专利名称:用于管子挤压和密封的方法
技术领域:
本发明涉及一种用于管子挤压和密封的方法,尤其是一种例如供冷却技术设备使用的金属管,其中管子设置在超声焊接设备的超声焊极和该超声焊极所属的对应电极如砧之间,激励超声焊极并使其相对于对应电极移动,从而将管子挤压并进行密封。
背景技术:
在例如测量或冷却技术领域中的器具和设备中使用管子,管子首先抽真空,而后注满冷却气体。为此,管子与连接器相连。在注满后,管子在连接器侧的一段要切除。为此要求将通向诸如冰箱或空调的设备或者器具的管子液体密封地封闭。
由现有技术已知一种挤压和硬焊方法。另外,也可以采用粘接技术,其中将已充满的管子用本身与管子粘接的盖封闭。
如果液体密封的封闭借助于硬焊进行,那么不利的是如果管子没有预先压封,导致在涂敷的焊料中形成漏洞,这些漏洞会被管子中渗漏的气体贯穿,从而造成泄漏。不依赖于此,可以使用一种相应的只用含氯氟烃流体的技术,因为这种流体是不能燃烧的。
目前,含氯氟烃基本上被异丁烷所替代,但是后者具有高度易爆炸性。因此硬焊将不再可行。因此实施超声焊接,采用该工艺可以在一道工序内对那些首先抽真空而后充满冷却气体的管子进行挤压和液体密封地封闭。
在那些已知的用于管子液体密封地封闭的超声焊接设备中使用了超声焊极,超声焊极具有第一焊接面,在其旁边还有一个切割元件。相应的所属的对应电极-也称为砧-具有与第一焊接面对应相配的第二焊接面,在该焊接面旁边有与切割元件对应相配的对应元件、如棱边。
对于上述根据WO-A-03 07 6116的方法,能在不更换工具或移动超声焊接设备的条件下将管子的一段进行分割,而且其液体密封的封闭与待分割的管段在哪一侧延伸无关。
超声焊接设备的焊接参数必须根据例如管子的直径、壁厚和材料分别调节,这样才能在要求的范围内实现挤压和密封或焊接。
由EP-B-0 723 713公开了一种挤压并接着焊接电导体的方法和装置。为不依赖于横截面实现规定的焊接,更确切地说当依次焊接不同横截面的随机顺序的导体时,首先将引入压缩室中的导体压紧,而后确定容纳挤压导体的压缩室的特征参量。然后基于这些特征参量、如压缩室的高度或宽度来调用所存储的焊接参数。
发明内容
本发明的任务在于对开头所述类型的方法进行进一步改进,以实现对管子的自动化挤压和密封,而不需要在超声焊接设备中预先分别输入管子的数据。
为了解决上述问题,根据本发明主要提出-在超声焊极和对应电极之间设置和固定管子;-对于固定在超声焊极和对应电极之间的管子确定管子的至少一个特征参量;-根据所述至少一个特征参量调用所储存的焊接参数;-激励超声焊极,并使超声焊极和对应电极相互相向运动,从而挤压和密封管子。
按本发明提供了这样的方案,不必为接下去使用所要求的对于按规定的挤压和焊接或者密封所必要的焊接参数和压力而预先向超声焊接设备输入挤压和焊接、也就是密封挤压的管端所要求的数据就能借助于超声焊接设备自动挤压和密封或者焊接管子。更确切地说,在将管子固定在超声焊极和对应电极之间后确定了至少一个特征参量,而后根据该参量由例如存储在计算机中的数据自动使用超声焊接设备的参数,从而可以按照要求挤压和密封或者焊接挤压的管子。
这些特征参量例如可以是管子的外直径,该外直径如此确定,例如通过位移传感器来确定超声焊极和对应电极之间的距离。
但是最好测定多个特征参量。例如除外直径之外,对于导电管还可以测定管的导电性和/或壁厚。其中壁厚的测量可以通过超声、如根据脉冲回波方法来实现。
但是作为特征参量也可以考虑特定的材料特性如形状变形功或者断面收缩率。为确定这些特征参量,在此例如可以用给定的力或者压力使超声焊极相对于对应电极进行移动,或者也可以相反使对应电极相对于超声焊接进行移动,然后根据实现的位移变化来推断管子的材料特性。在此在移动时,还可以将超声施加到管子上,从而实现更大的位移变化,进而实现更为精确的测量。
当然,事先必须根据对不同尺寸和/或材料的管子进行的多次测量获取并存储足够多的数据,从而由所获得的表格可以获取对于在当前焊接过程中与管子相对应的数据。在相应的表格中,特别作为焊接参数根据管子直径和/或壁厚和/或管子材料存储了焊接能量、焊接振幅、焊接时间和焊接压力。
根据本发明,为获取要存储的焊接参数,将一个或多个考虑置于超声振动中的超声焊极的能量、力或者功率的时间变化的调节曲线在确定待挤压和密封的标准管的特征参量如直径和/或壁厚的情况下进行记录,将此后要挤压和焊接的直径未知和/或壁厚未知的管的实际曲线与如此获取的调节曲线进行比较,并在与调节曲线一致的情况下将与此对应的焊接参数用于管子的挤压和焊接。在此调节曲线加宽了一个公差带,然后待挤压和焊接的管子的实际曲线就符合了调节曲线。
特别的,本发明的特征还在于调节曲线对应于焊接参数如压力、焊接持续时间或者能量输入,这些焊接参数获取用于挤压和焊接标准管,该标准管在记录调节曲线时使用,其中为了焊接未知尺寸的管记录了实际曲线,并且该实际曲线符合多条调节曲线中的一条,并且其中未知尺寸的管子的挤压和焊接基于相应调节曲线所属的焊接参数进行。
本发明的其它细节、优点和特征不仅从权利要求、由权利要求获得的特征-单独和/或特征的组合-获得,而且也可从以下对附图中优选的实施例的说明中获得。
附图示出图1示出了超声焊机的原理图;图2示出了功率-时间曲线图具体实施方式
图1示出了一台超声焊机的结构示意图,该超声焊机作为主要部件包括超声焊极10、转换器12以及控制器14。在实施例中,超声焊极10和转换器12之间布置了放大器14,它作为振幅转换器用于实现期望的振幅范围,同时用于使振动系统中的振动性能总体上稳定。
超声焊极10具有超声焊极头16,该超声焊极头具有相对置的工作或焊接面18和20。在本实施例中,工作或焊接面18与称为砧的对应电极22相对应,在二者之间布置例如铜制的管子24,以对管子进行挤压和密封,也就是焊接。同时在必要时也可以将管子在一侧进行分割。为此,以惯常的方式为超声焊极头16或工作面18、20以及对应电极22配设切割边,以实现管段的剪断。
控制器14通过接头26供给频率转换为诸如20kHz的电源电压。然后转换器12将电能转化为机械振动能,其中机械振动频率与控制器14的电子频率相应。在超声焊极10和转换器12之间连接的放大器14用于前述转换器12和超声焊极10之间的振幅转换。控制器14通过控制导线15与转换器12相连。
管24挤压和密封的质量基本上取决于超声焊极头16的振幅、焊接压力(工作压力)、焊接能量、压缩量以及焊接时间。根据现有技术,相关的数据根据管24的外直径、壁厚和材料分别输入到控制器14中,然后执行挤压和焊接工序,并在必要时通过超声焊极头16与砧或对应电极22的相互作用来分割管段。根据本发明,在控制器14或图中未示出的计算机中根据待挤压和待焊接的管、也就是其直径、壁厚以及材料作为例如一些特征参量存储多个焊接参数,这些焊接参数例如包括超声焊极10或工作面18、20的振幅、焊接压力、能量和焊接时间以及压缩量。
在将需要焊接的管子24布置到砧(对应电极22)和超声焊极10的第一工作面18之间、并将超声焊极10朝着第二电极22、也就是一个周边上的砧的方向下降,直至管子24在第一和第二电极18、22之间固定后,就确定了超声焊极10和对应电极22之间的距离,由此计算出管24的外直径。该距离可以通过位移传感器检测,其中将相关数据通过数据导线28输入控制器14或者计算机。此外,还能测定管子24的材料特性,并同样通过数据导线28输入控制器14或者计算机中。作为材料特征值例如是强度、电阻或者壁厚,其在将管子24固定在超声焊极10和对应电极22或者其焊接面之间以后进行测定。强度可以如此确定,在管子24固定后,将超声焊极10以给定的压力向对应电极22的方向移动。根据移动距离可以推出管子24的材料。同样可以确定管子24的电阻。例如可以利用第二对应电极22的区域中存在的传感器借助于超声来测量管24的壁厚。其它合适的测量方法同样可以使用。
不依赖于此,基于上述方法示例性地给出的措施获得的管子24的特征值调用存储在控制器14或计算机中的参数,这些参数特别包括超声焊极10的振幅、焊接压力、焊接能量、压缩量以及焊接时间,从而相应地激励超声焊极10,或者使超声焊极10朝着对应电极22的方向、也就是朝着砧的方向移动。在此,管子24就在要求的范围内挤压和密封、也就是焊接。同时也可以将不需要的管段剪除。
在图2中,借助于功率-时间曲线图示出了,如何通过变形曲线来计算特征参数,并由此自动完成管子的挤压和焊接。
由此在图2中示出了在计算一种已知的具有确定直径和确定壁厚的管子的调节曲线时功率W随时间t变化的关系。曲线30有两个特征峰32、34,其中当超声焊极10朝对应电极22的方向下降,使得待测量的标准管夹紧在其之间,也就是可以确定外直径时,第一峰32出现。在此第一峰32的位置取决于管子直径。当超声焊极10向着对应电极22继续下降或继续进行相对运动时,功率在首次下降后出现上升,从而到达第二峰34。第二峰34的位置取决于管子的壁厚。随后进行的是管子的挤压和密封,这在功率方面通过下降的曲线段36表示。
现在为多个不同直径和壁厚的管子记录相应的也称为标准曲线的功率-时间曲线30,从而使公差带38、40与相应的调节曲线对应。
如果需要对未知直径和壁厚的管子进行挤压和密封,则记录实际曲线,并使其符合一条调节曲线。然后基于相应的调节曲线,将焊接参数如压力、焊接持续时间或能量输入从存储的表格中调用,从而就能实现对未知直径和壁厚的管子进行按规定的挤压和密封。
换言之,首先进行一种自学习模式,以为不同管直径如4、6、8、12mm以及不同壁厚如0.6mm-1mm记录与曲线30相应的调节曲线,然后确定并保存公差带。然后将未知直径和壁厚的管子定位在超声焊极10和对应电极22之间,超声焊极10和对应电极22相向运动,然后根据实际曲线中出现的峰计算管直径和壁厚,并将相应的值与调节曲线的值进行比较。对于在调节曲线中存在相应值的情况,调用按规定挤压和密封所需要的参数(焊接模式)。
权利要求
1.用于挤压和密封管子的方法,该管子尤其是例如用于冷却设备的金属管,其中该管子设置在超声焊接设备的超声焊极和配置于该超声焊接的对应电极如砧之间,激励超声焊极,并使超声焊极相对于对应电极进行移动,以挤压和密封管子,其特征在于具有如下工艺步骤,-将管子布置和固定在超声焊极和对应电极之间;-对于固定在超声焊极和对应电极之间的管子确定管子的特征参量;-根据特征参量调用存储的焊接参数;-激励超声焊极,并使超声焊极和对应电极相互作相对运动,以实现对管子的挤压和密封。
2.按权利要求1所述的方法,其特征在于作为特征参量在将所述管子固定在超声焊极和对应电极之间的情况下确定超声焊极和对应电极之间的距离。
3.按权利要求1所述的方法,其特征在于作为特征参量确定所述管子的导电能力。
4.按权利要求1所述的方法,其特征在于作为特征参量确定所述管子的壁厚。
5.按权利要求1所述的方法,其特征在于作为特征参量确定所述管子的变形度。
6.按权利要求1所述的方法,其特征在于为确定变形度,测量为使超声焊极和对应电极相对运动一给定位移所施加的压力。
7.按权利要求1所述的方法,其特征在于在所述超声焊极相对于对应电极进行移动期间,最好通过超声来激励超声焊极。
8.按权利要求1所述的方法,其特征在于最好借助于超声确定所述壁厚。
9.按权利要求1所述的方法,其特征在于确定多个特征参量,并以此为基础调用存储的焊接参数。
10.按权利要求1所述的方法,其特征在于在所述管子挤压和密封后,将管子的一段分离如剪断。
11.按前述权利要求至少一项所述的方法,其特征在于为获取待存储的焊接参数,将一个或多个考虑置于超声振动中的超声焊极的能量、力和/或功率的时间变化的调节曲线在确定待挤压和密封的标准管的特征参量如直径和/或壁厚的情况下进行记录,将此后要挤压和密封的直径未知和/或壁厚未知的管的实际曲线与如此获取的调节曲线进行比较,并在考虑必要时给定的公差时在与调节曲线一致的情况下将配置于调节曲线的焊接参数用于管子的挤压和焊接。
12.至少按权利要求11所述的方法,其特征在于将所述实际曲线与以一个公差带加宽的调节曲线进行比较。
13.至少按权利要求11所述的方法,其特征在于所述调节曲线对应于焊接参数如压力、焊接持续时间和/或能量输入,获取这些焊接参数用于标准管的挤压和焊接,标准管在记录调节曲线期间使用,其中为焊接未知尺寸的管记录一条实际曲线,并且使该实际曲线符合多条调节曲线中的一条,并且将未知尺寸的管根据配置于相应的调节曲线的焊接参数进行挤压和焊接。
全文摘要
本发明涉及一种用于挤压和密封管子的方法,其中该管子(24)设置在超声焊接设备的超声焊极(10)和所属的砧(22)之间,激励超声焊极,并使超声焊极相对于对应电极进行移动,以挤压和密封管子。为了实现管子的自动挤压和密封,而无需事先单独将管子的数据输入超声焊接设备中,提出将管子布置和固定在超声焊极和对应电极之间;对于固定在超声焊极和砧之间的管子确定管子的特征参量;根据至少一个特征参量调用存储的焊接参数;激励超声焊极,并使超声焊极和砧相互作相向运动,以实现对管子的挤压和密封。
文档编号B29C65/74GK1910006SQ200580002078
公开日2007年2月7日 申请日期2005年1月7日 优先权日2004年1月7日
发明者H·弗兰克, D·奈斯 申请人:斯塔普拉超声波技术有限责任公司