专利名称:泡沫加强结构及其制造方法
技术领域:
本申请的系统涉及一种用于例如旋翼航空器的交通工具的结构。具体而言,本申请的系统涉及泡沫加强结构和该泡沫加强结构的制造方法。本申请的系统可以适用于许多种不同的结构,既可用于静态结构也可用于动态结构。此外,与旋翼航空器的结构相关的本申请的系统为示范目的描述于此。
背景技术:
一个典型的航空航天结构装置包括带有多个内部结构构件的符合空气动力学的外部蒙皮。参照图1,以现有技术的翼型结构101为例,结构101包括多个肋状部103和翼梁105。肋状部103和翼梁105被配置为提供结构101的结构整体性,以及用来支撑蒙皮 107(为清楚起见,被部分去除地示出)。结构101需要花费大量的费用和精力去组装。例如,每个肋状部103和翼梁105都代表独立的部分,该部分必须被制造、记录、存储和组装。 此外,肋状部103、翼梁105和蒙皮107 —般通常是用紧固件组装,安装通常需要相当大量的精力和费用。此外,紧固件可能会促使导致腐蚀,应力集中,且另外会并缩短结构的寿命。 此外,这多个部件之间的公差差异可能会导致外壳蒙皮107的表面质量不一。虽然航空航天结构的发展已经发生了重大的改进,但仍然有很大的缺陷。
本申请的系统的确信为新颖特征的特点阐述在所附的权利要求里。然而,对于系统本身,以及使用的优选模式,进一步的目标和优势,参照以下描述详情,同时结合浏览附图能被最好的理解,图中附图标记的最左边的有效数字表示各附图标记第一次出现的附图。图1是现有技术的翼型结构的透视图;图2是根据本申请的一个优选实施例的旋翼航空器的透视图;图3是根据本申请的一个优选实施例的泡沫加强结构的透视图;图4是根据本申请的一个优选实施例的泡沫加强结构的分解透视图;图5是如图3所示,沿剖面线5-5取自根据本申请的一个优选实施例的泡沫加强结构的剖视图;图6A是用于制造根据本申请的一个优选实施例的泡沫加强结构的方法的示意框图;图6B是用于制造根据本申请的一个优选实例例的泡沫加强结构的流程的示意框图;图7A是用于制造根据本申请的一个优选实施例的模制的泡沫构件的模具的俯视图;图7B是用于制造根据本申请的一个优选实施例的模制的泡沫构件的模具的俯视图8是用来制造根据本申请的一个优选实施例的模制的泡沫构件的泡沫系统的组件示意图;图9是用来搅拌根据本申请的一个优选实施例的泡沫系统的搅拌器的透视图;图10是根据本申请的一个优选实施例,用于制造模制的的泡沫构件的泡沫系统的混合物的示意图;图11是根据本申请的一个实施例的在模具中的未固化泡沫构件的剖视图;图12是根据本申请的另一个实施例的在模具中的未固化泡沫构件的剖视图;图13A和1 是根据本申请的另一个实施例的在模具中的未固化泡沫构件的剖视图;图14A是根据本申请的另一个实施例的在模具中的未固化泡沫构件的剖视图;图14B是如图14A所示,沿剖面线14B-14B截取的,根据本申请的另一个实施例的在模具中的未固化泡沫构件的剖视图;图15是根据本申请的另一个实施例的在模具中的未固化泡沫的剖视图;图16是根据本申请的一个实施例的运用在泡沫上的蒙皮的透视图;图17A是根据本申请的另一个实施例的在模具中的未固化泡沫构件的剖视图;还
有图17B是如图17A所示,沿剖面线17B-17B截取,在模具中的未固化泡沫构件的剖视图。虽然本申请的系统易于进行各种修改和具有各种可替代形式,其具体的实施例通过附图和在此的详细描述以例子的方式被显示。然而,应当认识到,在此对具体实施例的描述意图不在限制所披露的具体形式的方法,而是与此相反,其意图是,覆盖落入如所附的权利要求所定义的精神和范围之内的所有变型、等同和替代。
具体实施例方式下面将描述本申请的系统的说明性的实施例。为了清楚起见,在本说明书中并非一个实际的实施的所有的特性都会被描述。当然会被理解的是,在任何这样实际的实施例的开发中,必须作出众多由实施特定的决定以实现开发者的特定具体目标,如遵守与系统相关和行业相关的规定,而这些在不同的实施中会有变化。此外,可被理解的是,这种开发的努力可能会很复杂和耗时,但是对受益于本公开的本领域的普通技术人员却是日常的业务。在说明书中,当描述附图中的装置时,可能会提及各组件之间的空间关系和各个组件不同侧面的空间方位。然而,如同完整地阅读过本申请的本领域技术人员将会认可的那样,此处所描述的装置、构件、设备等,可被定位在任何需要的方位。由于在此描述的装置可定位在任何想要的方向,因此使用如“上方”、“下方”、“上面的”、“下面的”或其他类似的术语来描述各个组件之间的空间关系或描述这些组件的各侧面的空间方位应被理解为是意在分别描述该组件之间的相对关系或这些组件的各侧面的空间方位。参照图2,示出了航空器201。航空器201包括主旋翼203、机身209、起落架207和机翼211。航空器201还包括尾梁组合件212,它是尾梁214、尾翅213、升降舵301、尾旋翼 205的组合件。升降舵301在航空器201飞行时提供桨距控制功能。升降舵301在此作为一个泡沫加强结构实施例来说明和描述。此外,应该认识到,升降舵301仅仅是根据本申请的方法制造的泡沫加强结构的一个例子。例如,航空器201上的各种结构都可根据本申请的方法来制造。例如,主旋翼203、尾旋翼205、机翼211、尾梁214、尾翅213与机身209全部都是可按照本申请的方法来制造的部件,从而通过模制的泡沫构件对其进行加强。此外, 航空器201仅仅是可以根据本申请的方法制造的许多交通工具的典型。例如,其他典型的交通工具可包括固定翼航空器、艇、船舶、汽车和滑板,这只是其中的几项。现在参照图3-5,示出了右手侧的升降舵301。为了清楚起见,左手侧的升降舵没有被显示,但是在图示的实施例中,左手侧的升降舵是右手侧的升降舵301的镜像。升降舵 301包括泡沫构件311和蒙皮307。在优选实施例中,泡沫构件311在模具中被模制。在随后的操作中,蒙皮307优选通过将未固化的复合材料放置于泡沫构件311之上来形成,这样,泡沫构件311起到用于该复合材料的起模具作用的表面的作用。复合材料随后被固化成为刚性的蒙皮307。在一可替代的实施例中,蒙皮307在独特的起模具作用的表面上形成,然后固化。在这样的实施例中,泡沫构件311是通过将蒙皮307作为模具使用,允许泡沫在蒙皮307内膨胀和形成而形成的,从而使蒙皮307起到了用于泡沫的模具的作用。在另一可替换实施例中,蒙皮307不是由复合材料形成,而是由薄的金属片,或其它半刚性材料形成。在这样的实施例中,薄金属片被形成和粘接至泡沫构件311,这样泡沫构件311通过指示出金属板的最终表面轮廓位置,部分地起到模具的作用。在图示实施例中,蒙皮307 包括上翼型表面315和下翼型表面313。此外,升降舵301可包括内侧肋状部303、外侧肋状部305还有机翼后缘构件309。 内侧肋状部303、外侧肋状部305及机翼后缘构件309是可与泡沫构件311 —体化成型或者在泡沫构件311成型后的装配操作中组装至泡沫构件311的构件的例子。内侧肋状部303、 外侧肋状部305及机翼后缘构件309可以通过一些常规制造作业加工成型,例如机械加工、 铸造、压铸、注塑成型、模压成型,这只是其中的几项。此外,粘合剂可用于促进蒙皮307、泡沫构件311、内侧肋状部303、外侧肋状部305和机翼后缘构件309之间的粘接。泡沫构件311为升降舵301提供了结构刚性。蒙皮307优选包括置于聚合物基体内的多条增强纤维。在此为进一步讨论,蒙皮307优选作为多层未固化复合物置于泡沫构件311之上,然后固化形成刚性复合板。应当认识到,蒙皮307可以由各种纤维和树脂系统形成。同样应认识到,具体的复合材料,或金属片,是根据实施而特定的。例如,在一个应用中,碳纤维可能是合适的,而在另一个应用中。玻璃纤维可能是合适的。如同在此进一步讨论的,模制泡沫构件311优选以在模具中可倾倒和可膨胀的结构泡沫形成。模制泡沫构件311被配置为可给很多各种几何形状和轮廓的升降舵301提供结构完整性。蒙皮307的固化可能需要压力,如为了适当的固化而需要压热器固化压力。因此,泡沫构件311被配置为提供可承受该压力的结构抗力,来维持所需的蒙皮307的表面几何形状。泡沫构件311被配置为是各向同性的,这样泡沫构件311的各向同性特性可使得它在各种的几何形状和轮廓下保持结构完整性。现在参照图6A,制造诸如升降舵301的泡沫加强结构的方法601以示意图的方式示出。方法601的步骤603包括制造内侧肋状部303、外侧肋状部305和机翼后缘构件309, 这可能包括在升降舵301的一些实施例中。在此进一步讨论的是,内侧肋状部303、外侧肋状部305和机翼后缘构件309中的任何一个在制造泡沫构件311时可能位于模具中。
方法601的工序605包括制造泡沫构件311。现在同样参照图6B,工序605是更多细节的示意图。工序605的步骤613包括制造模具,用于使泡沫构件311在其中成型。现在同样参照图7A和7B,示出了模具701。模具701优选包括第一构件701和第二构件703。模具701还包括部分地形成在第一构件701和第二构件703中的每一个之上的腔体707。应该认识到,模具701可分为任意数量的独立构件。腔体707代表的是泡沫构件311所需的几何形状。脱模剂优选应用在腔体707内部,以促进构件311自模具701脱除。工序605的步骤615包括生成泡沫混合物807。现在同时参见图8_10,泡沫构件 311的生成中使用的泡沫系统优选聚氨酯泡沫系统,它会膨胀并充满模具701的腔体707。 固化后,泡沫最好既有刚性又有柔韧性,同时还具有相对低的密度。优选的泡沫系统是以 Stepanfoam BX 450为名在市场上销售的聚异氰酸酯倾倒泡沫系统,是由M^an化学公司 (Stepan Chemical Company)制造的。应充分认识到在泡沫构件311的成型中可以使用其它泡沫系统。Stepanfoam BX 450包括两种独立的树脂组份,即树脂T (占重量的70% ) 805 和树脂R(占重量的30% )803。称量出所需重量的T805树脂和树脂R803并将其倒入容器 801中。树脂T805和树脂803通过机械搅拌,形成均勻的混合物807。使用旋转的搅拌器 901来混合树脂T805和树脂R803以形成混合物807。搅拌器901包括轴903,轴903被配置由钻机马达或类似物来驱动。搅拌器901可包括多个刀片,所述刀片位于第一刀盘905 和第二刀盘907。在优选的实施例中,当混合树脂T805和树脂R803以形成混合物807时, 搅拌器901以每分钟3500转的速度旋转10-15秒。混合物807的总重量至少部分地取决于泡沫构件311的体积和所需的密度。例如, 由于密度是每单位体积的质量的关系,因此泡沫构件311的所需密度至少部分地决定了混合物807的重量。然而,混合物807的一部分仍可能从腔体707内溢出,这可能会影响到泡沫构件311的最终密度测定。工序605的步骤617包括将泡沫混合物807倒入腔体707内。一旦混合在步骤 615完成后,优选将混合物807尽快地浇入模具701的腔体707中。步骤619包括控制腔体707内的泡沫混合物807的膨胀。参考图11,如步骤619 的一个实施例所示。如图11所示,泡沫混合物807被允许在腔体707内“自由增长”以便泡沫构件311以“自由增长”的密度成型。在该“自由增长”的实施例中,密度可达到约为和小于8. 0磅/立方英尺。当泡沫构件311的几何形状和轮廓相对简单时,泡沫构件311 的“自由增长”实施例可能是特别合适的。这是因为泡沫构件311的暴露表面会需要切削或修剪的操作来清整泡沫构件311的暴露表面以获得所需的轮廓。如图11所示,“自由增长”实施例包括允许泡沫混合物807无约束地膨胀和聚合。在聚合阶段时混合物807的膨胀和聚合会允许任何挥发物逸出,并促使其全面均勻地充满腔体707。聚合阶段是来自泡沫混合物807的化学反应的膨胀过程。同样参照图12,步骤619的另一个实施例包括使用“捕获过程”来定制泡沫构件 311的密度。捕获过程包括使用盖子构件709以在腔体707中产生压力,以在聚合时抑制混合物807的膨胀。盖子构件包括一个或更多的开口 71 Ia和711b,这允许当混合物807聚合时挥发物逸出。开口 711a和711b的尺寸和数量也被设定以选择性地定制泡沫构件311的密度。在一个实施例中,盖子构件709的开口 711a和711b的大小被设定可生成密度约为12-16磅/立方英尺的泡沫构件311。然而,开口 711a和711b的这样的尺寸和数量可被增加或减少来分别生产具有低或高密度的泡沫构件311。升降舵101预期的工作载荷是一个可能有助于设定泡沫构件311的密度的因素。按照所需的泡沫构件311的结构强度,可定制的泡沫构件311的密度。同样参照图13A和13B,步骤619的另一个实施例,包括有选择性地定位盖子构件 709以生成具有不同密度的体积。例如,具有第一密度Dl的体积是由定位工具713选择性地定位盖子构件709来生成的。定位工具713被配置为可按照所需的位置来选择性地定位盖子构件709。在图示出的实施例中,盖子构件709有单个开口 711a以便产生密度D1。 应该认识到,密度Dl也可由减小开口 711a和711b的尺寸来产生。当具有密度Dl的第一体积充分膨胀和聚合后,然后定位工具713被重定位,另一批泡沫混合物807被引入,于是第二体积在第一体积和盖子构件709之间被建立。在图示的实施例中,第二体积具有密度 D2,由于排气开口 711a和711b的使用,使得它小于密度Dl。在这样一个实施例中,在具体实施中,根据泡沫构件311的预测载荷,泡沫构件311的密度完全可以定制。例如,升降舵 301的内侧部分可能承受比外侧部分更高的载荷,因此,它对于泡沫构件301具有较高的密度是合适的,从而在内侧部分附近具有更高的强度。应该认识到,虽然图13B示出的是涉及具有密度Dl和D2的第一和第二体积,但步骤619可能包含创建任意数量的具有各种密度的体积。此外,体积和密度的数量是根据实施而特定的。例如,如果泡沫加强结构是在航空器上的大机翼,这种泡沫加强机翼的泡沫构件则可能具有有不同密度的许多不同的体积。同样参照图14A和14B,工序605的另一个实施例包括在腔体707内的放置模具 1401以在泡沫构件311中生成空隙1403。泡沫构件311中包括空隙1403,对于穿过泡沫构件311的布线路径,或其它的系统部件来说,可能是尤为有利的。此外,空隙1403对于减轻泡沫构件311的重量也可能是有利的。在一个实施例中,泡沫1401可以是从泡沫构件311 中移除的刚性模具。在另一个实施例中,模具1401与泡沫构件311形成粘接且与泡沫构件 311是一体的结构。在这种实施例中,模具1401决定了空隙1703的几何尺寸,也与泡沫构件311留在一起,所以相当于飞离(fly-away)模具。应该认识到,空隙1403的几何形状和尺寸是根据实施特定的,且可以采取多种配置。同样,参照图15,工序605的另一个实施例包括将部件结合到模具701的腔体707 内以使这些部件与泡沫构件311是一体的。例如,内侧肋状部303、外侧肋状部305和机翼后缘构件309在泡沫混合物807被引入之前即可被置于到腔体707中。当泡沫混合物807 膨胀和聚合时,泡沫构件311与内侧肋状部303、外侧肋状部305和机翼后缘构件309成为了一个整体。在这样一个实施例中,当混合物807膨胀时,外侧肋状部305内的孔洞1501 被配置为可允许挥发物逸出,类似于开口 711a和711b。参照图17A和17B,工序605的另一个实施例包括将肋状部701结合到模具701的腔体707内以使肋状部1701与泡沫构件311是一体的。例如,肋状部1701能在泡沫混合物807被引入之前沿翼弦方向置于腔体707中。在一个实施例中,肋状部1701内的孔洞相当于用于泡沫混合物807的倾倒开口的作用,也用作当泡沫混合物807膨胀时使挥发物逸出的排气开口。然而,通过肋状部1701的排气可能有多种方式,诸如通过在肋状部1701和模具1401之间的间隙。在这种情况下,泡沫构件311通过多个步骤成型,类似于上述的与图13A和1 相关的步骤。然而,与图13A和13B所示的盖子构件709相比,肋状部1701是
8和泡沫构件311成一整体的。肋状部1701可被用于在升降舵301中提供补充的结构支撑。 在图示出的实施例中,肋状部1701被定位在大致中跨处。但是应该明确的是肋状部1701 可以位于沿着泡沫构件311的跨度上的不同位置。此外,应当理解的是,即使示出的图17A 和17B带有模具1401和空隙1403,这些还都是可选的特征,一些实施例中可能并不包括模具1401和空隙1403。在另一可替代实施例中,肋状部1701是在泡沫构件311的第一部分在模具701中被成型之后被引入的。在这种实施例中,肋状部1701可做成“L”形,以帮助肋状部1701匹配至泡沫构件311的第一部分。应当注意的是,即使仅有单个肋状部1701 被示出,一个实施例中包括穿过泡沫构件311的间隔的多个肋状部1701。再次参照图6B,工序605为了固化泡沫构件311继续步骤621,优选在泡沫构件 311被从模具701取出之前使泡沫构件311完全固化。在泡沫混合物807在模具701中膨胀后,通过首先使泡沫构件311保留在模具701中至少M小时达致完全的固化。然后,模具701,以及留在其中的泡沫构件311,在大约350° F到375° F之间固化大约2小时。应当注意的是,替代的泡沫系统可能有不同的固化要求。优选在脱模前使泡沫构件311和模具701冷却到150° F或更低。步骤623包括泡沫构件311的脱模。泡沫构件311的脱模包括从模具701中移出泡沫构件311。泡沫构件311的脱模可能需要柔性工具来帮助泡沫构件311从空腔707中的分离。再次参照图6A,方法601继续步骤607,将蒙皮材料施加在泡沫构件311上。一旦泡沫构件311在工序605的步骤623中从模具701中被取出后,那么用于蒙皮307的蒙皮材料就可在制造过程中施加至泡沫构件311。由于在模具703中被成型,泡沫构件307的几何尺寸和外形极为精确。同样地,泡沫构件311被配置为相当于“飞离(fly-away)模具”, 这样它不仅在升降舵301装配时为蒙皮307起到模具表面的作用,而且在航空器运行时与升降舵保留在一起。在升降舵301的一个实施例中,在蒙皮307和泡沫构件311之间存在结构的粘连, 这样通过该结构的粘连,剪切载荷可在蒙皮307和泡沫构件311之间传递。在这样一个实施例中,这种结构的粘连可由复合蒙皮中的树脂形成。这种结构的粘连也可由泡沫构件311 与蒙皮307之间的粘合层来形成或增添。在一个替代实施例中,可应用一种脱模材料以防止在蒙皮307和泡沫构件311之间的结构的粘连。在优选实施例中,步骤607包括将未固化复合材料施加在泡沫构件311之上。应当注意的是,复合材料制造过程可能需要经过各种各样的工序,因为蒙皮307可由各种复合纤维/树脂系统,或金属材料形成。现在参照图16,在一个典型的实施例中,纤维铺放机 1601被用于以一定配置施加复合材料的带条。可选的实施例可采用任何数量的已知方式的复合材料制造技术。泡沫构件311相当于决定了蒙皮307的几何尺寸的模具。由于泡沫构件311在模具701中成型,具有高度准确的几何尺寸和轮廓。因此,泡沫构件311相对于蒙皮307的高精度的支撑件。方法601的步骤611包括升降舵301的最后装配。如果内侧肋状部303、外侧肋状部305和机翼后缘构件没有已经被整合在泡沫构件311上,那么步骤611包括这些部件与泡沫构件311和蒙皮307的装配。步骤611可能包括装配任何其它的部分组装来完成最后的升降舵301。仍然参照图6A,蒙皮307在方法601的步骤609中被固化。蒙皮307,当在泡沫构件311上,可根据多种常规复合固化过程中的一种,被真空装袋来进行固化。在一些实施例中,如当蒙皮307仅仅是金属片,蒙皮自身就不需要固化。然而,如果蒙皮307是金属片,可能在金属片和泡沫构件311之间会使用粘合剂,这样,为了固化粘合剂可能需要热和压力。本申请的系统提供了显著的益处,包括(1)提供了一种具有复合结构的加强制造的泡沫构件,且能被模制成各种的几何尺寸与外形轮廓;(2)提供了一种具有复合结构的加强制造的泡沫构件,且能够经受压热器固化压力;C3)提供了一种具有复合结构的加强制造的泡沫构件,且可选择性地定制泡沫构件的密度;(4)提供了一种具有复合结构的加强制造的泡沫构件,且能对蒙皮提供模具式的支撑,这样泡沫构件不但提供了结构刚性,而且提供了用于蒙皮的模具表面;以及(5)提供了一种具有结构的加强制造的泡沫构件,该泡沫构件可有具有多种不同密度的体积以使泡沫构件的强度/重量针对预测的载荷进行优化。上文所披露的具体实施例是说明性的,因为本申请可能会以不同但等同的方式被修改和实施,而这些方式对于那些从在此的教导中获益的本技术领域的技术人员来说是显而易见的。此外,除了在权利要求中所描述的以外,在此披露的建造或设计细节都不是意图给出任何限制。由此可见,上文所披露特定实施例,可能会被改变或修改,而很明显所有这些变化都被认为是在本申请的范围和实质内。相应地,在此寻求的保护在以下的权利要求下提出。很明显,具有显著益处的系统已经被描述和说明。虽然本申请示出的形式数量有限,但它不仅仅局限于只是这些形式,而是在不偏离其实质的同时可进行各种变化和修改。
权利要求
1. 一种结构,包含泡沫构件,所述泡沫构件具有模制的外表面;以及蒙皮构件,所述蒙皮构件被放置为至少部分地包围所述泡沫构件的所述模制的外表其中所述泡沫构件的所述模制的外表面被设定为在所述结构的组装中为所述蒙皮构件提供模具表面。
2.根据权利要求1所述的结构,其中所述蒙皮是复合材料。
3.根据权利要求1所述的结构,其中所述蒙皮是金属材料。
4.根据权利要求1所述的结构,其中所述泡沫构件具有被暴露在外的侧面的部分,这样所述蒙皮构件仅能部分地覆盖所述泡沫构件。
5.根据权利要求1所述的结构,其中所述泡沫构件以粘合层粘连至所述蒙皮构件,以使所述泡沫构件能承载所述蒙皮构件上的剪切载荷。
6.根据权利要求1所述的结构,其中用脱模剂防止所述泡沫构件与所述蒙皮构件处于粘合接触的状态,从而实质上防止了来自所述蒙皮构件的剪切载荷通过所述泡沫构件被承载。
7.根据权利要求1所述的结构,其中所述泡沫构件的密度被定制以使所述泡沫构件能够承受在固化周期中所述泡沫构件将要经受的预计的压力载荷。
8.根据权利要求1所述的结构,其中所述泡沫构件的密度被定制为使得所述泡沫构件的强度被定制为承受在所述结构的使用寿命中将要经受的预计载荷。
9.根据权利要求1所述的结构,其中蒙皮是翼型的形状。
10.根据权利要求1所述的结构,其中所述结构是用于航空器的翼型构件。
11.制造用于一种结构的泡沫构件的方法,包括制作模具,所述模具具有内部空腔,所述内部空腔与所述泡沫构件的所需的形状相似;往所述模具中注入泡沫混合物;允许所述泡沫混合物聚合以在所述模具的所述空腔中膨胀和分布; 选择性地控制在所述模具中的所述泡沫构件的密度;以及固化所述泡沫构件。
12.根据权利要求11所述的方法,其中选择性地控制所述泡沫构件的密度的步骤包含允许所述泡沫混合物在所述空腔内在无压力制约的情况下自由增长。
13.根据权利要求11所述的方法,其中选择性地控制所述泡沫构件的密度的步骤包含使用盖子构件以限制所述泡沫混合物的膨胀。
14.根据权利要求13所述的方法,其中排气开口位于所述盖子构件上。
15.根据权利要求11所述的方法,进一步包括在将所述液体混合物倾倒入所述倾倒开口前,在所述模具的所述空腔中施加脱模剂。
16.根据权利要求11所述的方法,其中选择性地控制所述模具中所述泡沫构件的密度的步骤包括选择性地设置盖子构件上开口的尺寸。
17.制造复合结构的方法,包括 制造至少部分固化的泡沫构件;将未固化的复合蒙皮铺设到所述泡沫构件的外表面上,这样所述泡沫构件相当于用于所述未固化的复合蒙皮的模具;在泡沫构件支撑所述复合蒙皮的部分的同时,固化所述复合蒙皮。
18.根据权利要求17所述的方法,其中制造至少部分固化的泡沫构件的步骤包括 制作模具,所述模具具有内部空腔,所述内部空腔与所需的所述泡沫构件的形状相似;往所述模具中注入泡沫混合物;允许所述泡沫混合物聚合以在所述模具的空腔中膨胀和分布; 选择性地控制在所述模具中的所述泡沫构件的密度;以及至少部分地固化所述泡沫构件。
19.根据权利要求17所述的方法,进一步包括在所述泡沫构件和所述未固化的复合蒙皮之间使用粘合层。
20.根据权利要求17所述的方法,其中将固化复合蒙皮铺设到所述泡沫构件的外表面上的步骤,是通过使用纤维铺放机来实现的。
21.根据权利要求18所述的方法,其中制造至少部分固化的泡沫构件的步骤进一步包括在所述模具内放置肋状部。
全文摘要
一种结构,包括蒙皮和泡沫构件。泡沫构件具有模制的轮廓,该模制轮廓被设定为蒙皮提供模具式的表面。当蒙皮是复合蒙皮时,泡沫构件为蒙皮提供支撑以使蒙皮能够在热和压力下固化。制造用于泡沫加强结构的泡沫构件的方法包括制作模具,该模具具有内部空腔,该内部空腔与所需的泡沫构件的形状相似。随后的步骤包括往该模具中注入泡沫混合物。接着,允许泡沫混合物聚合以使其在模具空腔中膨胀和分布。该方法还包括选择性地控制在模具中的泡沫构件的密度。泡沫构件已被至少部分地固化。泡沫构件和蒙皮组装来产生泡沫加强结构。
文档编号B64C1/12GK102556334SQ201110364708
公开日2012年7月11日 申请日期2011年11月2日 优先权日2010年11月5日
发明者威廉·埃文斯, 拉梅什·提阿咖罗杰, 萨万卡·米什拉, 迈克·迈克尔, 马克·克里斯 申请人:贝尔直升机泰克斯特龙公司