 些机动动作。在工程上得到应用的包括美国的第四代战机F-22、法国的"阵风"、俄罗斯的 苏-35等新式战斗机。这些战机在设计之初就非常重视过失速机动设计,并拥有较强超机 动能力,其中典型战机F-22已经达到迎角60°以上的超机动实战能力。所以,超机动能力 也必然成为我国的下一代战机必备的主要性能之一。当战斗机迎角增大并达到或超过失速迎角时,其大后掠机翼前缘形成的脱体涡会 发生破裂,形成非定常的复杂流动,这样的流动具有一定的随机性,战斗机一旦进入其迎角 范围,常规操纵舵面的效率将会变得很低甚至失效,而且由于速度低、升力小,从而造成战 斗机在过失速机动飞行中进入尾旋并坠毁。目前,第四代战斗机通常采用的推力矢量技术可以用发动机推力通过喷管或尾喷 流偏转产生的推力分量来替代原飞机的操纵面或增强飞机的操纵功能,对战斗机飞行进行 实时控制的技术,从而实现超机动。然而矢量推力技术不能解决失速迎角下由于飞机机翼 前缘脱体涡等旋涡破裂引起的流场非定常问题,从而也无法解决失速迎角下飞机的横、纵动机矢量控制技术合理结合的先进气动控制技术对我国第四代战 斗机的设计有着重要的应用价值。现代战斗机实用气动控制技术基本上可以被分为被动控制和主动控制两大类,被 动控制技术主要包括加装边界层固定转捩带、头部固定边条、背鳍或腹鳍,使用不同的战斗 机头部形状等技术,对大迎角下出现的非对称涡进行规避和抑制,或减小和消除非对称涡 变化的随机性。主动控制技术主要有在飞机前体头部吹/吸气、加装可动边条等技术,主动 控制的特点在于需要的时候可以局部输入少量能量便能获得非局部或全局的流动变化,使 飞行器性能有明显的改善;不需要时关闭,也不会影响到飞行器的气动性能。
发明内容为克服现有技术存在的超机动状态下操纵舵面失效、飞机过失速机动飞行情况下 的控制能力降低以及失速迎角下飞机稳定性不足的缺陷,本发明提出了一种飞机主机翼前 缘分离涡控制机构本发明包括分离涡控制翼板转轴和分离涡控制翼板,并且该分离涡控制翼板的基 本形状为梯形。分离涡控制翼板上表面形状同所配合机翼上表面形状,分离涡控制翼板下 表面为斜平面,与机翼上表面凹面紧密配合。分离涡控制翼板后缘的斜边为波浪形,波浪线 周期总数N = 6 8。在确定分离涡控制翼板后缘波浪形斜边时,将连接分离涡控制翼板后缘波浪线起 点与终点之间的连线作为X轴,y轴位于分离涡控制翼板后缘波浪线起点处、垂直于X轴并 指向飞机头部,建立起平面直角坐标系;形成波浪线的各点坐标由以下方程来确定
r n (N + l-m) C . x-ml + Lν = ---—sm(2TT-)
N 10I
I c C其中波浪线波长,r+(2~2l)2 .
I 一_
NN为整数,表示波浪线周期总数,须满足下式f2+(f~^)2、vJb2+(i_·)2 ,其中
0.2C ~OAC ‘b为机翼展长;C为机翼根弦长;m为变量,由波浪线上点的χ坐标所决定,m等于
不小于f的最小整数。所述的分离涡控制翼板的前缘位于机翼当地弦长的10%处,并且该分离涡控制翼 板沿机翼弦向宽度为机翼当地弦长的40%。在机翼的上表面,自机翼前缘10%弦长处至机翼前缘50%处有分离涡控制翼板 的安装凹面,该凹面沿弦向方向为斜面;该凹面在机翼前缘起点处的深度为当地机翼厚度 的30%,并且向机翼后缘方向平滑过渡为0,直至与机翼表面光滑相接。在机翼上表面的凹面起点处,沿机翼的弦向安装有分离涡控制翼板转轴;分离涡 控制翼板转轴固定在机翼上表面的凹面内,并由分离涡控制翼板和机翼表面共同组成了完 整的翼型表面。所述的分离涡控制翼板绕两端固定在机翼加强肋上的转轴向上转动打开。
4[0020]在分离涡控制翼板前缘处,沿分离涡控制翼板的展向有与分离涡控制翼板转轴配 合的轴孔。本发明基于分离涡在具有背风面空穴以及物面波浪型分离边缘的流场数值模拟, 所得到的分离涡引起的物体平均压差阻力(Temporal)和瞬时压差阻力(MovingAverage), 随时间变化的数值计算结果如图7所示。图7中a曲线所示,当物体没有背风面空穴,其平均压差阻力在0. 3到0. 6中间波 动,瞬时压差阻力的波动范围是0. 2。图7中b曲线所示,当相同物体包含有背风面空穴,空 穴深度是背风面高度的0. 5倍,其平均压差阻力在0. 28士0. 5的范围内波动,瞬时压差阻力 的波动范围大约是0.1。图7中c曲线所示,当相同物体其脱体涡分离的空穴边缘被修剪 为波浪形,波浪型的周期长度为背风面高度的3倍,物体平均压差阻力在0. 23士0. 1的范围 内波动,可以近似为常数,而且瞬时压差阻力的波动幅度小于0.05。因此,背风面空穴可以 减小平均压差阻力,同时也可以减少瞬时压差阻力的波动幅度;当把脱体涡分离的空穴边 缘修剪为波浪形后,物体的压差阻力可以进一步减小,与没有背风面空穴情况相比平均压 差阻力的减小幅度达到55%,而且瞬时压差阻力的波动幅度非常小。本发明在机翼翼面上安装分离涡控制翼板,翼板长度与翼展长度基本相等,翼板 外沿被修剪为波浪形,能够改善超机动迎角下由于飞机前体脱体涡、机翼前缘脱体涡等旋 涡破裂引起的战斗机横、纵向稳定性问题。分离涡控制翼板安装在机翼上翼面,与前缘的 距离为10%弦长。当战斗机进行常规飞行时该翼板闭合,上翼面保持原有翼面形状,飞机 具有良好的常规气动性能。当飞机进行过失速机动飞行时,气流在梯形机翼上形成较大的 分离涡,从而增加了飞机尾流的不稳定性和非定常性,此时控制分离涡控制翼板绕靠近机 翼前缘的转轴打开,相对主机翼上翼面的打开角度随飞行迎角的增大而增大,在上翼面前 缘附近形成一个局部空穴,控制前缘分离涡在该分离涡控制翼板的外缘生成并发生大量的 破碎,从而抑制机翼尾流的不稳定性和非定常性,使得飞机在过失速飞行情况下的操纵舵 面效率、飞行控制能力、横向和纵向稳定性得到改善,实现了飞机在过失速飞行条件下的控 制。
附图1是飞机布局的示意图;附图2是飞机一侧机翼和分离涡控制翼板的示意图;附图3是飞机机翼A-A剖视图,说明分离涡控制翼板安装位置及相对尺寸;附图4是分离涡控制翼板后缘波浪线坐标示意图;附图5是分离涡控制翼板未打开时,机翼上表面分离涡示意图;其中U c 表示来流 速度,α表示攻角;附图6是分离涡控制翼板打开后,分离涡控制翼板机翼对分离涡控制的原理示意 图;附图7是瞬时压差阻力的分布示意图。其中1.机翼2.分离涡控制翼板转轴3.分离涡控制翼板4.机翼前缘5.机翼后 缘具体实施方式
实施例一本实施例是一种用于飞机过失速操纵控制的机构,包括机翼1、分离涡控制翼板转 轴2和分离涡控制翼板3。机翼1为梯形,其根弦比λ为6 ;机翼后掠角α为50°,机翼展长b为4390mm, 根弦长度C为6282mm ;机翼翼型选为NACA0006。在两侧机翼1的上表面,对称安装有分离 涡控制翼板3 ;本实施例以飞机一侧机翼为例加以描述。如图3所示。在两侧机翼1的上表面,自机翼1前缘10%弦长处至机翼1前缘 50%处有分离涡控制翼板3的安装凹面,该凹面沿弦向方向为斜面;该凹面在机翼1前缘起 点处的深度为当地机翼厚度的30%,并且向机翼后缘方向平滑过渡为0,直至与机翼表面 光滑相接。在机翼1上表面的凹面起点处,沿机翼的弦向安装有分离涡控制翼板转轴2。如附图2所示,分离涡控制翼板3的基本形状为梯形。分离涡控制翼板3的前缘 位于机翼当地弦长的10%处,并且该分离涡控制翼板3沿机翼弦向宽度为机翼当地弦长的 40%。分离涡控制翼板3后缘的斜边被修剪为波浪形。如附图4所示,在确定分离涡控制翼板3后缘斜边时,将连接分离涡控制翼板3后 缘波浪线起点与终点之间的连线作为χ轴,y轴位于分离涡控制翼板3后缘波浪线起点处、 垂直于χ轴并指向飞机头部,建立起平面直角坐标系。形成波浪线的各点坐标由以下方程 来确定
权利要求一种飞机主机翼前缘分离涡控制机构,其特征在于,所述的用于飞机过失速操纵控制的翼板包括分离涡控制翼板转轴(2)和分离涡控制翼板(3);并且I、分离涡控制翼板(3)的基本形状为梯形;分离涡控制翼板(3)上表面形状同所配合机翼(1)上表面形状,分离涡控制翼板下表面为斜平面,与机翼上表面凹面紧密配合;分离涡控制翼板(3)后缘的斜边为波浪形,波浪线周期总数N=6~8;在确定分离涡控制翼板(3)后缘波浪形斜边时,将连接分离涡控制翼板(3)后缘波浪线起点与终点之间的连线作为x轴,y轴位于分离涡控制翼板(3)后缘波浪线起点处、垂直于x轴并指向飞机头部,建立起平面直角坐标系;形成波浪线的各点坐标由以下方程来确定 <mrow><mi>y</mi><mo>=</mo><mfrac> <mrow><mo>(</mo><mi>N</mi><mo>+</mo><mn>1</mn><mo>-</mo><mi>m</mi><mo>)</mo> </mrow> <mi>N</mi></mfrac><mfrac> <mi>C</mi> <mn>10</mn></mfrac><mi>sin</mi><mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mfrac><mrow> <mi>x</mi> <mo>-</mo> <mi>ml</mi> <mo>+</mo> <mi>l</mi></mrow><mi>l</mi> </mfrac> <mo>)</mo></mrow> </mrow>其中波浪线波长N为整数,表示波浪线周期总数,需要满足下式 <mrow><mfrac> <msqrt><msup> <mi>b</mi> <mn>2</mn></msup><mo>+</mo><msup> <mrow><mo>(</mo><mfrac> <mi>C</mi> <mn>2</mn></mfrac><mo>-</mo><mfrac> <mi>C</mi> <mrow><mn>2</mn><mi>λ</mi> </mrow></mfrac><mo>)</mo> </mrow> <mn>2</mn></msup> </msqrt> <mrow><mn>0.2</mn><mi>C</mi> </mrow></mfrac><mo>≤</mo><mi>N</mi><mo>≤</mo><mfrac> <msqrt><msup> <mi>b</mi> <mn>2</mn></msup><mo>+</mo><msup> <mrow><mo>(</mo><mfrac> <mi>C</mi> <mn>2</mn></mfrac><mo>-</mo><mfrac> <mi>C</mi> <mrow><mn>2</mn><mi>λ</mi> </mrow></mfrac><mo>)</mo> </mrow> <mn>2</mn></msup> </msqrt> <mrow><mn>0.1</mn><mi>C</mi> </mrow></mfrac><mo>,</mo> </mrow>其中b为机翼展长;C为机翼根弦长;m为变量,由波浪线上点的x坐标所决定,m等于不小于的最小整数;II、分离涡控制翼板(3)的前缘位于机翼当地弦长的10%处,并且该分离涡控制翼板(3)沿机翼弦向宽度为机翼当地弦长的40%;III、在机翼(1)的上表面、自机翼(1)前缘10%弦长处至机翼(1)前缘50%处有一凹面,该凹面沿弦向方向为斜面;该凹面在机翼(1)前缘起点处的深度为当地机翼厚度的30%,并且向机翼后缘方向平滑过渡为0,直至与机翼表面光滑相接。FSA00000109562700012.tif,FSA00000109562700014.tif
2.如权利要求1所述一种飞机主机翼前缘分离涡控制机构,其特征在于,在机翼(1)上 表面的凹面起点处,沿机翼的弦向安装有分离涡控制翼板转轴(2);分离涡控制翼板转轴 (2)固定在机翼上表面的凹面内,并由分离涡控制翼板和机翼表面共同组成了完整的翼型 表面。
3.如权利要求2所述一种飞机主机翼前缘分离涡控制机构,其特征在于,分离涡控制 翼板绕两端固定在机翼加强肋上的转轴(2)向上转动打开。
专利摘要一种飞机主机翼前缘分离涡控制机构,包括分离涡控制翼板转轴和分离涡控制翼板。分离涡控制翼板的基本形状为梯形,其上表面形状同所配合机翼上表面形状,被固定在机翼上表面的凹面内,与机翼上表面共同组成了完整的翼型表面。分离涡控制翼板后缘的斜边为波浪形,波浪线周期总数N=6~8。分离涡控制翼板的前缘位于机翼当地弦长的10%处,并且该分离涡控制翼板沿机翼弦向宽度为机翼当地弦长的40%。分离涡控制翼板与分离涡控制翼板转轴配合,并通过电传操纵机构实现对分离涡控制翼板的打开与闭合控制。当飞机进行过失速机动飞行时,打开分离涡控制翼板抑制机翼尾流的不稳定性和非定常性,从而实现飞机在过失速飞行条件下的控制。
文档编号B64C9/14GK201712784SQ20102018193
公开日2011年1月19日 申请日期2010年5月6日 优先权日2010年5月6日
发明者蔡晋生 申请人:西北工业大学