专利名称:模塑复合工件的方法
技术领域:
本发明涉及注射模塑工件的制造。这种工件可以由聚合物热固性树脂模塑而成,也可以是复合工件,该工件是在固化的树脂基体内具有纤维增强网格的工件。更具体地说,本发明涉及注射模塑这种聚合物和复合工件的方法。
背景技术:
反应注射模塑和树脂转移模塑是这样一种工艺,其中干纤维增强层(预成型坯)被放入到模腔内,该模腔的表面限定了将制造的工件的最终外形,于是可流动树脂在压力的作用下被注入或吸入模具空腔(模腔),从而制造出该工件,或者饱和/湿润纤维增强预成型坯。当浸透了树脂的预成型坯在模腔内固化后,从模具中取出已完成的工件。
现有技术披露了一种注射模塑设备,它包括一对具有模塑表面的互补或“相配”的工具,每个工具由例如与要结合使用的树脂呈相对惰性的刚性金属加工而成。这种相配的金属模具制造成本昂贵,并且只限于给定设计的单个工件的制造。另外,即使对要制造的工件的所需外形作轻微的改变,也必须加工出全部的新替代工具。
另外,这种已知的金属工具一般具有很大的热质量,这在模具热量偏离所要求的加工温度时愈加会产生问题。相应的,这种工具通常设有内部加热和/或冷却管或通道的整体系统,外界提供的热/冷流体可以通过它们而进行循环。但是,对于这些现有技术的设计,热/冷通道相对于工具表面来设置,从而在它们之间留下约2英寸(5厘米)的最小空间,来确保所得到的工件将没有热和冷线或带,这些线或带在树脂的固化过程中会因为不同的加热/冷却速度而在工件中产生。而该最小的空间又内在地限制了这些现有技术的工具在注射模塑过程中准确控制温度的能力,特别是在这些过程放热时。在制造可变厚度的工件时,假设该工件的较厚部分会较早聚合,并易于达到比其较薄的部分更高的温度,这时模腔的温度控制也成为一个问题。
因此,这种相配的金属工具必须周期性地停止足够的时间,以使该模具冷却至可接受的操作温度,所以使用这种工具明显提高了工件的制造成本。
为了提供改善的温度控制,同时易于从模塑设备中取出完成的工件,现有技术披露了一种改进的模塑设备,其中一个模具表面被由例如橡胶形成的柔性膜来限定。另一个模具表面仍然由刚性导热金属工具限定,其后面有加压流体例如蒸汽,因此固化热被传递给模腔,用于吸热模塑操作。不幸的是,对于这种吸热过程,只加热模腔的一侧会限制表面加工的灵活性以及所得到的工件的其它性能,并且还限制了树脂固化可能被加速的程度。另外,在放热过程中使用这种模塑设备时,所产生的热加速了该柔性模具表面的损坏,因此妨碍了工具的长期使用。并且这种模塑设备通常需要在注入树脂之前对模腔抽真空,这使得这种模塑设备的使用和维护更加复杂,并且使得采用这种设备的工艺更加费时和昂贵。
另外,在闭合式模塑中应用的工具一般由昂贵的材料例如铝金属、复合物或合金等加工或浇铸而成。这种工具会有许多问题,例如高的工具成本、15-52周的较长交付时间、难以或基本不能进行改变以及高的维修或翻新成本。因此需要一种工具相配的注射模塑设备,其与已知的刚性或柔性工具相比具有制造更容易并且成本更低的可替换模具表面,同时还在吸热和放热过程中都可提供改善的温度控制,从而以低的生产周期提供质量改善的工件。
发明内容
在本发明的方法中,采用一对模具部件,其中每个模具部件本身包括刚性外壳和可移动地安装在该外壳上而在其中限定了密封腔室的半刚性膜。限定了模塑表面的每个模具部件的膜优选地由廉价的复合材料例如纤维增强塑料或其它适合材料构成;并且根据本发明,每个模具部件的膜可以选择不同的膜材料和/或特性。
在本发明的实践中,将模塑流体注入任何由模塑部件形成的模腔中。以受到监测且受到控制的流速将模塑流体导入该模腔中。在将模塑流体注入模腔期间和之后,对指示所述模腔正在被充入的至少一个参数进行监测。另外,保持并控制对应于上述参数的流速。为此目的而可以被监测的参数包括注入模塑流体的压力、在至少一个模具部件中的压力、模塑流体进入模腔中的特定部分的情况。此外,对模塑流体的监测功能可以通过监测出第一和第二模具部件之间的线性位移或通过检测出模塑流体穿过这些部件前进或进入模腔的不同部分的流动的前沿进行。当两个模具部件通过使它们各自的模塑表面相对置而装配起来时,就限定了一个将在其中制造所需工件的模腔。因此,在本发明中,可以通过改变或替换其中的一个或两个低成本膜的方式来很容易地改变工件形状。另外,在本发明中,给定的模具部件外壳可以配备有宽范围内的各种较为廉价的用于制造具有各种形状、尺寸和特性的复合工件的复合膜,因此与现有技术相比极大的降低了工具成本。模具部件外壳的尺寸限定了工作包络面,在该包络面内可以采用各种不同外形的膜。可以采用任何被设计用于装设在工作包络面尺寸内的结构,而不需要更换模具部件外壳。
根据本发明,不可压缩的流体被注入并充满每个模具部件的腔室,从而它们各自的膜被支撑,从而确保了所完成的工件的正确尺寸,同时在树脂注入过程中允许轻微的尺寸变化,从而使该膜的任何注入压力负载均匀地分配在其整个表面上。后一个特征在树脂注入步骤中出现注入压力峰值时具有特别的优点。另一个优点是,在树脂注入过程中膜的轻微尺寸变化被认为能改善或增强树脂穿过模腔的流动。与模具部件的一个或两个腔流体相通的膨胀腔被用于在树脂注入膜之前调节支撑膜的流体的热膨胀,随后固化所加工的工件,并具有一个阀,用于在树脂注入和固化过程使该腔与膨胀腔隔开。
根据本发明的另一个特征,支撑流体本身优选是导热的;该模塑设备还包括与模具部件中的一个或两个内的支撑流体热交换的装置,用于调整支撑流体的温度。例如,在优选的实施例中,温度调整装置包括在每个腔内延伸的线圈系统和常规设计的外部加热装置/冷却装置单元,该单元被连接在该线圈系统上,并用来使以预定的温度从中通过的温度控制流体循环流动。这样,可以精密地调节支撑流体的温度以及相关的每个模具部件的模具表面的温度,从而能够改善所完成的工件的特性和/或改善工艺参数(例如时间和温度)的控制。
Swenor等人的美国专利No.5,518,388披露了一种树脂转移模塑工艺和设备,其中模塑流体被泵送并通过监测泵送速率和泵送循环来控制。采用这种技术,能够确定出在树脂容器和模具之间从泵中转移到模具中的模塑流体的量,以便进行控制。McCollum等人的PCT专利申请WO 98/12034(美国专利No.5,971,742)披露了一种用于模塑复合工件的设备。该设备包括流体支撑的模塑部件,它具有能够提供快速的生产率的精确模塑结构。
本发明的其它细节、目的和优点将在以下优选实施例的详细描述和附图中变得更清楚。
通过结合附图阅读以下的详细说明可以获得对本发明的更全面的了解,其中图1为根据本发明的注射模塑设备的局部分解轴测图;图2为在将上模具部件装配到下模具部件上之后沿着经过直线II-II的垂直平面剖开的在图1中所示的设备的剖视图。
图3为类似于图1的注射模塑设备的另一个实施例的局部分解轴测图,但是它还包括用于提供反馈以优化模塑工艺的装置。
图4为图1中的设备的一个实施例的分解透视图,显示出用于模塑一艇身。
图5为与图2类似的在图4中所示的完全装配好的模塑设备的剖视图。
图6为在图4中所示的设备的简化示意图,显示出膜的可互换性。
图7显示出浇口组合式隔板装配件的优选实施例。
具体实施例方式
参照图1,本发明用于模塑复合工件的典型设备10包括模具组件12,它具有上模具部件14和下模具部件16,这两个模具部件通过设置销钉18和互补的销钉接受件20将上模具部件14装配到下模具部件16上,从而限定了一个具有相配合的模塑表面24、26的模腔22。具体地说,每个上、下模具部件14、16包括刚性外壳28、30以及半刚性膜32、34,这些膜沿着膜的周边(如通过凸缘36)被可移动地和可密封地固定在相应的外壳28、30上。凸缘36可以具有其几何形状对应于半刚性膜32、34的几何形状的内圆周以及其几何形状对应于外壳38、30的几何形状的外圆周。因此,凸缘36是可重复使用的,从而当半刚性膜32、34被脱开时,该凸缘36可以与旧的膜分离并安装到一个新的上面。一旦被装配好,外壳28、30和每个中空模具部件14、16的膜32、34共同在其中限定出密封的腔室38、40。
根据本发明的一个特征,每块膜32、34优选相对较薄并且由一种复合涂覆层形成,该涂覆层在其最美观的形式中可以简单地包括所要制作的工件的溅射坯料。而且,虽然每个膜32、34一般可以用纤维增强塑料制成,但是本发明还可以考虑采用由其它合适的材料如轻金属板制成的半刚性膜32、34,这样膜32、34就可以以对于那些本领域普通技术人员来说所公知的方式在压力腔室中被方便地而又廉价地生产、成形和再成形。在这点上,应该指出的是,本发明还可以考虑对每个模具部件14、16的相应膜32、34采用相同的或不同的材料,这取决于如这些膜的所要求的特性(如其导热性、可成形性和使用寿命)和/或总体工艺参数(如树脂注入压力、树脂固化时间和模具装配周期)。
每个中空模具部件14、16完全充满一种由流体供应管路44提供的基本上不可压缩的导热流体42。一旦中空模具部件14、16被充满,则模具10就准备好用来制造工件。每个中空模具部件14、16中的流体42在树脂注入期间以在下面所进一步描述的方式为每个受压的膜32、34提供支撑。由于该流体是基本上不可压缩的,所以任何施加在膜32、34上的力如内部注入压力可以通过该流体被转移到刚性外壳28、30的壁上。
在图2中所示的实施例中,支撑膜的流体42通常可以是自来水,该自来水通过相应的入口控制阀46和快接联接件48由管路44被供应给上、下模具部件14、16。一般来说水是优选的流体,因为它便宜、易得到且环保。但是,用在不同的工作范围的其它合适的支撑流体(如具有更高的蒸发温度)对于那些本领域普通技术人员来说是公知的。在每个入口阀46的下游可以采用压力表50来监测支撑流体进入每个模具部件14、16的腔室38、40中的流速。为了方便每个腔室38、40的充入和排放,每个模具部件38、40可以具有通气孔52,通过该通气孔每个腔室38、40中的空气就能够在其充入支撑流体42的时候逸出。一旦被充满,用通气孔阀54将每个腔室的通气孔52封住,从而为每个模具部件的膜/模塑表面24、26提供必要的刚度。
如图2中所示,其中如膜32、34和模腔22的相对尺寸被放大,以便于说明,每个模具部件14、16可以设有一种在密封腔室38、40中延伸的加热/冷却线圈系统,用来调节模塑腔22的温度。可选择的加热/冷却线圈56可以通过快接联接件58与普通的外部加热装置60和冷却装置61相连。这样,线圈56连同加热装置60和冷却装置61一起操作,以精确地调节支撑流体42的温度以及在整个注射模塑工艺过程中的每个膜32、34的模塑表面的温度。虽然这些线圈在图2中被显示为位于膜32、34的后面附近,但是支撑流体42的导热性使得在线圈56在每个模塑部分14、16中的布置方面可以有大的设计变化。因此,即使在使用这些线圈56的地方,支撑流体42的导热性使得在线圈56在每个模塑部分14、16中的布置方面可以有大的设计变化,这会有利于给定的模具部件14、16以及线圈系统56采用多种多样的膜32、34。实际上,在本发明中,虽然所例举的设备10的膜32、34在图2中被显示为其厚度相对均匀,但是在本发明中,为控制模塑温度的效率,允许采用厚度可变的膜32、34,这例如在生产具有加强筋的制成品时是理想的。
在每个模塑部件14、16中所充入的支撑流体42在与所要求的工艺温度不同的温度下被输送的情况下,流体供应管路44还可以包括膨胀腔室62,该腔室可以是一种低压膨胀腔室。因此,在随后将每个模具部件14、16加热或冷却到所要求的温度时,任何在每个腔室38、40中所导致的热膨胀都会由膨胀腔室62来调节,从而防止在膜32、34上出现扭曲和/或有害应力。
回到附图上,在图2中可以看出,注入浇口64延伸穿过上模具部件14以提供一条通道,通过该通道来自模塑流体源66的所要求的热固性树脂可以在压力的作用下通过合适的注入泵68被注入进模腔22中。这种浇口64的数量和位置以本领域普通技术人员所公知的方式取决于所要模塑的工件的结构和所要求的特性以及所采用的模塑流体的流动特性。在这点上,可以看出,在上、下模具部件14、16的相对的凸缘36之间设有一系列小通气孔70,通过这些通气孔,在将模塑流体注入进模腔22期间夹带的空气可以被排放到大气中。或者,也可以采用其它用来使被夹带的空气从模腔22中逸出的常规方法。
根据本发明的另一个特征,该模塑设备10还可以包括在下模具部件16上大体上由参考数字72所示的机构,用来使模具组件12或装在下模具部件16中的支撑流体42振动。模具组件12或支撑流体42在树脂注入期间的振动会有利于树脂流动穿过模腔22,并且还会提高任意位于其中的纤维增强坯件的饱和度和润湿性能。
根据本发明,在这些图中所示的模塑设备10可以如下方式使用将一个或多个增强纤维坯件放进由下模具部件16的“阴”模塑表面26所限定的模腔中。然后使上模具部件14下降到下模具部件16上,从而使每个模具部件14、16上的零件接合对准,例如使销钉18和相应的销钉接受件20定位。一旦合乎要求,然后上模具部件15就能够例如通过使用合适的夹具(未示出)被固定在下模具部件16上。然后每个模具部件14、16与支撑流体供应管路44相连,并且打开其相应的通气孔52并且操纵入口阀46,从而在开始注射模塑该工件之前用支撑流体将其中的腔室38、40充满。在这点上,应该理解的是,在开始注入工序之前,模具部件14、16只需要用支撑流体42充填一次。没有必要在模塑工件之后排空每个模具部件14、16然后在模塑另外的工件之前再重新充填它们。
一旦这些腔室38、40被完全充满,则用其相应的通气孔阀54将每个模具部件封住,并且操纵加热装置60和冷却装置61,以使每个模具部件14、16达到所要求的工作温度。然后关闭每个模具部件14、16的入口阀46,以使其相应的腔室38、40与流体供应管路的膨胀腔室62隔离(该膨胀腔室在温度正常化期间已经调节了支撑流体42的任何膨胀)。
然后在压力的作用下通过注入浇口64将所要求的模塑流体注入模腔22中。对于那些本领域普通技术人员所公知的是,注射模塑流体所选择的流速取决于许多因素。
一旦模腔22完全充满模塑流体,则注入停止。模腔22是否充满可以通过模塑流体借助于形成在每个模具部件14、16的凸缘36中的进气口的排出而在视觉上来确认,或者可以用传感器来自动地确认。使用来自不同类型的传感器的反馈来优化该模塑工艺,这在下面将结合图3的说明来进行详细地描述。
每个模塑表面24、26的温度可以通过操纵加热装置60和冷却装置61来进行调节,从而提供最优的固化速度,以使完成的工件得到所要求的表面光洁度和/或其它所要求的特性,或者优化该模塑工艺。然后使模具部件14、16分开,并且可以用手或使用自动推出机把完成的工件从模腔中取出。
根据本发明的另一个特征,由于膜32、34的半刚性特点,所以这些膜在模塑流体注入期间当支撑流体42将所受到的注入压力分布到膜32、34的整个表面上时,其尺寸可以稍微变化。这样,这些半刚性膜32、34避免了有害应力在注入期间集中在模塑表面24、26上。实际上,在注入期间,一个或两个膜32、34的模塑表面24、26的稍微挠曲被认为能进一步改善或提高模塑流体流动穿过模腔22,这个效果还可以通过有意地使所注入的模塑流体波动来提高,所有这些都不会在模塑工具(膜32、34)上形成有害的冲击。
为了优化该模塑工艺,可以采用各种装置来提供反馈,该反馈可以被用来调整模塑工序的不同参数例如注入速度,从而改善所模塑的工件的质量。在图3中所示为第二种类型的模塑设备110,它具有带有类似于在图1中所示的模塑设备10的模具114、116的模具组件112。如图所示,模塑流体可以在注入泵168的作用下从模塑流体存放容器166中被排出。优选地,该系统还可以包括位于泵168和注入浇口164之间的树脂加热装置170、流速计172、压力传感器174以及混合头176。
模塑设备110还可以包括用于提供反馈以优化模塑工艺的特定优选装置。可以采用内部和外部装置来提供用于在进行注入期间监测和优化模塑工序的反馈。模具内部的传感器可以包括例如温度传感器191,这些温度传感器可以设置在每个模具部件114、116中的多个位置处,以监测模腔122中的温度。这些温度传感器可以是那些本领域普通技术人员所公知的装置,例如RTDs以及热电偶。其它内部反馈系统可以包括在模具部件114、116内部的压力传感器195以及在模腔122内部的用于在模塑流体填充模腔122的时候探测它的过程的无源传感器。这些无源传感器198在图4中所示为例如安放在阳模膜200上。但是,这些无源传感器198还可以位于阴模203上或位于两个膜上。
所采用的压力传感器195也是那些本领域普通技术人员所公知类型的装置,它在模塑流体正在被注入进模腔122的时候感知装有流体的模具部件114、116中的压力,并且提供指示模腔122中的压力的反馈。在模腔122装有模塑流体时,在模具部件114、116中所感知的压力通常会逐渐地增加。但是,在模腔122逐渐完全充满时,所感知的压力通常会相对快速地增加。压力方面的相对快速的增加表示模腔122基本上被充满了,因此可以调整注入过程。另外,可以通过将压力传感器设置在模具膜200、203的一个或两个上来感知与模腔自身相关的压力。
用于在模塑流体充入模腔122时探测模塑流体的前沿的无源传感器198可以是无源近程开关。这些开关被设计成用来探测流体的前沿而不会妨碍该流体通过模腔122。这些无源近程开关可以是那些本领域普通技术人员所公知的类型,例如一种优选的类型为电容式近程开关。
另外,还可以设有用于在注入过程中感知各种其它参数的外部装置。例如,可以设置线速度/位移传感器(LVDTs),以探测什么时候整个模腔或部分模腔被充满。LVDTs在模塑流体被注入进模腔122时探测两个模具部件114、116之间的位移。该位移量表示该模腔是否已经被充满或已经被充入多少。在这里所采用的这种LVDTs是那些本领域普通技术人员所公知的。
可以采用流速计172来在模塑流体正在被注入的时候监测它的流速。而且,可以设置压力表174来测量在模塑流体正在被注入处的压力。如果注入压力在所要求的压力范围之外的话,则可以由此来调整该注入速率。用于优化该模塑工艺的另一种装置为模塑流体加热装置170,该装置被用来加热模塑流体。如在图3中所示,加热装置170可以优选地被设在位于注入泵168和流速计172之间的系统中,从而就可以监测由加热装置170所引起的流速的变化。
除了这些传感器装置之外,还可以设置支撑流体泵,从而通过在注入结束之后将流体送进模具部件中来增加任意一个模具部件114、116中的压力。这就增加了模具部件中的压力,该压力有效地使模腔122中的压力增加。这对于例如在模具被充满之后用来加速树脂的固化过程从而加快周期是理想的。
即使在模塑流体正在被注入的时候,来自所有上述内部和外部装置的反馈也都可以被方便地用来优化模塑工艺。这些传感器一起形成了一种响应系统,该系统被设计用来关闭CNC注入机构和浮动模具之间的回路。该响应系统允许注入过程能够根据实际的模塑条件和参数来进行动态地调整,以便即使在模腔122正在被充入模塑流体的时候也能优化该注入过程。这个动态控制并优化模塑过程的能力还有利于降低周期并改善模塑工件的外观以及降低设备的磨损。
中空的装有流体的模具部件14、16、114、116具有优良的导热性,该导热性使得能够进行优良的模具温度控制。相反,在开放式设备中,热固性模塑工艺迫使用公式表示的液流学在室温下工作。因此,这种模塑工艺受到室温变化的影响。例如,有经验的复合件制造者根据天气条件会利用不同的化学公式来优化该热固性材料的固化,如选择冬天和夏天的树脂或早上和下午的催化剂量。这种特别的调节方法可以通过预测天气来进行预测。相反,根据本发明的浮动模具提供了一种稳定的且可控制的模具表面温度,它允许无须补偿室温条件就能进行模塑。所控制的温度范围使得液流学的周期更快并且其附带的优点在于化学反应的最佳控制限制条件不会受到室温范围的影响,该室温范围在别的方式中会影响生产率。因此,这种封闭式模具系统在模塑部件的生产中形成了新的可控制和可预见性。
在根据本发明的模塑设备的结构中,如上面结合图1-3所描述的一样,可以采用一种标准模型来形成一对模塑表面。如在图4至6中所示,制成一个阳模膜200和一个阴模膜203以在它们之间形成适当的空腔尺寸。优选的是,浇口164、传感器以及其它许多通过模具膜200、203与模腔122相关的零件可以采用被可拆卸地相连的模块式隔板装配件,如在图5中所示的浇口隔板装配件235和无源近程开关装配件。这些隔板装配件可以被安装在膜200、203上,作为例如在图7中所示的浇口164的隔板装配件。其它类型的隔板装配件例如无源近程开关装配件可以以类似的方式或以其它普通技术人员所公知的方法进行安装。在任一结构中,组合式装配件235、245可以被用来可拆卸地使所需的模塑零件与模具膜200、203相连。这样,所有必要的封闭式模塑零件和传感器都能够被快速地与模塑膜200、203相连或被拆卸下来。该模塑零件和传感器可以包括如浇口、自动推出机以及各种传感器如热电偶和近程开关。因此,没有必要把每个单独的零件和传感器直接层压进模具膜中。代替的是,所有零件被可拆卸地与模块式装配件235、245相连,以便于更换模具。当更换这些膜200、203时,快接式零件简单地与所更换的膜200、203分离并且重新与设在更换模具膜224、227上的模块式装配件235、245相连。但是,这些部件以及安装凸缘可以选择性地被直接层压模塑进模具膜200、203中。
为了形成两个模具,可以形成一对通用的容器209、212,一个用于阳膜200,另一个用于阴膜203。每个通用容器209、212的框架设有外皮210、213,该外皮可以由例如金属薄板来制成,以形成闭合的刚性模具部件114、116。可以设有凸缘215,其内圆周对应于模具膜200、203的几何形状,其外圆周对应于通用容器209、212的几何形状。凸缘215可以被连至每个模具膜200、203。每个模具膜200、203通过凸缘215被连接至其各自对应的通用容器209、212上,以在每个通用容器和其对应的模具膜之间形成不漏液体的密封。一旦模具膜200、203被密封至模具部件114,116,每个模具部件便充满支撑流体42,如图4所示。可以采用由两个模具部件114,116以及所连接的膜200,203构成的单个模具112,以通过更换连接在每个通用容器209,212的阳性模具膜200和阴性模具膜203来简单地生产各种不同的工件。
由图3中可以看出,中空模具部件14、16的每个刚性外壳28、30形成了一个腔,该腔由图6中L、W和H所分别代表的外壳28、30的长度、宽度和高度确定了一个固定容积。该容积,尤其是阴模具部件14的容积限定了工作包络面,半刚性膜32、34必须与该包络面相配合。尽管在图2中所示的半刚性膜32、34具有简单的“轮毂”形,但是实际上该半刚性膜32、34可以被形成为任何不同的形状,例如如图4-6所示,它只受主要由阴模部分32的固定尺寸限定的工作包络面的尺寸所限制。在结合图6时将会详细描述,通过简单地替换不同形状的半刚性膜32、34,同样的刚性外壳28、30可以被用来模塑不同形状的工件。
当模具部件114、116已经充满了支撑流体42并且所有的空气从每个模具部件的内部被排出时,该设备就已经准备好用于模塑工件。两个装配好的模具部件114、116可以被放置在一个提升机架(未显示)中,该机架被用于使得模具打开和关闭以制造工件。由于支撑流体42的不可压缩性,该浮动模具是刚性液压系统。作用在模具膜200、203上的任何力,例如内部注入压力,会通过支撑流体42而传递至通用容器209、212。该通用容器被设计成可处理由注入过程产生的最大潜在压力。一般来说,这种模具可以被在任何低压注入过程中使用。
尽管在图4中没有显示出,但是每个模具部件114,116可以设有图2中所描述的加热线圈56。供选择的加热线圈56可同样被连接至加热装置160和冷却装置161,用于控制支撑流体42的温度。
为了生产工件,把已充满的模具部件114,116关闭,从而开始注入过程。因为每个模具部件114,116都充满了流体,因此模具具有优异的导热性能,它可以大大改善模具表面的温度控制,从而降低了生产周期,并改善了外观。如图6所示,模塑不同形状的工件就是取出一套模具膜200、203并换上具有不同形状的另一套这样简单。浮动模具的一些好处在于灵活、成本降低、可快速推向市场、以及提高闭合模塑性能。例如当工件设计改变时,不需要制造新的模具并淘汰现有模具,或进行昂贵的模具改造,只需简单的将模具膜替换即可。该模具膜可以是复合的层状物,它可以被再造成价格可比的光面的、溅射成型的或人工层压的模具。浮动模具的通用容器209,212限定了所谓的“工作包络面”。它意味着任何将被装进通用容器209,212并且主要是最终通用容器212的L、W和H中的工件,都可以通过简单地生产出新的阳膜200和阴膜203的模具膜并将它们连接在通用容器209,212上进行生产。因此通用容器209,212的模具制造成本就被优化了。
如图4-6所示,浮动模具应用的良好实例是船甲板和船身的模塑。模塑者可以容易地更换模具部件114,116的膜200,203,以在需要时制造不同的工件。浮动模具被设计成使得能够在不到十分钟的时间内来更换整个模具。
除了使用闭合循环的温度调节系统之外,装有不可压缩流体仍然是本发明的优点。因为该流体被限制在每一个模具部件14,16(或114,116)内,并且因为流体是不可压缩的,因此它用来加强膜32,34(或200,203,224,227)。通过使用该流体,该模塑膜可以由非常薄的层形成。因此,增强了被模塑的工件的热传递控制,从而就可以更容易和更廉价地形成这些模具膜。优选的是,每一个模具膜可以由高导热性材料形成。相对较大体积的流体,例如水,也可以提供相对较稳定的温度环境,因为它可以阻止对模塑的工件有不利影响的温度快速波动的出现。
现参照图7,该图显示出用于将浇口164可拆卸地连接至模具膜200的模块式隔板组件229具有三个基本部件模具外壳隔板装配件230,它与模具外壳209相连;延伸部件232,它具有适当的长度,以跨越外模具外壳209至模具膜200的距离;以及模具膜隔板装配件235,它与模具膜200相连。模具膜隔板235235包括其一端穿过模具膜200而凸出的隔板体236。隔板螺母240在模具膜200与隔板体相对的内侧上连接至隔板体236。插孔241可以设在隔板体236上,用于接收将隔板螺母240固定至隔板体236上的紧固件242。可以采用所示的垫圈237和O形环238来进行适当的密封。延伸部件232在其一端可以具有接收部分233,用于连接至隔板体236。一旦装配好之后,如果需要更换膜,模具膜隔板装配件235可以容易地与模具膜200脱开。可以理解,对于将一些部件和传感器可拆卸地连接至模具膜,普通技术人员可以采用其它的替换方式。
另外,尽管在这里已经描述了本发明的特定优选实施例,但是可以理解,可以对本发明作出改进。本发明的范围在后附权利要求书中进行了限定。
权利要求
1.一种模塑工件的方法,包括a.将第一和第二刚性中空模具部件以相互对置并隔开的方式布置;b.在连接在所述第一中空模具部件一侧上的第一半刚性膜和连接在所述第二中空模具部件一侧上并与所述第一半刚性膜相邻的第二半刚性膜之间限定出一模腔,从而当所述第一和第二中空模具部件闭合在一起来模塑工件时,所述第一和第二半刚性膜彼此对置,以在它们之间形成所述模腔;c.将基本上不可压缩的支撑流体充入所述第一和第二刚性中空模具部件,从而在所述模腔内产生的模塑压力从所述第一和第二半刚性膜传递给所述第一和第二刚性中空模具部件;d.通过一个与所述第一和第二刚性中空模具部件流体相通的膨胀腔调节支撑流体的热膨胀;e.将模塑流体注入所述模腔,以生产出模塑工件;f.监测所述注入模塑流体的流速;g.检测指示所述模腔正在充入所述模塑流体的至少一个参数;h.根据所述至少一个参数控制所述流速;以及其中,还包括在将模塑流体注入所述模腔期间使所述刚性中空模具部件与所述膨胀腔隔离。
2.一种模塑复合工件的方法,包括a.将第一和第二刚性中空模具部件以相互对置并隔开的方式布置;b.在连接在所述第一中空模具部件一侧上的第一半刚性膜和连接在所述第二中空模具部件一侧上并与所述第一半刚性膜相邻的第二半刚性膜之间限定出一模腔,从而当所述第一和第二中空模具部件闭合在一起来模塑工件时,所述第一和第二半刚性膜彼此对置,以在它们之间形成所述模腔;c.将基本上不可压缩的支撑流体充入所述第一和第二刚性中空模具部件,从而在所述模腔内产生的模塑压力从所述第一和第二半刚性膜传递给所述第一和第二刚性中空模具部件;d.通过一个与所述第一和第二刚性中空模具部件流体相通的膨胀腔调节支撑流体的热膨胀;e.在将所述第一和第二模具部件闭合在一起来模塑工件之前,在所述第一和第二半刚性膜之间插入增强材料;f.将第一和第二模具部件相对着闭合,从而所述增强材料被夹在所述模腔内;g.将所述第一和第二模具部件以及夹在所述模腔内的增强材料刚性地固定一起;h.在压力下把模塑流体注入所述模腔中,以生产模塑工件;i.监测所述注入模塑流体的流速;j.检测指示所述模腔正在充入所述模塑流体的至少一个参数;k.根据所述至少一个参数控制所述流速;以及其中,还包括在将所述模塑流体注入模腔期间使模塑流体波动的步骤。
3.一种模塑工件的方法,包括a.将第一和第二刚性中空模具部件以相互对置并隔开的方式布置;b.在连接在所述第一中空模具部件一侧上的第一半刚性膜和连接在所述第二中空模具部件一侧上并与所述第一半刚性膜相邻的第二半刚性膜之间限定出一模腔,从而当所述第一和第二中空模具部件闭合在一起来模塑工件时,所述第一和第二半刚性膜彼此对置,以在它们之间形成所述模腔;c.将基本上不可压缩的支撑流体充入所述第一和第二刚性中空模具部件,从而在所述模腔内产生的模塑压力从所述第一和第二半刚性膜传递给所述第一和第二刚性中空模具部件;d.检测所述支撑流体的温度;e.控制所述支撑流体的温度,以通过一位于所述第一和第二刚性中空模具部件中的线圈系统调整所述模腔的温度;f.将模塑流体注入所述模腔,以生产出模塑工件;g.监测所述注入模塑流体的流速;h.检测指示所述模腔正在充入所述模塑流体的至少一个参数;以及i.根据所述至少一个参数控制所述流速。
4.一种模塑工件的方法,包括a.将第一和第二刚性中空模具部件以相互对置并隔开的方式布置;b.可移动地安装连接在所述第一中空模具部件一侧上的第一半刚性膜和连接在所述第二中空模具部件一侧上的第二半刚性膜,以在每个模具部件中限定出一流体密封腔室;c.将所述半刚性膜布置成当所述第一和第二中空模具部件闭合在一起来模塑工件时,所述第一和第二半刚性膜彼此对置,以在它们之间形成所述模腔;d.将基本上不可压缩的支撑流体充入所述第一和第二刚性中空模具部件,从而在所述模腔内产生的模塑压力从所述第一和第二半刚性膜传递给所述第一和第二刚性中空模具部件;e.通过一个与所述第一和第二刚性中空模具部件流体相通的膨胀腔调节支撑流体的热膨胀;f.将模塑流体注入所述模腔,以生产出模塑工件;g.监测所述注入模塑流体的流速;h.检测指示所述模腔正在充入所述模塑流体的至少一个参数;以及i.根据所述至少一个参数控制所述流速。
5.如权利要求4所述的方法,其特征在于,包括在将所述模塑流体注入模腔期间使模塑流体波动的步骤。
6.如权利要求4所述的方法,其特征在于,包括在将所述模塑流体注入模腔期间使模具组件振动的步骤。
全文摘要
一种模塑复合工件的方法,包括采用带有第一和第二模塑膜(32,34)的一对对置的中空模具部件(14,16),所述模塑膜限定了一模腔(22)。在每个模具部件(14,16)中充满基本上不可压缩的导热流体。模腔(22)的温度可以通过调节该导热流体的温度来控制。通过检测模塑流体的注入和固化过程中的各种参数(例如压力、流速、温度以及模腔的充填程度等)可以优化模塑过程。
文档编号B29C45/37GK1506208SQ20031010121
公开日2004年6月23日 申请日期2000年3月10日 优先权日1999年3月12日
发明者罗伯特·P·麦科勒姆, 吉恩·E·基里拉二世, E 基里拉二世, 罗伯特 P 麦科勒姆 申请人:Vec技术公司