柔性多层板的制造方法

文档序号:4426674阅读:297来源:国知局
专利名称:柔性多层板的制造方法
技术领域
本发明涉及一种具有热层压工序的柔性多层板的制造方法,特别是涉及提高了外观和金属箔除去后的尺寸稳定性的柔性多层板的制造方法。
背景技术
现有技术中,在聚酰亚胺薄膜等耐热性薄膜的至少一面粘合了铜箔等金属箔的柔性多层板,被用作手机等电气设备中的印刷电路板。
现有技术中,柔性多层板是通过用丙烯酸系或环氧系等的粘接剂在耐热性薄膜粘合金属箔而制造的。然而,近年来,从耐热性和耐久性的观点出发,这样的柔性多层板引人注目该柔性多层板不使用上述丙烯酸系或环氧系等的热硬化型粘接剂,而是对耐热性粘接薄膜和金属箔进行热层压而制造。
对上述耐热性粘接薄膜与金属箔进行热层压而制造的柔性多层板由于在耐热性粘接薄膜上存在聚酰亚胺系的粘接层,所以,耐热性优良。另外,在将柔性多层板用于折叠式手机的折叠部的铰链的部位的场合,使用热硬化型粘接剂的柔性多层板可折叠3万次,而使用聚酰亚胺系粘接层的柔性多层板可折叠约10万次,所以,耐久性优良。
在电气设备的制造工序中,由于柔性多层板要经过焊锡软溶等处于高温的工序,所以,从提高柔性多层板的热可靠性的观点考虑,作为耐热性粘接薄膜,一般使用具有玻化温度(Tg)大于等于200℃的聚酰亚胺系热熔接性层的薄膜作为粘接层。因此,为了热层压耐热性粘接薄膜与金属箔,需要在比成为粘接层的热熔接性层的Tg高的、例如大于等于300℃的温度下进行热层压。
通常热层压机为了缓和热层压时的压力的不均匀性,在用于热层压的辊的至少一方使用橡胶辊。然而,使用橡胶辊按大于等于300℃的高温进行热层压非常困难,所以,使用具有一对金属辊的热层压机。然而,在使用一对金属辊进行热层压的场合,与使用橡胶辊的场合不同,难以保持热层压时的压力的均匀性,另外,热层压时产生急剧的温度变化,所以,在柔性多层板的外观产生折皱,存在柔性多层板的外观变差的问题。因此,提出有这样的技术,即,当由热层压机粘合耐热性粘接薄膜与金属箔时,通过在一对热辊间设置保护膜,从而改善上述外观(例如参照日本特开2001-129918号公报)。按照该技术,在金属箔的外侧设置上述保护膜,对金属箔与耐热性粘接薄膜进行热层压,所以,由上述保护膜来缓和热和压力在金属箔及耐热性粘接薄膜的集中,同时,抑制金属箔及耐热性粘接薄膜的膨胀和收缩,从而抑制折皱等外观不良的发生。
然而,在日本特开2001-129918号公报中未考虑保护膜的分子取向及其偏差,未记载所获得的柔性多层板的尺寸变化。

发明内容
为了解决上述问题,本发明的目的在于提供一种提高了外观和金属箔除去后的尺寸稳定性的柔性多层板的制造方法。
本发明是在耐热性粘接薄膜的至少一面粘合金属箔而成的柔性多层板的制造方法;其特征在于包含在一对金属辊间通过保护膜对耐热性粘接薄膜与金属箔进行热层压的工序和将保护膜分离的工序,保护膜的分子取向比(Molecular Orientation Ratio,以下称MOR)处于1.0~1.7的范围,而且,保护膜的输送方向和宽度方向的分子取向比的变动幅度小于等于0.1。
在本发明的柔性多层板的制造方法优选为,当金属箔在200℃~300℃的线膨胀系数为α0时,上述保护膜在200℃~300℃的线膨胀系数α大于等于(α0-10)PPm/℃,小于等于(α0+10)ppm/℃。另外,上述保护膜的25℃的拉伸弹性模量优选为大于等于2GPa,小于等于10GPa,上述保护膜的厚度优选为大于等于75μm。另外,上述保护膜优选为非热塑性的聚酰亚胺薄膜。
如上述那样,按照本发明,可提供外观和金属箔除去后的尺寸稳定性提高了的柔性多层板的制造方法。


图1为用于本发明的热层压机的一优选例的概略图。
图2为用于本发明的多层体的示意放大截面图。
图3为按本发明制造的柔性多层板的示意的放大截面图。
图中,附图标记1表示保护膜,附图标记2表示金属箔,附图标记3表示耐热性粘接薄膜,附图标记4表示金属辊,附图标记5表示柔性多层板,附图标记6表示分离辊,附图标记7表示多层体。
具体实施例方式
下面说明本发明的实施方式。在本申请的附图中,相同的附图标记表示相同部分或相当部分。
图1示出用于本发明的热层压机的一优选例的示意的概略图。该热层压机包含一对金属辊4和用于分离保护膜1的分离辊6,该一对金属辊4用于通过保护膜1对金属箔2和耐热性粘接膜3进行热层压。
本发明的柔性多层板的一个制造方法如图1所示那样,在上述层压机中,通过保护膜1在一对金属辊4间对耐热性粘接膜3与金属箔2进行热层压,形成图2的放大截面图所示那样的在由耐热性粘接膜3和金属箔2构成的柔性多层板5进一步粘合保护膜1的多层体7,一边对该多层体7进行冷却一边由多个辊进行输送。然后由分离辊6从多层体7分离保护膜1,制造图3的放大截面图所示那样的柔性多层板5。
在本发明中,作为保护膜1,使用MOR为1.0~1.7的薄膜。本发明者发现,用于保护膜的聚酰亚胺薄膜一般存在分子取向的各向异性,该各向异性使相对上述金属箔和耐热性粘接薄膜的膨胀和收缩的抑制力不同,有时在柔性多层板产生折皱等外观不良。另外还发现,在对柔性多层板的金属箔的至少一部分进行腐蚀而形成配线和/或电路的场合,柔性多层板的热层压后的残余应力有时使金属箔除去后的尺寸变化率增大。
因此,在本发明中,通过使用分子取向的各向异性小的保护膜,从而沿所有方向均匀地抑制热层压时的耐热性粘接薄膜和金属箔的膨胀和收缩,提高柔性多层板的外观和金属箔除去后的尺寸稳定性。从该观点出发,保护膜的MOR最好为1.0~1.5,为1.0~1.3更理想。
在本发明中保护膜的MOR是指,使膜面与微波的行进方向垂直地将保护膜导入至微波共振波导管中,一边使保护膜回转,一边测定透射的微波的电场强度(以下称微波透射强度)时的微波透射强度的最大值相对最小值的比。这样获得的MOR是与膜厚成比例,所以,本发明的保护膜的MOR是指换算成厚75μm之后的。
保护膜的MOR可根据保护膜的制造条件进行适当调整。由于各工序的条件变更对此后的工序也产生影响,所以,不能严密地说明制造条件,但例如在保护膜为聚酰亚胺膜的场合,由①控制作为先驱物的聚酰胺酸(ポリアミド酸)膜的残余溶剂量,②在薄膜制膜后控制展幅炉(テンタ一炉)内的薄膜的扩缩或控制展幅炉内的温度分布等的方法,可使聚酰亚胺薄膜的MOR的值接近1.0。另外,由薄膜制膜时朝单向延伸等方法,可增大MOR的值。
在本实施形式中,使保护膜1的输送方向(MD方向)和宽度方向(TD方向)的分子取向比的变动幅度小于等于0.1也很重要。通过减小分子取向比的变动幅度,从而沿所有方向均匀地抑制热层压时的耐热性粘接薄膜和金属箔的膨胀和收缩,提高柔性多层板的外观和金属箔除去后的尺寸稳定性。从上述观点出发,MD方向和TD方向的分子取向比的变动幅度最好小于等于0.08,如小于等于0.05则更理想。在本发明中,作为分子取向比的变动范围,对使用的保护膜的整个面沿MD方向每隔0.3m测定分子取向,同样,沿TD方向每隔0.3m测定分子取向,确认其偏差小于等于0.1即可。为了确认保护膜的分子取向比的变动,每隔0.3m的测定足够。在使用长尺寸薄膜的场合,每隔长度100m取出2m进行MOR的测定,确认偏差小于等于0.1则足够。
作为获得分子取向比的偏差小于等于0.1的保护膜的方法,可列举出控制展幅炉内的温度偏差的方法。
另外,当上述金属箔的200℃~300℃的线膨胀系数为α0时,最好上述保护膜1的200℃~300℃的线膨胀系数α大于等于(α0-10)ppm/℃,小于等于(α0+10)ppm/℃。保护膜由于按与金属箔接触的状态进行热层压,所以,当保护膜的线膨胀系数α与金属箔的线膨胀系数α0的差大时,柔性多层板的残余应力增大。从该观点出发,保护膜的线膨胀系数如大于等于(α0-5)ppm/℃,小于等于(α0+5)ppm/℃,则更理想。
另外,保护膜1的25℃的拉伸弹性模量最好大于等于2GPa、小于等于10GPa。如拉伸弹性模量不到2GPa,则存在由热层压时的张力使保护膜伸长的可能性,当超过10GPa时,保护膜变硬,存在热层压时热和压力在金属箔和耐热性粘接薄膜的集中的缓和效果受到损害的可能性。从该观点出发,保护膜在25℃的拉伸弹性模量如大于等于4GPa、小于等于6GPa,则更理想。
另外,保护膜1的厚度最好大于等于75μm。如保护膜的厚度不到75μm,则热层压时热和压力在金属箔和耐热性粘接薄膜的集中的缓和效果减小。从该观点出发,保护膜的厚度最好大于等于125μm。另一方面,保护膜的厚度最好小于等于225μm。当保护膜的厚度超过225μm时,热层压时来自热辊的热不易传递,存在热层压后的保护膜分离的顺利性受到损害等问题的可能性。
另外,保护膜1如不特别限制,则最好为可获得各向同性的分子取向即MOR可接近1.0的树脂膜,从耐热性、耐久性等的平衡优良的观点出发,如为非热塑性的聚酰亚胺薄膜,则更理想。在本发明中,非热塑性的聚酰亚胺薄膜指不为热硬化性,但在层压温度下不表现出可塑性的聚酰亚胺薄膜,除了玻化温度比分解温度高的聚酰亚胺薄膜以外,还包含即使玻化温度比分解温度低、但也比层压温度高的聚酰亚胺薄膜。
作为金属箔2,例如可使用铜箔、镍箔、铝箔或不锈钢箔等。金属箔2可由单层构成,也可由在表面形成了防锈层或耐热层(例如由铬、锌、镍等的镀覆处理形成的层)的多个层构成。其中,作为金属箔2,从导电性和成本的观点出发,最好使用铜箔。另外,作为铜箔的种类,例如具有轧制铜箔、电解铜箔等。另外,由于金属箔2的厚度越薄,则越可将成为印刷电路板的柔性多层板的电路图形的线宽细化,所以,金属箔2的厚度最好小于等于35μm,如小于等于18μm则更理想。
另外,作为耐热性粘接膜3,可使用由表现出热熔接性的树脂构成的单层膜、在不表现出热熔接性的芯层的两面或单面形成由表现出热熔接性的树脂构成的热熔接性层的多层薄膜等。在这里,作为表现出热熔接性的树脂,最好为由热塑性聚酰亚胺成分构成的树脂,例如可使用热塑性聚酰亚胺、热塑性聚酰胺-酰亚胺、热塑性聚醚酰亚胺、热塑性聚酯酰亚胺等。其中,特别是最好使用热塑性聚酰亚胺和热塑性聚酯酰亚胺。而且,也可在这些表现出热熔接性的树脂中配合环氧树脂等热硬性成分。另外,作为不表现出热熔接性的芯层,只要为增强由表现出热熔接性的树脂构成的热熔接性层的强度、保持耐热性的芯层,则不特别限定,例如可使用非热塑性聚酰亚胺薄膜、芳族聚酰胺薄膜、聚醚醚酮薄膜、聚醚砜薄膜、多芳化树脂(ポリアリレ一ト)薄膜或聚苯二甲酸乙酯等。然而,从电特性(绝缘性)的观点出发,最好使用非热塑性聚酰亚胺薄膜。
另外,当200℃~300℃的线膨胀系数为α0时,最好耐热性粘接膜3在200℃~300℃的线膨胀率大于等于(α0-10)ppm/℃,小于等于(α0+10)ppm/℃。由于耐热性粘接薄膜通过热层压与金属箔熔接,所以,当耐热性粘接薄膜的线膨胀系数与金属箔的线膨胀系数α0的差大时,柔性多层板的残余应力增大。从该观点出发,耐热性粘接薄膜的线膨胀系数如大于等于(α0-5)ppm/℃,小于等于(α0+5)ppm/℃,则更理想。
另外,金属辊4的热层压温度最好为比表示耐热性粘接膜3的热熔接性的树脂的玻化温度高50℃或其以上的温度,为了提高热层压速度,如为比耐热性粘接膜3的玻化温度高100℃或其以上的温度,则更理想。作为金属辊4的加热方式,例如具有载热体循环方式、热风加热方式或感应加热方式等。
另外,金属辊4的热层压时的压力(线压)最好大于等于49N/cm、小于等于490N/cm。在热层压时的线压不到49N/cm的场合,线压过小,存在金属箔2与耐热性粘接膜3的紧密接触性减弱的倾向,在比490N/cm大的场合,线压过大,在柔性多层板5产生变形,有时金属箔2除去后的柔性多层板5的尺寸变化增大。从该观点出发,最好热层压时的线压大于等于98N/cm、小于等于294N/cm。作为金属辊4的加压方式,例如有液压方式、气压方式或间隙间压力方式等。
另外,虽然热层压速度不特别限制,但从生产率提高的观点出发,最好大于等于0.5m/min,如大于等于1m/min,则更理想。
另外,在热层压之前,从避免急剧温度上升的观点出发,最好对保护膜1、金属箔2、及耐热性粘接膜3进行预备加热。在这里,预备加热例如可通过使保护膜1、金属箔2、及耐热性粘接膜3接触于金属辊4而进行。
另外,在热层压之前,最好设置除去保护膜1、金属箔2、及耐热性粘接膜3的异物的工序。特别是为了反复使用保护膜1,附着于保护膜1的异物的除去很重要。作为除去异物的工序,例如具有使用水或溶剂等的清洗处理和利用粘着橡胶辊的异物除去等。其中,使用粘着橡胶辊的方法由于设备简便,所以较理想。
另外,在热层压之前,最好设置除去保护膜1和耐热性粘接膜3的静电的工序。作为除去静电的工序,例如具有利用除电空气进行的静电除去等。
下面,根据实施例和比较例更具体地说明本发明。而且,在实施例和比较例中,如以下那样测定或评价MOR、线膨胀率、外观、尺寸变化率。
保护膜的MOR测定由KS系统公司制微波分子取向仪MOA2012A型进行。首先,从保护膜沿MD方向每隔0.3m、同样地沿TD方向每隔0.3m采集4cm×4cm的试样。
使膜面与微波的行进方向垂直地将成为试样的保护膜导入至微波共振波导管中,一边使保护膜回转,一边测定透射的微波的电场强度(以下称微波透射强度)。在这里,MOR为微波透射强度的最大值相对最小值的比,通过下式(1)计算出。即,MOR的值越接近1,则表示分子取向越为各向同性,MOR的值越大,则表示分子取向越为各向异性。而且,微波透射强度最小的方位为分子取向的主轴。
MORt=(微波透射强度的最大值)/(微波透射强度的最小值)(1)然而,由于该MOR为与薄膜的厚度成比例的数值,所以,作为本发明的MOR,使用换算成厚75μm的薄膜的MOR75。设厚tμm的保护膜的MOR测定值为MORt,根据下式(2)计算出MOR75。上述MOR75的测定关于MD方向和TD方向分别隔开0.3m的间隔在大于等于3点进行。
MOR75=1+(MORt-1)×75/t(2)[线膨胀系数]线膨胀系数指在压力一定的条件下物体进行热膨胀时其长度的相对变化量相对温度变化量的比例,在本发明中,使用ppm/℃的单位表示。保护膜、耐热性粘接薄膜及金属箔的线膨胀系数利用赛科(セイコ一)仪表公司制造的热机械式分析装置(商品名TMA(Thermomechanical Analyzer,热机械分析仪)120C)测定,测定时,按氮气流下、上升温度10℃/min从20℃升温到400℃后,求出按上升温度10℃/min在从20℃到400℃的温度范围测定的200℃~300℃的范围内的平均值。

柔性多层板的外观通过目测进行评价。特别是通过对每1m2柔性多层板发生的折皱的个数进行计数,从而按以下的评价基准进行评价。
◎…完全没有折皱○…有小于等于1个/m2的折皱×…有大于等于2个/m2的折皱[尺寸变化率]金属箔除去前后的尺寸变化率以JIS C6481为参考,如以下那样进行测定·计算。即,从柔性多层板切出200mm×200mm的正方形的试样,该试样在150mm×150mm的正方形的四角形成直径1mm的孔。200mm×200mm的正方形的试样和150mm×150mm的正方形的2边沿MD方向,余下2边沿TD方向。另外,该2个正方形的中心一致。将该试样放置到20℃、60%RH的恒温恒湿室中12小时进行调湿后,测定上述4个孔的距离。然后,通过腐蚀处理除去柔性多层板的金属箔后,在20℃60%RH的恒温室中放置24小时。此后,与腐蚀处理前同样,对4个孔分别测定其距离。设金属箔除去前的各孔的距离的测定值为D1,金属箔除去后的各孔的距离的测定值为D2,根据下式(3)计算出尺寸变化率。该尺寸变化率的绝对值越小,则表示尺寸稳定性越优良。
尺寸变化率(%)={(D2-D1)/D1}×100(3)(实施例1)使用图1所示热层压机制造柔性多层板。首先,在热层压机设置作为保护膜1卷绕了非热塑性聚酰亚胺薄膜的辊、作为金属箔2卷绕了铜箔的辊、及作为耐热性粘接膜3卷绕了三层构造的粘接薄膜的辊;该非热塑性聚酰亚胺薄膜的MOR75为1.07~1.10,在MD方向和TD方向每0.3m的MOR75的变动范围为0.03,线膨胀系数为12ppm/℃,拉伸弹性模量为6GPa,厚度为75μm,宽为0.9m;该铜箔的线膨胀系数为19ppm/℃,厚度为18μm;该三层构造的粘接薄膜在由非热塑性的聚酰亚胺薄膜构成的芯层的两面具有热塑性聚酰亚胺树脂层(玻化温度240℃),厚25μm。
然后,使这些辊回转,进行除电、异物的除去和预备加热后,由一对金属辊4按热层压条件(温度360℃,线压196N/cm,热层压速度1.5m/min)对非热塑性聚酰亚胺薄膜、铜箔及粘接薄膜进行热层压,在粘接薄膜的两面按铜箔和非热塑性聚酰亚胺薄膜的顺序粘合铜箔和非热塑性聚酰亚胺薄膜,制造五层构造的层压体7。
然后,由多个辊使多层体7缓冷后,由分离辊6从铜箔分离非热塑性聚酰亚胺薄膜,制造柔性多层板5。进行该柔性多层板的外观评价和尺寸测定。
然后,通过腐蚀处理除去上述柔性多层板的铜箔,测定铜箔除去后的尺寸,计算出金属箔(铜箔)除去前后的尺寸变化率(MD方向、TD方向)。这些结果示于表1。如表1所示那样,在实施例1的柔性多层板完全没有折皱,铜箔除去前后的尺寸变化率在MD方向为-0.03%,TD方向为+0.02%。使用的保护膜的MOR测定对离开宽度端部0.15m的点、从该点在TD方向上各隔开0.3m的3点、沿MD方向各隔开0.3m的5点这样共15点进行,计算出MOR75的范围和每0.3m的MOR75的变动范围。
(实施例2)作为保护膜1,使用非热塑性聚酰亚胺薄膜,该非热塑性聚酰亚胺薄膜的MOR75为1.07~1.10,在MD方向和TD方向每0.3m的MOR75的变动范围为0.03,线膨胀系数为16ppm/℃,拉伸弹性模量为4GPa,厚度为75μm,宽为0.9m,除此以外,与实施例1同样地制造柔性多层板,进行外观评价,计算出金属箔(铜箔)除去前后的尺寸变化率。结果示于表1。在实施例2的柔性多层板完全没有折皱,铜箔除去前后的尺寸变化率在MD方向为-0.03%,TD方向为+0.03%。
(实施例3)作为保护膜1,使用非热塑性聚酰亚胺薄膜,该非热塑性聚酰亚胺薄膜的MOR75为1.25~1.30,在MD方向和TD方向每0.3m的MOR75的变动范围小于等于0.05,线膨胀系数为12ppm/℃,拉伸弹性模量为6GPa,厚度为125μm,宽为0.9m,除此以外,与实施例1同样地制造柔性多层板,进行外观评价,计算出金属箔(铜箔)除去前后的尺寸变化率。结果示于表1。在实施例3的柔性多层板完全没有折皱,铜箔除去前后的尺寸变化率在MD方向为-0.03%,TD方向为+0.03%。
(实施例4)作为保护膜1,使用非热塑性聚酰亚胺薄膜,该非热塑性聚酰亚胺薄膜的MOR75为1.25~1.30,在MD方向和TD方向每0.3m的MOR75的变动范围小于等于0.05,线膨胀系数为16ppm/℃,拉伸弹性模量为4GPa,厚度为75μm,宽为0.9m,除此以外,与实施例1同样地制造柔性多层板,进行外观评价,计算出金属箔(铜箔)除去前后的尺寸变化率。结果示于表1。在实施例4的柔性多层板完全没有折皱,铜箔除去前后的尺寸变化率在MD方向为-0.03%,TD方向为+0.02%。
(实施例5)作为保护膜1,使用非热塑性聚酰亚胺薄膜,该非热塑性聚酰亚胺薄膜的MOR75为1.25~1.30,在MD方向和TD方向每0.3m的MOR75的变动范围小于等于0.05,线膨胀系数为16ppm/℃,拉伸弹性模量为4GPa,厚度为125μm,宽为0.9m,除此以外,与实施例1同样地制造柔性多层板,进行外观评价,计算出金属箔(铜箔)除去前后的尺寸变化率。结果示于表1。在实施例5的柔性多层板完全没有折皱,铜箔除去前后的尺寸变化率在MD方向为-0.03%,TD方向为+0.02%。
(实施例6)作为保护膜1,使用非热塑性聚酰亚胺薄膜,该非热塑性聚酰亚胺薄膜的MOR75为1.42~1.50,在MD方向和TD方向每0.3m的MOR75的变动范围小于等于0.08,线膨胀系数为16ppm/℃,拉伸弹性模量为4GPa,厚度为75μm,宽为0.9m,除此以外,与实施例1同样地制造柔性多层板,进行外观评价,计算出金属箔(铜箔)除去前后的尺寸变化率。结果示于表1。在实施例6的柔性多层板完全没有折皱,铜箔除去前后的尺寸变化率在MD方向为-0.03%,TD方向为+0.02%。
(实施例7)作为保护膜1,使用非热塑性聚酰亚胺薄膜,该非热塑性聚酰亚胺薄膜的MOR75为1.60~1.70,在MD方向和TD方向每0.3m的MOR75的变动范围小于等于0.10,线膨胀系数为16ppm/℃,拉伸弹性模量为4GPa,厚度为75μm,宽为0.9m,除此以外,与实施例1同样地制造柔性多层板,进行外观评价,计算出金属箔(铜箔)除去前后的尺寸变化率。结果示于表1。在实施例7的柔性多层板发生的折皱小于等于1个/m2,铜箔除去前后的尺寸变化率在MD方向为-0.04%,TD方向为+0.03%。
(比较例1)作为保护膜1,使用非热塑性聚酰亚胺薄膜,该非热塑性聚酰亚胺薄膜的MOR75为2.15~2.30,在MD方向和TD方向每0.3m的MOR75的变动幅度小于等于0.15,线膨胀系数为16ppm/℃,拉伸弹性模量为4GPa,厚度为125μm,宽为0.9m,除此以外,与实施例1同样地制造柔性多层板,进行外观评价,计算出金属箔(铜箔)除去前后的尺寸变化率。结果示于表1。在比较例1的柔性多层板发生的折皱大于等于2个/m2,铜箔除去前后的尺寸变化率在MD方向为-0.09%,TD方向为+0.07%。

从表1可以看出,保护膜MOR75为1.0~2.0的柔性多层板的折皱发生小于等于1个/m2,外观优良,同时,铜箔除去前后的尺寸变化率在MD方向和TD方向都在±0.05%的范围内,表现出极高的尺寸稳定性。在这里,铜箔除去前后的尺寸变化率在±0.05%范围内时,即使在微细配线形成于柔性多层板的场合尺寸精度也不产生问题。另外,在保护膜的MOR75为1.0~1.5的柔性多层板看不到折皱,外观进一步改善。
本次公开的实施形式和实施例的所有点为例示,应考虑为非限制性的例子。本发明的范围不为上述的说明,而是由权利要求示出,包含与权利要求同等意义和范围内的所有变更。
产业上利用的可能性如上述那样,本发明的目的在于提高外观和金属箔除去后的尺寸稳定性,可广泛用于柔性多层板的制造方法。
权利要求
1.一种柔性多层板的制造方法,所述柔性多层板是在耐热性粘接薄膜的至少一面粘合金属箔而成的;其特征在于包含在一对金属辊间通过保护膜对上述耐热性粘接薄膜与上述金属箔进行热层压的工序,和将上述保护膜分离的工序,上述保护膜的分子取向比处于1.0~1.7的范围,而且,保护膜的输送方向和宽度方向的分子取向比的变动幅度小于等于0.1。
2.根据权利要求1所述的柔性多层板的制造方法,其特征在于当上述金属箔在200℃~300℃的线膨胀系数为α0时,上述保护膜在200℃~300℃的线膨胀系数α大于等于(α0-10)ppm/℃,小于等于(α0+10)ppm/℃。
3.根据权利要求1或2所述的柔性多层板的制造方法,其特征在于上述保护膜在25℃的拉伸弹性模量大于等于2GPa,小于等于10GPa。
4.根据权利要求1~3中任何一项所述的柔性多层板的制造方法,其特征在于上述保护膜的厚度大于等于75μm。
5.根据权利要求1~4中任何一项所述的柔性多层板的制造方法,其特征在于上述保护膜为非热塑性的聚酰亚胺薄膜。
全文摘要
本发明的目的在于提供一种提高了外观和金属箔除去后的尺寸稳定性的柔性多层板的制造方法。本发明是在耐热性粘接薄膜(3)的至少一面粘合金属箔(2)而成的柔性多层板(5)的制造方法;其特征在于包含在一对金属辊(4)间通过保护膜(1)对耐热性粘接薄膜(3)与金属箔(2)进行热层压的工序,和将保护膜(1)分离的工序,上述保护膜(1)的分子取向比为1.0~1.7。
文档编号B29C65/02GK1890081SQ20048003662
公开日2007年1月3日 申请日期2004年12月20日 优先权日2003年12月26日
发明者菊池刚, 辻宏之 申请人:株式会社钟化
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1