专利名称:盘基板成形用金属模及盘基板的制造方法
技术领域:
本发明涉及用于成形盘基板的盘基板成形用金属模及盘基板的制造方法。
背景技术:
光盘基板或光磁盘基板等盘基板,从生产性的观点出发,通过在设在金属模内部的模腔内填充熔化的热塑性树脂进行制作。在装在金属模内的用镍等制作的压模(光盘母模)上形成微小的凹凸坑或槽。通过熔化的热塑性树脂与压模接触,在热塑性树脂上转印压模上的微小的凹凸坑或槽,然后通过固化熔化的热塑性树脂,得到所要求的光盘基板(例如,参照专利文献1)。
在专利文献1公开的以往的一般金属模结构中,在模腔的上下分别配设温度调节用的固定侧镜面盘及可动侧镜面盘。压模装在可动侧镜面盘上,通过压模支持器固定压模的内侧,通过外周环固定压模的外侧。
可是,由于密度越高压模上的微小的凹凸坑或槽间的尺寸越窄,所以热塑性树脂难进入微小的凹凸坑或槽。为了在光盘基板上转印凹凸坑或槽,需要将压模的温度提高到高于热塑性树脂的热变形温度。为了提高热塑性树脂的流动性,由于需要更加提高压模的最高到达温度,因此需要进一步提高调节金属模温度的热介质温度。
但是,如果提高调节金属模温度的热介质温度,由于填充到金属模内的热塑性树脂冷却到可取出的温度需要时间,因此延长光盘基板的成形时间。因此,为了即使热介质温度低,也能得到高温的压模温度,提出了在压模的背面设置具有隔热性的板的金属模结构(例如,参照专利文献2)。
此外,公开了以在上下金属模内厚度方向的温度上下对称地变化的方式在上下金属模内分别设置低导热材的金属模结构(例如,参照专利文献3、专利文献4及专利文献5)。
作为低导热材,主要采用聚酰亚胺等耐热性塑料或陶瓷。作为金属的低导热材,在专利文献2中公开了采用铝及铜,在专利文献5中公开了采用铋。
下面,说明在以往的金属模结构中存在的问题。
在专利文献3所公开的金属模结构中,固定侧压模及可动侧压模具有缓冷板。固定侧压模及可动侧压模的内侧由内周保持器保持,固定侧压模及可动侧压模的外侧,由外周环保持。即,缓冷板的外侧面由外周环保护。由于可动侧压模以大于固定侧压模的尺寸构成,所以可动侧外周环放置在固定侧外周环的外侧。因此,固定侧外周环保持固定侧压模,同时与可动侧压模的外周部分接触。即,形成由固定侧压模和可动侧压模夹持固定侧外周环的结构。并且,固定侧外周环划定光盘基板的外周侧面。其结果,如果树脂填充压力大于模紧固压力(合模压力),金属模就会从可动侧压模的接触面分开。其结果,出现在固定侧外周环和可动侧压模的间隙内进入树脂,在光盘基板的外周侧面产生飞边的问题。
在专利文献4的金属模结构中,安装在金属模的衬垫安装部上的衬垫,用内侧用的压板固定,分别用外侧用的压板压衬垫的外周部分。但是,在衬垫的外周部分由于形成外侧用的压板形成的错差,因此在成形的光盘基板的外周部分,存在不能够形成微小的凹凸坑或槽的问题。
在专利文献5的金属模结构中,以可动金属模嵌合在固定金属模的凹形状部分的同时滑动的方式构成。在可动金属模及固定金属模上分别安装隔热材,在可动金属模滑动时,由于安装在可动金属模上的隔热材的外周侧面,在固定金属模的凹形状部分一边与内周面嵌合一边滑动,因此存在隔热材容易从外周侧面部分剥离的问题。
在专利文献6的金属模结构中,由耐热聚合物构成的隔热层及金属层,从基体金属模的模腔面延伸到侧面。但是,设在基体金属模的侧面上的隔热层及金属层,与对向的固定侧安装板接触,同时构成分割成2个的分割面。因此,设在基体金属模的侧面上的隔热层及金属层,在成形时没有作为滑动部发挥作用。
此外,以往,作为低导热材,采用塑料材料、陶瓷材料或金属材料,但在如此的低导热材料中,存在以下问题。
即,塑料材料,一般刚性及表面强度差。陶瓷材料,一般由于脆而耐冲击性低。专利文献2中公开的铝或铜(金属材料),由于导热率比基体金属模材料不锈钢高,因此不能用作低导热材。此外,专利文献5中公开的铋,由于脆,硬度也低,因此机械性能不好。
专利文献1特开平8-66945号公报专利文献2特开昭62-5824号公报专利文献3特开平7-100866号公报专利文献4特开平9-207141号公报专利文献5特开2000-331385号公报专利文献6特开平9-262838号公报发明内容本发明是鉴于以上的事实而提出的,其目的在于提供一种能够防止低导热要件的剥离及在外周的飞边的发生,微小的凹凸坑或槽形成到盘基板的外周的盘基板成形用金属模及盘基板的制造方法。
本发明的盘基板成形用金属模,其特征在于具有,第1金属模、与所述第1金属模对向配置的第2金属模、固定在所述第1金属模上的第1低导热要件、固定在所述第1低导热要件上的压模、固定在所述第2金属模上的第2低导热要件、与所述第1低导热要件上或第2低导热要件中任何一方嵌合滑动的环状控制部件;所述环状控制部件的端部位于滑动的低导热要件的外周侧面的范围内。此外,本发明的盘基板的制造方法,其特征在于采用所述盘基板成形用金属模来制造盘基板。
根据本发明,由于在填充时,即使树脂填充压力大于金属模紧固压力,金属模稍微分开,在由压模、第2低导热要件和环状控制部件划定的模腔的嵌合部也不存在间隙,因此能够抑制在盘基板的外周侧面发生飞边。此外,由于盘基板的外周部分平坦,因此微小的凹凸坑或槽能够尽可能地形成到外周部分。此外,由于低导热要件的非卡合端部不位于低导热材和环状控制部件的嵌合部,所以能够防止从基体金属模剥离低导热材。
此外,通过采用上述金属模,与不具有低导热材的金属模相比较,即使用于调节金属模温度的热介质温度低,也由于能够在盘基板上转印压模上的凹凸,所以与以往相比,即使制作高密度的盘基板,也不会延长成形时间。
图1是本发明的第1实施方式所用的金属模的简要剖面图。
图2是本发明的第1实施方式所用的金属模的外周部分(X部分)的放大剖面图。
图3是说明以不设置低导热材时为基准,调节在光盘基板上的转印达到一定的金属模温度的热介质温度的降低量和低导热材的导热率的关系的图示。
图4是说明金属元素单体的维氏硬度和杨氏模量的关系的图示。
图5是本发明的第2实施方式所用的金属模的外周部分的放大剖面图。
图6是本发明的第3实施方式所用的金属模的简要剖面图。
图7是本发明的第3实施方式所用的金属模的外周部分的放大剖面图。
图8是本发明的第4实施方式所用的金属模的外周部分的放大剖面图。
具体实施例方式
以下,参照附图,详细说明本发明的第1~第6实施方式。
(第1实施方式)首先,参照图1~图4,详细说明本发明的第1实施方式。
图1是本发明的第1实施方式所用的金属模的主要部位的剖面图。成4用金属模,具有固定金属模1和可动金属模2。固定金属模1,从模腔20侧看,形成按压模6、作为第1低导热要件的低导热材7、作为第1基体金属模的固定侧镜面盘8、固定侧基盘4的顺序层叠的结构。
在固定金属模1的中央部设置用于向模腔20内注入熔化树脂的浇道套3。在浇道套3的外侧设置压模支持器5。通过该压模支持器5,相对于固定侧镜面盘8一体地固定压模6及低导热材7的内周部分。压模6及低导热材7的外周部分通过从设在固定侧基盘4及固定侧镜面盘8上的吸引通路A真空吸引,固定在固定侧镜面盘8上。在固定侧镜面盘8的最外侧设置固定侧固定定位环9,固定侧固定定位环9固定在固定侧基盘4上。
可动金属模2,从模腔20侧看,形成按作为第2低导热要件的低导热材15、作为第2基体金属模的可动侧镜面盘16、可动侧基盘13的顺序层叠的结构。在可动金属模2的中央部配设顶杆10、冲头11及推顶套筒12。顶杆10及推顶套筒12,以在从金属模内取出注射成形的光盘基板时突出的方式构成。冲头11,用于在成形的光盘基板上形成内孔。在推顶套筒12的外侧设置低导热材支持器14。通过该低导热材支持器14,将低导热材15的内周部分固定在可动侧镜面盘16上。通过从设在可动侧基盘13及可动侧镜面盘16上的吸引通路B真空吸引,相对于可动侧镜面盘16固定低导热材15的外周部分及侧面部分。
图2是放大图1的X部分的图示。
低导热材15,覆盖可动侧镜面盘16的上面及外周侧面。低导热材15的外周侧面29的非卡合端部21延伸到可动侧镜面盘13的正前方。
在固定侧基盘4和可动侧基盘13的内部,为了调节固定金属模1及可动金属模2的金属模温度,设置使水等热介质流通的通路。通过从外部加热或冷却热介质,分别将固定金属模1及可动金属模2的金属模温度调节至规定温度。
在低导热材15的外侧形成相对于低导热材15嵌合划定光盘基板的外周侧面的外周环17的构成。外周环17,通过压缩弹簧22向固定金属模1的方向作用力。在可动侧基盘13的表面形成沿着低导热材15的外周侧面29的最下端部即非卡合端部21的形状的环状槽23。通过该环状槽23,即使是低导热材15的非卡合端部21延伸到可动侧基盘13的正前方的构成,也能够防止因低导热材15的热膨胀,而与可动侧基盘13接触。能够防止低导热材15从可动侧镜面盘16剥离。
在外周环17的进一步的外侧设置可动侧固定定位环18。外周环17的压缩弹簧22和可动侧固定定位环18,都固定在可动侧基盘13上。因此,可动金属模2在上下方向运动时,外周环17和可动侧固定定位环18,与可动侧基盘13一起一体地运动。可动侧固定定位环18,在关闭固定金属模1和可动金属模2时,与固定侧固定定位环9对接,规定模腔20的高度,即光盘基板的厚度。
形成环状形状的外周环17的内周侧面27,与低导热材15的外周侧面29滑动接触。外周环17的内周侧面27和低导热材15的外周侧面29在滑动接触面24滑动接触。形成以外周环17的下端部26位于低导热材15的最上面即成形面28的下方、同时外周环17的下端部26位于低导热材15的最下端部即非卡合端部21的上方的状态卡合的结构。即,外周环17的下端部位于滑动接触的低导热材15的外周侧面29的范围内。外周环17,尽管沿低导热材15的外周侧面29上下方向稍微滑动,但也不会从低导热材15的外周侧面29脱落。
接着,研究作为低导热要件即低导热板7及低导热材15所要求的导热率。固定侧基盘8及可动侧镜面盘16由不锈钢构成。固定侧基盘8及可动侧镜面盘16的导热率大致为25W/m·K。对此,对在用不锈钢制作低导热板7及低导热材15时、和不设置低导热板7及低导热材15而加厚固定侧基盘8及可动侧镜面盘16时,进行了实验。即,在采用坑密度40Gbit/in2的压模,使调节固定金属模1及可动金属模2的金属模温度的热介质温度相同的条件下,进行注射成形,求出得到良好转印性的热介质温度。压模由镍制,导热率为90W/m·K。热塑性树脂是聚碳酸酯树脂,成形周期为10秒。此外,测定成形开始前后的压模表面和镜面表面的温度,求出部件间的导热度。基于此数据,以未设低导热板7及低导热材15时为基准,求出压模的最高到达温度达到相同时的热介质温度。其结果示于图3。
从图3看出,与不设置作为低导热要件的低导热板7及低导热材15时相比,能够使热介质温度降低10K以上的,是低导热板7及低导热材15的导热率在15W/m·K以下的情况。因此,作为低导热材15的导热率,需要在15W/m·K以下。
下面,研究作为低导热材15所必需的机械性能。制作纯金属的厚2mm的板,进行研究变形及表面损伤有无的实验。调查在1万次反复施加与在成形时外加的树脂填充压力对应的负荷时有无变形。此外,调查用布进行划痕试验时有无损伤。
表1示出变形和损伤的结果。关于变形,由于与表示材质的刚性的杨氏模量具有相关关系,所以在表1中一并记载杨氏模量的数据。关于损伤,由于与表示材质的表面硬度的维氏硬度具有相关关系,所以在表1中一并记载维氏硬度的数据。也一并记载构成金属模本体的不锈钢的数据。
表1
从上述结果看出,由纯金属构成的低导热材,只要杨氏模量在100GPa以上,维氏硬度在50以上就可以。
这里,除不锈钢以外的纯金属的维氏硬度和杨氏模量的关系,如图4所示。从图4看出,有杨氏模量越高、维氏硬度越高的倾向,可理解为如果杨氏模量在100GPa以上、则维氏硬度就在50以上。因此,作为低导热材15,只要杨氏模量在100GPa以上就可以。
但是,导热率在15W/m·K以下、且杨氏模量在100GPa以上的金属材料,在纯金属中不存在。
可是,合金的杨氏模量示出接近主成分的纯金属的值,合金的表面硬度大于纯金属的硬度。经过深入探索各种金属材料,结果发现,以钛为主成分的钛合金,具有7~8W/m·K的导热率。
此外,在是钛合金中的α-β合金时或β合金时,杨氏模量为100~130GPa,作为表面硬度的维氏硬度,示出与构成金属模本体的不锈钢同等以上的值,足够硬。
固定金属模1和可动金属模2。通过嵌合固定侧固定定位环9和可动侧固定定位环19来进行定位。即,利用设在固定侧固定定位环9和可动侧固定定位环19上的锥部,进行中心方向的定位,利用平坦部进行厚度方向的定位。结果,形成能够抑制因外周环17相对于低导热材15滑动产生的磨损的结构。并且,相互的材质越硬、越能抑制磨损。外周环17与其他金属模部件同样在用不锈钢制作时,确认了关于低导热材15的硬度,只要维氏硬度在100以上,在实用上就无问题。所以,低导热材15,优选维氏硬度在100以上。当然,也可以用与低导热板7及低导热材15相同的材质制作外周环17。
作为低导热要件的低导热板7及低导热材15,采用AMS(航空宇宙材料标准)4911即Ti-6Al-4V制作。该材料是含有5.50~6.75wt%的铝、3.50~4.50wt%的钒、及余量为钛的合金材料。该材料的杨氏模量为113GPa。厚2mm。
采用坑密度40Gbit/in2的压模,在使固定金属模1及可动金属模2的金属模温度、换句话讲热介质温度相同的条件下,进行注射成形。然后,求出充分转印规定的坑形状时的热介质温度。使用的热塑性树脂是聚碳酸酯树脂,成形周期为10秒。按5K间隔变化热介质温度,进行注射成形实验,结果表明,与不配设低导热板7和低导热材15时比较,热介质温度即使低大约15K,也能够得到规定的坑形状。
低导热板7及低导热材15的厚度,从确保加工性的角度考虑,优选2mm以上。在低导热板7及低导热材15的厚度在2mm以上时,从注入到金属模的模腔20内的树脂散热的初期速度大致一定。而且,低导热板7及低导热材15的厚度越增加、低导热板7及低导热材15的热容量就越增大。其结果,低导热板7及低导热材15难冷却,光盘基板的制作时间延长。因此,低导热板7及低导热材15的厚度,在10mm以下,优选在5mm以下。
在上述钛合金中,除钛以外,还可含有铝或钒或钼、铁、铬。铝具有增大蠕变强度的性质。钒或钼、铁、铬等,具有增大杨氏模量或改进加工性的性质。从机械性能及加工性方面考虑,优选铝含有量为2wt%~9wt%,钒含有量为2wt%~16wt%。更优选,铝含有量为2wt%~7wt%,钒含有量为2wt%~6wt%。在此种情况下,能够制作具有足够机械性能和加工性的薄板材。如果铝过于超过上述含有量,则杨氏模量降低,如果钒过于超过上述含有量,则加工性下降。此外,如果铝及钒都小于上述含有量,不产生各自的效果。
低导热板7及低导热材15的表面粗度(中心粗度),从确保通过压模6转印的光盘基板表面的平坦性的角度考虑,最好在0.2μm以下。
在低导热板7及低导热材15的表面粗度,按中心粗度,大于0.2μm的情况下,有在成形的光盘基板表面上转印流纹,降低光盘基板的聚焦或跟踪的信号质量,信号不能充分读出的顾虑。当然,低导热材15的表面粗度,只对用透过光盘基板中的激光进行在光盘基板上记录·抹去·再生数据中的任何一种时有影响,但是在不通过光盘基板,用从相反侧入射的激光进行记录·抹去·再生数据中的任何一种的情况下,低导热材15的表面粗度几乎没有影响。
在第1实施方式中,由于在金属模的模腔20的上下分别设置作为低导热要件的低导热板7及低导热材15,所以不太需要提高调节金属模温度的热介质温度。其结果,能够制作可用与现今的密度的同等程度的时间成形、而且表面振动或翘曲也无变化的高密度的光盘基板。
此外,形成划定光盘基板的外周侧面的外周环17的内周侧面27与构成模腔20的下面的低导热材15的外周侧面29嵌合的结构。因此,在填充熔化树脂时,即使树脂填充压力大于模紧固压力,金属模稍微分开,由于通过压缩弹簧22,外周环17向固定金属模1侧作用力,所以在模腔20内不形成间隙。因此,在光盘基板的外周侧面不发生飞边。
另外,由于与滑动的外周环17接触的低导热材15由具有足够的机械性能的材料构成,因此没有低导热材15的滑动面24磨擦,破坏低导热材15的顾虑。
此外,低导热材15的外周侧面29的最下端即非卡合端部21,与外周环17的下端部26相比,位于下方,外周环17的内周侧面27的下端部26,相对于低导热材15的外周侧面29,通常重合。即,由于外周环17的下端部26位于滑动接触的低导热材15的外周侧面29的范围内,所以没有低导热材15的侧面卷起,从可动侧镜面盘16剥离的顾虑。
此外,由于自由的平坦部分延伸到模腔20的外周部分,所以在注射成形的光盘基板中,微小的凹凸坑或槽能够尽可能地形成到外周部分。
另外,作为低导热要件的低导热材7,不直接面对模腔20,此外,由于无滑动磨擦,因此不一定需要采用与作为低导热要件的低导热材15相同的材料,但也可以是相同的材料。
此外,用同系统的吸引通路A真空吸引固定侧金属模1侧的低导热材7和压模6,当然,也可以用其他系统的吸引通路分别单独真空吸引。
此外,作为热塑性树脂,使用聚碳酸酯树脂,但也可以使用聚烯烃树脂、丙烯酸树脂或其他树脂。
(第2实施方式)图5是本发明的第2实施方式的盘基板成形用金属模的外周部的详细剖面图。与第1实施方式相比较,共同点为低导热材15向可动侧镜面盘16的外周侧面延伸,外周环17的下端部26位于低导热材15的最下面即非卡合端部21的上方。但是,在图5中,即使外周环17滑动,外周环17的下端部26也会停止在低导热材15的非卡合端部21的上方的位置,形成为不到达低导热材15和可动侧镜面盘16接合的接合面的位置的构成。因此,在此种情况下,也由于外周环17的下端部26位于滑动接触的低导热材15的外周侧面29的范围内,因此没有低导热材15从可动侧镜面盘16剥离的顾虑。
此外,通过将低导热材15的材质规定在杨氏模量100GPa以上,也无因与外周环17的滑动部磨擦而破损的顾虑。另外,与第1实施方式时同样,由于在模腔20的外周部分形成平坦,所以在注射成形的光盘基板上,微小的凹凸坑或槽尽可能地形成到外周部分。
而且,由于在金属模内的模腔20的上下分别设置低导热板7及低导热材15,所以不太需要提高用于调节金属模温度的热介质温度。其结果,能够制作可用与现今的密度的同等程度的时间成形、而且表面振动或翘曲也无变化的高密度的光盘基板。此外,形成划定光盘基板的外周侧面的外周环17与形成模腔20的1个侧壁的低导热材15嵌合的结构。因此,在填充熔化树脂时,即使树脂填充压力大于模紧固压力,金属模稍微分开,由于通过压缩弹簧22,外周环17向固定金属模1侧作用力,所以在模腔20内不形成间隙。因此,在光盘基板的外周侧面,不发生飞边。
(第3实施方式)图6是本发明的第3实施方式的盘基板成形用金属模的简要剖面图。此外,图7表示金属模的外周部分的X部的放大详细图。
在第3实施方式的盘基板成形用金属模中,与第1实施方式相比,外周环17的固定方法及低导热板7和低导热材15的固定方法不同。
在低导热板7的外周部分的上面设置不贯通的螺孔42。此外,在固定侧镜面盘8上的与上述螺孔42吻合的位置上设置贯通孔41。低导热板7,通过将螺丝32螺合在螺孔42内,而固定在固定侧镜面盘8上。
在固定侧镜面盘8的下面,设置不贯通的螺孔44。在外周环17上,在与上述螺孔44吻合的位置上设置贯通孔43。外周环17,通过将螺丝34螺合在螺孔44内,固定在固定侧镜面盘8上。
在可动金属模2侧的低导热材15的外周部分的上面,设置不贯通的螺孔46。此外,在可动侧镜面盘16上,在与上述螺孔46吻合的位置上设置贯通孔45。低导热材15,通过将螺丝36螺合在螺孔46内,固定在可动侧镜面盘16上。
在可动金属模2侧的低导热材15的外周侧面29的下部,设置锪锥孔47。此外,在可动侧镜面盘16上,在与上述锪锥孔47吻合的位置上设置不贯通的螺孔48。低导热材15的外周侧面29,通过将螺丝38螺合在螺孔48内,固定在可动侧镜面盘16上。所以,即使外周环17的内周侧面27与低导热材15滑动,也不与螺丝38的头部摩擦。
采用第3实施方式的盘基板成形用金属模,通过注射成形聚碳酸酯或聚烯烃树脂等热塑性树脂,也能够制作光盘基板。
即使在第3实施方式中,由于金属模内的模腔20的上下分别设置低导热板7和低导热材15,所以不太需要提高用于调节金属模温度的热介质温度。其结果,能够制作可用与现今的密度的同等程度的时间成形、而且表面振动或翘曲也无变化的高密度的光盘基板。此外,形成划定光盘基板的外周侧面的外周环17与形成模腔20的下面的低导热材15嵌合的结构。因此,在填充熔化树脂时,即使树脂填充压力大于模紧固压力,金属模稍微分开,由于外周环17固定在固定金属模1上,所以在模腔20内不形成间隙。因此,在光盘基板的外周侧面,不发生飞边。并且,由于与滑动的外周环17接触的低导热材15,由具有足够的机械性能的材料构成,所以没有磨擦低导热材15的滑动面24而损坏低导热材15的顾虑。此外,低导热材15的外周侧面29的最下端即非卡合端部21位于外周环17的下端部26的下方,外周环17的内周侧面27的下端部26相对于低导热材15的外周侧面29始终重合,所以没有低导热材15的侧面卷起而从可动侧镜面盘16剥离的顾虑。此外,由于自由的平坦部分延伸到模腔20的外周部分,所以在注射成形的光盘基板中,微小的凹凸坑或槽能够尽可能地形成到外周部分。
低导热材7,由于不直接面对模腔20,也不滑动摩擦,因此未必需要采用与低导热材15相同的材料,但也可以是相同的材料。
在第3实施方式的情况下,由于压模6及低导热材7的外周部分,利用外周环17的固定用的螺丝34固定在固定侧镜面盘8上,所以未定需要从吸引通路A真空吸引压模6。在螺丝的安装部采用锪孔和锪锥孔,但它们也可以相互代替或完全相同。
(第4实施方式)图8是本发明的第4实施方式的盘基板成形用金属模的外周部的详细剖面图。第4实施方式的盘基板成形用金属模,也形成固定在可动侧镜面盘16上的低导热材15的外周侧面29相对于固定在固定侧镜面盘8上的外周环17的内周侧面27滑动接触的构成。
第4实施方式的盘基板成形用金属模,与第3实施方式的盘基板成形用金属模相比,相同点为低导热材15向可动侧镜面盘16的外周部分延伸,外周环17的下端部26位于低导热材15的最下面即非卡合端部21的上方。但是,在图5中,即使可动金属模2上下方向移动,外周环17的下端部26,也停止在低导热材15的非卡合端部21的上方的位置,形成不到达低导热材15和可动侧镜面盘16接合的接合面的位置的构成。因此,在此种情况下,由于外周环17的下端部26位于滑动接触的低导热材15的外周侧面29的范围内,因此没有低导热材15从可动侧镜面盘16剥离的顾虑。
此外,由于将低导热材15的材质规定在100GPa以上的杨氏模量,所以在低导热材15相对于外周环17滑动的部分,也不会有因磨损而破损的顾虑。此外,与第1实施方式时同样,即使在模腔20的外周部,由于确保平坦部,所以在注射成形的光盘基板上,微小的凹凸坑或槽尽可能地形成到外周部分。
并且,由于在金属模内的模腔20的上下分别设置低导热板7及低导热材15,所以不太需要提高用于调节金属模温度的热介质温度。其结果,能够制作可用与现今的密度的同等程度的时间成形、而且表面振动或翘曲也无变化的高密度的光盘基板。此外,形成划定光盘基板的外周侧面的外周环17与形成模腔20的1个侧壁的低导热材15嵌合的结构。因此,在填充熔化树脂时,即使树脂填充压力大于模紧固压力,金属模稍微分开,由于外周环17固定在固定金属模1上,所以在模腔20内不形成间隙。因此,在光盘基板的外周侧面,不发生飞边。
(第5实施方式)本发明的第5实施方式的盘基板成形用金属模,与第1实施方式~第5实施方式的盘基板成形用金属模相比,其特征在于用刚性高的金属材料覆盖低导热材15的表面。即,为了容易保护管理用作低导热材15的钛合金上的镜面,用刚性高的金属材料覆盖。该覆盖层,最好机械性能优于钛合金,杨氏模量在150GPa以上,优选200GPa以上,最好是镍、铬、钨、钼等金属。该覆盖层,由从镍、铬、钨、钼中选择的至少一种构成。作为覆盖方法,有真空蒸镀法、溅射法或镀膜法等。用镀膜等表面处理形成的覆盖层,有硬度高于松散(bulk)品的倾向。例如,松散品的镍的维氏硬度在表1中为120,但是电镀的覆盖层达到300左右,在非电解镀的覆盖层达到500左右。此外,如果用350~400℃热处理非电解镀的覆盖层,维氏硬度提高到900左右。松散品的铬的维氏硬度通常为120,但是电镀的覆盖层达到1000左右。为了维持低导热材15的镜面性,在低导热材15上形成硬质的覆盖层。作为覆盖层的覆盖方法,适合采用电解或非电解的镀膜处理方法,此外,优选在用镀膜处理方法等形成覆盖层后,再次进行热处理。
在低导热材15的表面上形成硬质的覆盖层后,通过采用抛光轮等研磨覆盖层,将覆盖层的表面抛光成镜面。覆盖层的表面粗度,按中心粗度最好在0.2μm以下。这是因为通过抑制注射成形的光盘基板的表面的流纹等,减小对光的透过或反射的影响,能够提高信号质量。
采用该第5实施方式的盘基板成形用金属模,例如注射成形聚碳酸酯或聚烯烃树脂等热塑性树脂,能够制作光盘基板。
即使在第5实施方式中,由于金属模内的模腔20的上下分别设置低导热板7和低导热材15,所以无需太提高用于调节金属模温度的热介质温度。其结果,能够制作可用与现今的密度的同等程度的时间成形、而且表面振动或翘曲也无变化的高密度的光盘基板。此外,形成划定光盘基板的外周侧面的外周环17与形成模腔20的下面的低导热材15嵌合的结构。因此,在填充熔化树脂时,即使树脂填充压力大于模紧固压力,金属模稍微分开,由于外周环17固定在固定金属模1上方,所以在模腔20内不形成间隙。因此,在光盘基板的外周侧面不发生飞边。并且,由于与滑动的外周环17接触的低导热材15由具有足够的机械性能的材料构成,所以没有因低导热材15的滑动面24磨擦而损坏低导热材15的顾虑。此外,低导热材15的外周侧面29的最下端即非卡合端部21位于外周环17的下端部26的下方,外周环17的下端部26相对于低导热材15始终重合,所以没有低导热材15的侧面卷起而从可动侧镜面盘16剥离的顾虑。此外,由于自由的平坦部分延伸到模腔20的外周部分,所以在注射成形的光盘基板中,微小的凹凸坑或槽能够尽可能地形成到外周部分。
此处,只在低导热材15上设置金属覆盖层,当然,也可以在低导热板7上设置该金属覆盖膜。在此种情况下,由于为了防止剥离,需要热膨胀率大致相同,所以最好用金属制作低导热板7。
(第6实施方式)本发明的第6实施方式的盘基板成形用金属模,在第5实施方式中说明的低导热材15的金属覆盖层上设置DLC(金刚石状碳diamond-likecarbon)的润滑性薄模或含有氟的材料的润滑性薄膜。其结果,具有减小在与低导热材15和外周环17嵌合的面的滑动时的摩擦系数而提高两者的耐久性的效果。此外,也可以在低导热板7或低导热材15的表面上直接设置DLC(金刚石状碳diamond-like carbon)的润滑性薄模或含有氟的材料的润滑性薄膜。如此,上述的润滑性薄膜,能够设在作为低导热要件的低导热板7或低导热材15的表面上、或者金属覆盖层的表面上。
当然,即使在第6实施方式中,由于金属模内的模腔20的上下分别设置低导热板7和低导热材15,所以不太需要提高用于调节金属模温度的热介质温度。其结果,能够制作可用与现今的密度的同等程度的时间成形、而且表面振动或翘曲也无变化的高密度的光盘基板。此外,形成划定光盘基板的外周侧面的外周环17与形成模腔20的下面的低导热材15嵌合的结构。因此,在填充熔化树脂时,即使树脂填充压力大于模紧固压力,金属模稍微分开,由于外周环17固定在固定金属模1上,所以在模腔20内不形成间隙。因此,在光盘基板的外周侧面,不发生飞边。并且,由于与滑动的外周环17接触的低导热材15,由具有足够的机械性能的材料构成,所以没有因磨擦低导热材15的滑动面24,而破损低导热材15的顾虑。此外,低导热材15的外周侧面29的最下端即非卡合端部21,位于外周环17的下端部26的下方,外周环17的下端部26相对于低导热材15始终重合,所以没有低导热材15的侧面卷起而从可动侧镜面盘16剥离的顾虑。此外,由于自由的平坦部分延伸到模腔20的外周部分,所以在注射成形的光盘基板中,微小的凹凸坑或槽能够尽可能地形成到外周边缘。
在第1实施方式或第2实施方式中,通过真空吸引,将低导热板7或低导热材15固定在固定侧镜面盘4或可动侧镜面盘16等基体金属模上。此外,在第3实施方式或第4实施方式中,通过螺紧螺丝,将低导热板7或低导热材15固定在固定侧镜面盘4或可动侧镜面盘16等基体金属模上。也可以用真空吸引及螺丝紧固双方,将低导热板7或低导热材15固定在固定侧镜面盘4或可动侧镜面盘16等基体金属模上。
在本实施方式中,示出了将压模设置在固定侧金属模上时的情况,当然,也可以将压模设在可动侧金属模上。
在本实施方式中,说明注射成形品是光盘基板时的情况,但也可以用于所有的盘形状的基板。
此外,在上述各实施方式中,说明了在金属模的外部熔化热塑性树脂,然后将熔化的树脂注入金属模内的注射成形品,但也可以用于在加热的金属模的内部熔化热塑性树脂,然后固化的压缩成形品。并且,采用本发明的金属模的制造方法,包含在本发明的权利要求范围内。
本发明的盘基板成形用金属模及盘基板的制造方法,对于用金属模成形热塑性树脂,得到光盘基板等的成形方法是有用的。此外,也能够用于使热塑性树脂的表面产生光泽的加工等用途。
权利要求
1.一种盘基板成形用金属模,其特征在于具有第1金属模、与所述第1金属模对向配置的第2金属模、固定在所述第1金属模上的第1低导热要件、固定在所述第1低导热要件上的压模、固定在所述第2金属模上的第2低导热要件、与所述第1低导热要件或第2低导热要件中任一方嵌合滑动的环状控制部件;所述环状控制部件的端部位于滑动的低导热要件的外周侧面的范围内。
2.如权利要求1所述的盘基板成形用金属模,其特征在于相对于所述环状控制部件滑动的所述低导热要件是板状体。
3.如权利要求1所述的盘基板成形用金属模,其特征在于相对于所述环状控制部件滑动的所述低导热要件覆盖基体金属模的外周侧面。
4.如权利要求3所述的盘基板成形用金属模,其特征在于基体金属模具有在所述低导热要件延伸到覆盖基体金属模的整个外周侧面的位置时接受延伸的低导热要件的端部的槽部。
5.如权利要求1所述的盘基板成形用金属模,其特征在于所述低导热要件,由杨氏模量100GPa以上的金属材料构成。
6.如权利要求5所述的盘基板成形用金属模,其特征在于所述低导热要件的导热率在15W/m·K以下。
7.如权利要求5所述的盘基板成形用金属模,其特征在于所述低导热要件的维氏硬度在100以上。
8.如权利要求5所述的盘基板成形用金属模,其特征在于所述低导热要件以钛为主成分。
9.如权利要求8项所述的盘基板成形用金属模,其特征在于所述低导热要件中,铝含有量在2wt%以上且9wt%以下,或钒含有量在2wt%以上且16wt%以下。
10.如权利要求1所述的盘基板成形用金属模,其特征在于所述低导热要件的厚度,在2mm以上且10mm以下。
11.如权利要求1所述的盘基板成形用金属模,其特征在于所述低导热要件,通过吸引而固定在基体金属模上。
12.如权利要求1所述的盘基板成形用金属模,其特征在于所述低导热要件,通过螺丝而固定在基体金属模上。
13.如权利要求1所述的盘基板成形用金属模,其特征在于所述第1低导热要件及第2低导热要件,由相同材料构成。
14如权利要求1所述的盘基板成形用金属模,其特征在于所述低导热要件的表面粗度,按中心粗度为0.2μm以下。
15.如权利要求1所述的盘基板成形用金属模,其特征在于至少所述第2低导热要件的表面,用由杨氏模量150GPa以上的金属材料构成的覆盖层覆盖。
16.如权利要求15所述的盘基板成形用金属模,其特征在于所述覆盖层,由从镍、铬、钨、钼中选择的至少一种构成。
17.如权利要求15所述的盘基板成形用金属模,其特征在于所述所述覆盖层,利用镀膜法制作。
18.如权利要求15所述的盘基板成形用金属模,其特征在于热处理所述覆盖层。
19如权利要求15所述的盘基板成形用金属模,其特征在于所述覆盖层的表面粗度按中心粗度为0.2μm以下。
20如权利要求1或15所述的盘基板成形用金属模,其特征在于低导热要件的表面或覆盖层的表面,用金刚石状碳的薄模或含有氟的材料的润滑性薄膜覆盖。
21如权利要求20所述的盘基板成形用金属模,其特征在于所述润滑性薄膜的表面粗度,按中心粗度为0.2μm以下。
22.一种盘基板的制造方法,其特征在于采用如权利要求1所述盘基板成形用金属模来成形盘基板。
23如权利要求22所述的盘基板的制造方法,其特征在于所述成形是注射成形。
24如权利要求22所述的盘基板的制造方法,其特征在于盘基板是是热塑性树脂。
全文摘要
本发明提供一种盘基板成形用金属模,能够防止低导热要件的剥离及在外周的飞边的发生,微小的凹凸坑或槽形成到盘基板的外周。本发明的金属模,其特征在于具有第1金属模、与所述第1金属模对向配置的第2金属模、固定在所述第1金属模上的第1低导热要件、固定在所述第1低导热要件上的压模、固定在所述第2金属模上的第2低导热要件、与所述第1低导热要件上或第2低导热要件中任何一方嵌合滑动的环状控制部件,所述环状控制部件的端部位于滑动的低导热要件的外周侧面的范围内。
文档编号B29C33/30GK1756634SQ20048000551
公开日2006年4月5日 申请日期2004年2月25日 优先权日2003年3月3日
发明者井上和夫 申请人:松下电器产业株式会社