高分子薄膜的接合方法以及偏光薄膜的制造方法

文档序号:4414198阅读:273来源:国知局
专利名称:高分子薄膜的接合方法以及偏光薄膜的制造方法
技术领域
本发明涉及使高分子薄膜的表面与要接合的对象材料的表面面接触,对其界面进行激光熔接的高分子薄膜的接合方法,和将由2片以上的聚乙烯醇系树脂薄膜连接而成的原卷薄膜浸溃在试剂液中而制作偏光薄膜的偏光薄膜的制造方法。
背景技术
以往,作为显示较高吸水性的高分子薄膜,已知聚乙烯醇系树脂(PVA)薄膜,该聚乙烯醇系树脂薄膜被利用于偏光薄膜的原材料等。液晶显示装置等图像显示装置中使用高品质的偏光薄膜,在这种偏光薄膜的制造 方法中,通过使聚乙烯醇系树脂薄膜吸水、溶胀来施加各种处理。例如,这种偏光薄膜以如下方法制造从形成为原卷的带状的聚乙烯醇系树脂薄膜卷绕成卷状而成的原卷卷送出聚乙烯醇系树脂薄膜(原卷薄膜),使原卷薄膜在其长度方向上输送,连续地浸溃在溶胀浴、染色浴中,然后在前后两处用前述辊夹持原卷薄膜,对其间施加张力而使其拉伸。但是,在这种制造方法中,每次交换原卷卷时,都需要重新将新的原卷薄膜卷挂在辊等上并设置在装置中,非常繁杂而且浪费时间,因此,会进行如下的操作将在前的原卷薄膜的末端部与从下一个原卷卷放出的原卷薄膜的前端部接合而连接的两片原卷薄膜依次连续地加工成偏光薄膜。作为此时的接合方法,一直以来采用如下方法利用粘合带、粘接剂等的粘接接合方法,利用铆钉、线等的缝合接合方法,利用热封机等的加热熔融接合方法等。但是,上述这些方法中分别存在下述这样的问题。·利用粘合带、粘接剂等的粘接接合中的问题在使原卷薄膜浸溃在溶胀浴、染色浴等中的工序中,由于粘接剂的成分等在试剂液中溶出,因此会成为污染试剂液、在产品上附着异物的主要原因,除此以外还存在以下的担心粘接剂溶解在试剂液中或因试剂液的成分而溶胀,使得接合强度降低,在拉伸工序中在达到所希望的拉伸倍率之前连接部产生断裂。·利用铆钉、线等的缝合接合中的问题该方法中,在原卷薄膜上穿设用于通过铆钉、线的孔,因此,在对连接部施加张力时,存在以所述孔为起点发生断裂的担心。为了避免该情况的发生而减少孔数并确保孔的间隔较宽时,存在施加张力时容易产生皱褶而成为搬送时的故障的主要原因的担心。·利用热封机等的加热熔融接合中的问题作为能够实现解决上述粘接接合、缝合接合中的问题的接合方法,已知下述专利文献I及专利文献2等中所示的利用热封机来接合的方法。该方法由于使接合的部件之间直接接合,因此与粘接接合相比,污损试剂液的风险低,能够进行洁净的接合,与缝合接合等相比,可以使接合部成为均质的状态,并可以防止皱褶等的形成。这样利用热封机的接合与粘接接合、缝合结合等相比,可形成高品质的结合部,但利用热封机的接合由于接合部被大范围加热而容易有气泡等混入熔接部,因此尚有改善的余地。现有技术文献专利文献专利文献I :日本特开2007-171897号公报专利文献2 :日本特开2010-8509号公报·

发明内容
发明要解决的问题对于这样的问题,考虑采用以往在树脂制部件之间的接合等中利用的基于激光熔接的接合来代替上述那样的热封机。在以往的激光熔接中,利用具有红外或近红外波段的波长的激光,对于要接合的2片薄膜,在其界面配置包含酞菁系染料等的光吸收剂后将其重合,用前述的激光对此重合处进行照射。由于这样的激光熔接会选择性地加热界面部的极小区域,因此可以防止气泡混入熔接部且在激光熔接时能够进行高精度熔接。然而,如上所述制造偏光薄膜时,有熔接处的周围残存的光吸收剂污损试剂液的担心。S卩,在以往的接合方法中具有难以以高品质的状态形成适宜在试剂液等中进行浸溃处理的结合部的问题。因此,本发明的目的在于,谋求解决激光熔接中的这种问题,进而,谋求在偏光薄膜的制造方法中提高效率。需要说明的是,在激光熔接中谋求抑制光吸收剂的使用不仅是在将用作偏光薄膜的原材料的聚乙烯醇系树脂薄膜之间接合时所要求的事情,而是在对以聚乙烯醇系树脂薄膜为首的高分子薄膜进行激光熔接时普遍需求的事情。用于解决问题的方案涉及用于解决上述问题的高分子薄膜的接合方法的本发明的特征在于,其为使高分子薄膜的表面与要接合的对象材料的表面面接触并对其界面进行激光熔接的高分子薄膜的接合方法,其中,使前述高分子薄膜的至少前述界面侧成为吸水状态并照射激光,在前述被吸入的水中吸收激光来实施所述激光熔接。另外,本发明涉及偏光薄膜的制造方法,其特征在于,其为将由2片以上的聚乙烯醇系树脂薄膜连接而成的原卷薄膜浸溃在试剂液中而制作偏光薄膜的偏光薄膜的制造方法,其中,原卷薄膜的前述连接通过如上述那样的高分子薄膜的接合方法实施。发明的效果在本发明中,通过使水吸收激光,能够抑制使用以往为了吸收激光而使用的颜料等,并实施与以往相同的激光熔接。例如,能够抑制光吸收剂的使用并对聚乙烯醇系树脂薄膜等吸水性高分子薄膜实施闻品质的接合。另外,通过将2片以上的带状的聚乙烯醇系树脂薄膜以这种接合方法连接而作为原卷薄膜使用,可以边抑制试剂液的污损,边对这些聚乙烯醇系树脂薄膜施加前述试剂液的浸溃处理,能够高效地制造偏光薄膜。


图1是表示在一个实施方式的偏光薄膜的制造方法中使用的装置的立体示意图。图2是表示将原卷薄膜连接并供给至偏光薄膜的制造装置的情况的立体示意图。图3是表示用于连接原卷薄膜的连接装置的主要部分的结构的主视示意图。
具体实施例方式以下列举应用于偏光薄膜的制造方法的实例来对本发明的高分子薄膜的接合方法所涉及的实施方式进行说明。更具体而言,边例示出将带状的聚乙烯醇系树脂薄膜彼此连接、将这些带状的聚乙烯醇系树脂薄膜连续供给拉伸装置而制造偏光薄膜的情况,边进行说明。首先,边参照附图边对用于实施本实施方式的偏光薄膜的制造方法的优选的拉伸装置进行说明。本实施方式的拉伸装置具备从带状的聚乙烯醇系树脂薄膜(以下也称为“原卷薄膜”、或者简称为“薄膜”)卷绕成卷状而得到的原卷卷送出前述原卷薄膜I的原卷薄膜供给部3 ;用于将送出的原卷薄膜I浸溃在规定的试剂液中的多个浸溃浴4 ;以前述原卷薄膜I通过该浸溃浴4内的方式规定原卷薄膜I的移动路径的多个辊9 ;在该移动路径中拉伸原卷薄膜I的拉伸部;以及将在多个浸溃浴4中浸溃且进行了拉伸的薄膜作为偏光薄膜卷取为卷状的偏光薄膜卷取部10。图I、图2是表示优选的拉伸装置的一个方式的立体示意图。如图I所示,作为多个浸溃浴4,在拉伸装置中,从薄膜的移动方向上游侧开始依次具备如下5种浸溃浴4 :贮存有使聚乙烯醇系树脂薄膜溶胀的溶胀液的溶胀浴4a ;贮存有对溶胀了的薄膜进行染色的染色液的染色浴4b ;贮存有使构成薄膜的树脂的分子链交联的交联剂液的交联浴4c ;用于在浴内拉伸薄膜的拉伸浴4d ;以及贮存有清洗通过该拉伸浴4d的薄膜的清洗液的清洗浴4f。另外,本方式的拉伸装置中,在薄膜的移动路径中的清洗浴4f的下游侧且卷取部10的上游侧,具备使薄膜上附着的清洗液干燥的干燥装置11,具体而言具备干燥烘箱。进而,本方式的拉伸装置中还具备层压装置,所述层压装置将卷绕成卷状的表面保护薄膜(例如三醋酸纤维素薄膜、环烯烃聚合物薄膜)等层叠用薄膜12分别配置在用所述干燥装置11进行了干燥的薄膜的两面侧,用于在干燥后的薄膜的两面层叠层叠用薄膜12。作为前述拉伸部,采用所谓的辊拉伸部9a。即,采用如下的结构在前述移动路径中,配置多组以中间夹持薄膜且向移动方向下游侧送出的方式构成的成对的轧辊9a,且使移动方向下游侧的组的圆周速度比上游侧快。进而,本拉伸装置如图2所示,在原卷薄膜I的末端部Ia通过所限制的移动路径之前,具体而言,在通过浸溃浴4之前,具有用于以激光熔接将原卷薄膜I的末端部Ia与接着该原卷薄膜I通过移动路径内的新的原卷薄膜I的前端部Ib连接的连接装置(图2中未示出)。需要说明的是,图2中,用涂黑的30表示通过激光照射连接的部分。接着,参照图3对优选的连接装置进行说明。该图3是表示通过激光熔接将原卷薄膜相互连接的连接装置的结构示意图。图3表示从侧面朝向TD方向(宽度方向)观察连接的新旧原卷薄膜时的连接装置的主视图。如该图3所示,所述连接装置具有具有平坦的上表面部的工作台40 ;配置在该工作台40的上方的、以能在上下方向移动的方式配置的加压部件50 ;配置在该加压部件50的上方的激光光源(未图示)。另外,所述连接装置构成如下使在前的原卷薄膜I的末端部Ia和与其连接的新的原卷薄膜I的前端部Ib在前述工作台40上上下重合,边用前述加压 部件50对该重合部分进行加压边从所述激光光源照射激光R,从而能使前述末端部Ia和前述前端部Ib的界面部加热熔融并熔接。另外,前述加压部件50由激光R的透射性优异的透明的部件构成。需要说明的是,在前述连接装置中,为了能够提高前述末端部Ia和前述前端部Ib的界面部处的激光R的光吸收性、更高效地实施熔接,优选预先在前述界面部中所要面接触的前述末端部Ia或前述前端部Ib中的任一者的表面(或两面)设置用于吸收水分的吸水部。特别优选的是,预先设置用于吸收水分的吸水部,以使得与朝向前述界面透过激光侧的薄膜(图3中为在前的原卷薄膜(末端部Ia))相比,要在该薄膜上接合的薄膜(前端部Ib)侧的吸水率变高。该吸水部可以由用于涂布水的通常的装置构成,作为该涂布装置,例如可以采用分配器、喷墨打印机、丝网印刷机、双流体式、单流体式或超声波式喷雾器、打印机、涂布机
坐寸ο而且,上述装置优选以在作为与前述末端部Ia的接合界面的所述前端部Ib的上表面侧涂布水的方式配置。另外,对该连接装置中利用的激光光源的种类也没有特别限定。所使用的激光在新旧原卷薄膜的重合部中间(界面)被所吸入的水吸收、发挥发热的作用,其优选具有对水的吸收灵敏度高的波长。具体而言,激光被原卷薄膜中所含的水吸收,发挥发热的作用,其优选采用具有水的吸收灵敏度高的I. 9 2. 2μπι的范围内的任意的波长的激光。例如,作为具有这样优选波长的激光,可以使用掺铥光纤激光、掺钦YAG激光以及InGaAs半导体激光。为了避免原卷薄膜的分解并且促进该原卷薄膜的熔融,与瞬间投入高能量的脉冲激光相比优选连续波的CW激光。关于激光的功率(power)、射束直径及形状、照射次数、进而扫描速度等,只要根据作为对象的吸水性高分子薄膜的吸水状态以及光吸收率等光学特性、构成原卷薄膜的聚合物的熔点、玻璃化转变温度(Tg)等热特性等的差异进行适当最优化即可,为了在被激光照射的部分有效地使聚乙烯醇系树脂流动化而得到牢固的接合,作为照射的激光的功率密度,优选在200W/cnTl0000W/cm2的范围内,进一步优选在300W/cnT5000W/cm2的范围内,特别优选在1000W/cnT3000W/cm2的范围内。需要说明的是,作为激光的累积照射量,优选在5J/CnT400J/Cm2的范围内,进一步优选在10J/CnT300J/Cm2的范围内,特别优选在30J/CnTl50J/Cm2的范围内。因此,优选在连接装置中采用能够满足这些条件的激光光源。另外,连接装置中利用的激光光源优选为能够在新旧原卷薄膜的界面上以规定大小的光斑直径(照射宽度)照射激光的激光光源。作为该照射光斑直径(照射宽度),在满足前述照射激光功率密度的功率下优选为新旧原卷薄膜重合宽度的1/10以上且3倍以下。不足重合宽度的1/10时,重合部的未接合部大,存在接合后输送时扇动薄膜、阻 碍薄膜的良好的输送性的担心。另外,以3倍以上的宽度照射激光时,虽然对接合及拉伸特性没有影响,但从能量利用效率的观点来看是不优选的。优选为重合宽度的1/5以上且2倍以下。需要说明的是,新旧原卷薄膜的重合宽度优选设定为O. Imm以上且不足50mm,进一步优选设定为O. 5mm以上且不足30mm。这是因为,重合宽度不足O. Imm时,难以重复精度良好地重合配置大宽度的原卷薄膜,变为50mm以上时,存在未接合区域变大、接合后输送时薄膜发生扇动的担心。另外,从实现薄膜的良好的输送性的角度出发,优选的是,在新旧原卷薄膜的重叠部,通过将各原卷薄膜的前端部的足够的区域用于接合而使两前端部不会在输送中扇动。从该观点考虑,新旧原卷薄膜的重叠部处的未接合部的宽度优选为5mm以下,更优选为2mm以下,进一步优选为Omm (重叠部整面被接合)。在本实施方式中,优选以可以沿重合的新旧原卷薄膜的重合部分实施激光熔接、形成线状的熔接部的方式构成前述连接装置,例如,在前述连接装置中,优选具备如下机构用于使通过聚光透镜聚光成期望的射束直径的点波束沿重合部分扫过的机构;通过使用柱面透镜、衍射光学元件这样的光学部件对线状的激光束的形状进行调整并对原卷薄膜的重合部进行照射的机构;以及通过沿重合部配置多个激光源并以不扫过的方式同时照射来进行一次性的熔融加热接合的机构等。作为在工作台上对在这样的激光的照射下重合的前述新旧原卷薄膜(旧原卷薄膜的末端部Ia和新原卷薄膜的前端部Ib)进行加压的加压部件50,可以使用对所使用的激光显示高透明性的玻璃制部件。作为激光照射时的加压强度,优选在O. 5 IOOkgf/cm2的范围内,更优选在l(T70kgf/cm2 的范围内。因此,作为在所述连接装置中优选采用的加压部件50,只要是能以这样的强度加压的部件,对该玻璃部件的形状就没有特别限定,例如可以使用平板、圆筒、球状的玻璃部件。对玻璃部件的厚度没有特别限定,但过薄时,因变形无法进行良好的加压,过厚时,激光的利用效率降低,因此,激光透过的方向的厚度优选为3mm以上且不足30mm,进一步优选为5mm以上且不足20mm。
作为加压部件50的材质,例如可以列举出石英玻璃、无碱玻璃、TEMPAX、Pyrex (注册商标)、Vycor> D263、0A10、AF45 等。为了提高激光R的利用效率,作为加压部件利用的玻璃制部件优选对所使用的激光波长具有高透明性,优选具有50%以上的透光率,进一步优选具有70%以上的透光率。需要说明的是,使用如上所述的玻璃制部件构成加压部件50时,也可以在与聚乙烯醇系树脂薄膜相接的部分形成与前述玻璃制部件相比缓冲性优异的缓冲层,以便能对更大的面积进行更均一地加压而在整个区域进行良好的接合。S卩,也可以采用具备透光性良好的橡胶板、具有缓冲性的透明树脂板等的加压部件50,例如,可以采用背面侧由玻璃制部件构成、与聚乙烯醇系树脂薄膜相接的前面侧由透明橡胶板构成的加压部件40。
前述缓冲层的形成可以使用例如硅橡胶、聚氨酯橡胶等橡胶系材料、聚乙烯等树脂材料。该缓冲层的厚度优选为50 μ m以上且不足5mm,进一步优选为Imm以上且不足3mm ο不足50 μ m时,缺乏缓冲性,为5mm以上时,存在如下的担心由该缓冲层而产生激光的吸收、散射,使到达前述末端部Ia与前端部Ib的接触界面部的激光的能量降低。该缓冲层优选对所使用的激光波长具有30%以上的透光率,进一步优选为50%以上。关于与上述加压部件一起对原卷薄膜的重合部进行加压的工作台40,对其材质没有特别的限定,例如可以采用通过金属、玻璃、树脂、橡胶、陶瓷等形成其上表面部的工作台40。但是,将大宽度的原卷薄膜拼接(接合)时,为了进行面内均一的加压而在整个区域中达成良好的接合,优选采用由硬度较低、有缓冲性的橡胶系、树脂系的材料形成上表面部的平台作为平台40。需要说明的是,虽然这里没有详细叙述,但在上述的连接装置中可以采用通常的激光熔接装置以及其配套设备中利用的各种机构。接着,对利用具备这样的连接装置的拉伸装置制造偏光薄膜的方法进行说明。在本实施方式的偏光薄膜的制造方法中实施以下工序将所述原卷薄膜浸溃在膨润浴4a中使其膨润的膨润工序;将膨润了的薄膜浸溃在染色浴4b中进行染色的染色工序;将染色了的薄膜浸溃在交联浴4c中使构成薄膜的树脂的分子链交联的交联工序;在拉伸浴4d内对该交联工序后的薄膜进行拉伸的拉伸工序;对该拉伸工序后的薄膜进行洗涤的洗涤工序;用干燥装置11对该洗涤了的薄膜进行干燥的干燥工序;在该干燥后的薄膜上层叠表面保护膜的层叠工序。并且,本实施方式的偏光薄膜的制造方法是将一个原卷卷设置在前述原卷薄膜供给部3上,从该原卷薄膜供给部3连续地送出原卷薄膜,对在其移动路径上实施上述工序并最终完成层叠工序而得到的产品(偏光薄膜)实施在偏光薄膜卷取部10处卷取为卷状的卷取工序而进行的,并且,在前述原卷卷用尽之前,从新的原卷辊输出原卷薄膜,另行实施使该新的原卷薄膜的前端部Ib与在前的原卷棍的末端部Ia连接的连接工序,由此继续从该新的原卷卷向拉伸装置供给原卷薄膜、连续地制造偏光薄膜。
需要说明的是,作为向这样的工序中供给的原卷薄膜(带状的聚乙烯醇系树脂薄膜),可以采用以下的薄膜。作为本实施方式的偏光薄膜的制造方法中使用的原卷薄膜,可以使用由作为偏光薄膜的原材料使用的聚乙烯醇系高分子树脂材料制成的薄膜。具体而言,例如可以使用聚乙烯醇薄膜、部分皂化聚乙烯醇薄膜或聚乙烯醇的脱水处理薄膜等。通常,这些原卷薄膜以如上所述卷绕成卷状的原卷卷的状态使用。作为前述聚乙烯醇系树脂薄膜的形成材料的聚合物的聚合度一般为50(Tl0000,优选在1000 6000的范围,更优选在1400 4000的范围。进而,为部分皂化聚乙烯醇薄膜的情况下,其皂化度例如从在水中的溶解性的方面考虑,优选为75摩尔%以上,更优选为98摩尔%以上,更优选在98. 3^99. 8摩尔%的范·围。作为前述聚乙烯醇系树脂薄膜,可以适当使用通过将溶解于水或有机溶剂中所得的原液流延成膜的流延法、铸造法(castmethod)、挤出法等任意方法成膜而得到的薄膜。原卷薄膜的相位差值优选为5nnTl00nm。另外,为了得到面内均一的偏光薄膜,优选聚乙烯醇系树脂薄膜面内的相位差偏差尽可能小,作为原卷薄膜的聚乙烯醇系树脂薄膜的面内相位差偏差优选在测定波长IOOOnm处为IOnm以下,进一步优选为5nm以下。需要说明的是,实施激光接合时,优选在对激光显示20%以上的光吸收率的条件下实施前述激光熔接,该光吸收率通常可通过聚乙烯醇系树脂薄膜的吸水状态等进行调

iF. O因此,作为激光接合时的吸水状态,优选为3质量9Γ40质量%的吸水率,进一步优选为5质量9Γ25质量%的吸水率。被连接前的原卷薄膜具有40质量%以上的吸水率时,在激光熔接时因薄膜的溶胀而变得容易产生伸展,存在位置偏移加剧的担心。另外,吸水率不足3质量%时,不能得到充分的光吸收特性,存在导致接合效率降低的担心。需要说明的是,关于该光吸收率,可以使用日本分光株式会社制造的紫外可见近红外分光光度计、型号“V-670”通过积分球模式测定对象波段的透过率T (%)和反射率R(%)并计算下式而求出。光吸收率A(%) =IOO-T-R另外,关于吸水率,可通过比较干燥前后的质量而求出,例如,如果为聚乙烯醇系树脂薄膜,则可以进行83°C Xl小时加热、将其加热失重除以加热前的聚乙烯醇系树脂薄膜的质量而求出。以下,对用于通过前述拉伸装置对上述原卷薄膜施加拉伸而加工成偏光薄膜的各工序进行说明。(溶胀工序)在本工序中,例如,利用前述辊9将从原卷薄膜供给部3送出的原卷薄膜维持恒定的移动速度地引导至充满水的溶胀浴4a中,使前述原卷薄膜浸溃在水中。由此原卷薄膜被水洗,能够清洗原卷薄膜表面的污垢、防粘连剂,并且,通过利用水使原卷薄膜溶胀,能够期待防止染色不均等不均一性的效果。在前述溶胀浴4a中的溶胀液中,除水以外,还可以适当添加甘油、碘化钾等,添加它们时,如果为甘油,则其浓度优选为5质量%以下,如果为碘化钾,则其浓度优选为10质
量%以下。溶胀液的温度优选设定在2(T45°C的范围,进一步优选设定为25 40°C。前述原卷薄膜在前述溶胀液中浸溃的浸溃时间优选为2 180秒,更优选为1(Γ150秒,特别优选为30 120秒。另外,可以在该溶胀浴中将聚乙烯醇系树脂薄膜沿长度方向拉伸,优选此时的拉伸倍率包括因溶胀导致的伸展在内为I. Γ3. 5倍左右。(染色工序)·
对于经过了所述溶胀工序的薄膜,与溶胀工序同样地,利用辊9使其浸溃于贮存在染色浴4b的染色液中,实施染色工序。例如,可以采用如下方法实施前述染色工序在包含碘等二色性物质的染色液中浸溃经过了溶胀工序的聚乙烯醇系树脂薄膜,由此使上述二色性物质吸附在薄膜上。作为前述二色性物质,可以使用以往公知的物质,例如可以列举出碘、有机染料
坐寸ο作为有机染料,例如可以使用红BR、红LR、红R、粉红LB、宝石红BL、枣红(Bordeaux) GS、天空蓝LG、柠檬黄、蓝BR、蓝2R、深蓝色RY、绿LG、紫LB、紫B、黑H、黑B、黑GSP、黄3G、黄R、橙LR、橙3R、猩红(Scarlet) GL、猩红KGL、刚果红、亮紫BK、超级蓝(Supra Blue) G、超级蓝(Supra Blue) GL、超级橙(Supra Orange) GL、直接天蓝、直接永固澄(DirectFast Orange) S、永固黑(Firstblack)等。这些二色性物质可以仅使用一种,也可以组合使用两种以上。使用前述有机染料时,例如从谋求可见光区域的中性化的观点考虑,优选组合两种以上。作为具体例,可以列举出刚果红和超级蓝G、超级橙GL和直接天蓝的组合、或直接天蓝和永固黑的组合等。作为前述染色浴的染色液,可以使用将前述二色性物质溶解于溶剂中所得的溶液。作为前述溶剂,一般可以使用水,还可以进一步添加与水具有相容性的有机溶剂。作为该染色液中的二色性物质的浓度,优选设定在O. 01(Tl0质量%的范围,更优选设定在O. 02(Γ7质量%的范围,特别优选设定为O. 025飞质量%。另外,使用碘作为前述二色性物质时可以进一步提高染色效率,因此优选进一步添加碘化物。作为该碘化物,例如可以列举出碘化钾、碘化锂、碘化钠、碘化锌、碘化铝、碘化铅、碘化铜、碘化钡、碘化钙、碘化锡、碘化钛等。这些碘化物的添加比率在前述染色浴中优选设定为O. 01(Γ10质量%,进一步优选设定为O. 10 5质量%。其中,特别优选添加碘化钾,碘和碘化钾的比例(质量比)优选设定在1: 5 1:100的范围,更优选设定在1:6 1:80的范围,特别优选设定在1:7 1:70的范围。
对薄膜在所述染色浴中的浸溃时间没有特别限定,优选设定在O. 5^20分钟的范围,更优选设定在广10分钟的范围。另外,染色浴的温度优选设定在5 42°C的范围,更优选设定在1(T35°C的范围。另外,也可以在该染色浴中将薄膜沿长度方向拉伸,此时累计的总拉伸倍率优选设定为I.广4. O倍左右。此外,作为染色工序,除了如前所述的在染色浴中浸溃的方法以外,例如还可以采用在前述聚合物薄膜上涂布或喷雾包含二色性物质的水溶液的方法。另外,在本发明中,也可以不进行染色工序而采用由预先混杂有二色性物质的聚合物原料成膜得到的薄膜作为所使用的原卷薄膜。(交联工序) 接着,将薄膜导入到贮存有交联剂液的交联浴4c中,将薄膜浸溃在前述交联剂液中,实施交联工序。作为前述交联剂,可以使用以往公知的物质。例如可以使用硼酸、硼砂等硼化合物、乙二醛、戊二醛等。这些可以仅使用一种,也可以组合使用两种以上。组合使用两种以上时,优选为例如硼酸和硼砂的组合,另外,其添加比例(摩尔比)优选设定在4:6、 I的范围,更优选设定在5. 5:4. 5^7:3的范围,最优选设定为6:4。作为前述交联浴的交联剂液,可以使用将所述交联剂溶解于溶剂中所得的液体。作为前述溶剂,例如可以使用水,也可以进一步组合使用与水具有相容性的有机溶剂。对所述交联剂液中的交联剂的浓度没有特别限定,优选设定在f 10质量%的范围,进一步优选设定为2飞质量%。所述交联浴中的交联剂液中,还可以添加用于赋予偏光薄膜面内均一特性的碘化物。作为该碘化物,例如可以列举出碘化钾、碘化锂、碘化钠、碘化锌、碘化铝、碘化铅、碘化铜、碘化钡、碘化钙、碘化锡、碘化钛等,添加这些碘化物时的碘化物的含量优选设定为
O.05 15质量%,更优选设定为O. 5^8质量%。作为交联剂和碘化物的组合,优选硼酸和碘化钾的组合,硼酸和碘化钾的比例(质量比)优选设定在1:0. Γ :3. 5的范围,更优选设定在1:0. 5^1:2. 5的范围。前述交联浴中的交联剂液的温度通常优选在2(T70°C的范围,聚乙烯醇系树脂薄膜的浸溃时间通常可以为I秒 15分钟的范围内的任意时间,优选为5秒 10分钟。该交联工序中,可以在交联浴中将薄膜沿长度方向拉伸,此时累计的总拉伸倍率优选设定为I.广5. O倍左右。此外,作为交联工序,与染色工序同样,可以代替在交联剂液中浸溃的处理方法而通过涂布或喷雾含交联剂的溶液的方法实施。(拉伸工序)前述拉伸工序是以例如使累计的总拉伸倍率达到21倍左右的方式将进行了染色、交联的聚乙烯醇系树脂薄膜沿其长度方向拉伸的工序,湿式拉伸法中,以将薄膜浸溃在贮存于拉伸浴的溶液中的状态沿其长度方向施加张力,实施拉伸。作为贮存于拉伸浴的溶液,没有特别限定,例如可以使用添加有各种金属盐、碘、硼或锌的化合物的溶液。作为该溶液的溶剂,可以适当使用水、乙醇或者各种有机溶剂。其中,特别优选使用分别添加有2 18质量%左右的硼酸和/或碘化钾的溶液。同时使用该硼酸和碘化钾时,其含有比例(质量比)优选使用1:0. f 1:4左右的比例,更优选使用1:0. 5 1:3左右的比例。作为前述拉伸浴中的溶液的温度,例如优选设定在4(T67°C的范围,更优选设定为50^62 0C ο(清洗工序)该清洗工序是例如通过使薄膜通过贮存有水等清洗液的清洗浴而冲洗掉在该工·序之前的处理中附着的硼酸等不需要的残留物的工序。前述水中优选添加碘化物,例如优选添加碘化钠或碘化钾。在清洗浴的水中添加碘化钾时,其浓度通常为O. Γ10质量%,优选为31质量%。进而,清洗液的温度优选设定为1(T60°C,更优选设定为15 40°C。另外,对清洗处理的次数、即浸溃在清洗液中之后从清洗液提起的重复次数没有特别限定,可以为多次,也可以通过在多个清洗浴中预先贮存添加物的种类、浓度不同的水并使薄膜通过这些清洗浴而实施清洗工序。需要说明的是,将薄膜从各工序中的浸溃浴中提起时,为了防止产生滴液,可以通过使用现有公知的夹紧辊等去液辊、或通过气刀削掉液体等方法来除去多余的水分。(干燥工序)对于在前述清洗工序中进行了清洗的薄膜,可以将其导入所述干燥机11中,适当利用自然干燥、风干、加热干燥等最佳的方法使其干燥,实施该干燥工序。其中,在通过加热干燥来实施干燥工序的情况下,关于加热干燥的条件,优选将加热温度设定为2(T80°C左右、将干燥时间设定为f 10分钟左右。进而,对于干燥温度,不管前述方法如何,为了防止薄膜劣化而优选尽可能设定为低温。更优选为60°C以下,特别优选设定为45°C以下。(层叠工序)及(卷取工序)在本实施方式中,通过实施用卷取辊卷取经过了以上工序的薄膜的卷取工序,从而能够获得卷绕为卷状的偏光薄膜。需要说明的是,在本实施方式中,可以在实施了在通过干燥工序进行了干燥的偏光薄膜的表面一侧或两侧适当层叠表面保护用薄膜等的层叠工序之后,实施卷取工序。这样制造的偏光薄膜的最终总拉伸倍率优选相对于原卷薄膜为5. 5^8. O倍的范围内的任意拉伸倍率,更优选为6. (Γ7. O倍的范围内的任意拉伸倍率。优选为上述的拉伸倍率是因为,最终的总拉伸倍率不足5. 5倍时,存在难以得到具有高偏光特性的偏光薄膜的担心,超过8. O倍时,存在薄膜产生断裂的担心。(连接工序)通过对原卷卷的整个长度实施如上所述的工序,可以高效地连续制造偏光薄膜,而在本实施方式中,在该原卷卷被全部供给至拉伸装置之前,会进一步实施从下一原卷卷放出聚乙烯醇系树脂薄膜(原卷薄膜),将该新的原卷薄膜的前端部Ib与用拉伸装置实施了各工序的原卷卷的末端部Ia连接的连接工序。S卩,通过利用激光接合方法将在前的薄膜的末端部和下一原卷薄膜的前端部连接,即使在为了赋予高偏光功能而要求的、5. 5倍以上的拉伸倍率下也能够不产生断裂地接合,即使在接合部通过的情况下也能够不改变拉伸条件地连续通纸。由此,能够获得作业效率提闻、生广率提闻、成品率提闻及材料浪费减少的效果。此连接工序例如可以以如下方式实施在之前的薄膜的末端部Ia和新的薄膜的前端部Ib中的任一者或者二者的表面涂布水,在工作台40上以重合部的宽度达到O. Imm以上且不足10. Omm的方式将新旧原卷薄膜上下重合配置,边用前述加压部件50对该重合部进行加压边对该重合部照射例如具有I. 9 μ πΓ2. 2 μ m的范围内的任意波长的激光,由此使得彼此的树脂在薄膜界面相容,形成熔接部30。这样通过利用激光进行熔接,与利用热封机进行熔接的情况相比可以减少受到加热改性的区域,由此,可以形成拉伸时不易产生变形集中的连接部。 另外,现有的激光熔接是通过使用酞菁系的颜料、萘酞菁系的颜料并照射具有800nnTl200nm范围内的任意波长的激光的形式实施的,而本发明利用具有I. 9 μ πΓ2. 2 μ m范围内的任意波长的激光并利用水代替上述那样的颜料作为光吸收剂。需要说明的是,也可在吸水性低的2片聚合物薄膜的界面上使水分布、照射具有
I.9 μ πΓ2. 2 μ m的波长的激光,但在此情况下,由于水的沸腾等反而存在阻碍熔接的担心,需要调整条件。另一方面,在吸水状态下使用聚乙烯醇系树脂薄膜这样的吸水性高分子薄膜时,可预防上述那样的熔接阻碍并容易地实施激光熔接。因此,在本实施方式中,可以抑制酞菁系的颜料、萘酞菁系的颜料等昂贵的光吸收剂的使用,并且形成比使用热封机等时品质高的接合部,且可以提供试剂液污损的风险低的薄膜作为偏光薄膜的原卷薄膜。另外,实施如本实施方式的激光熔接的情况下,在拉伸倍率方面与利用热封机的熔接相比也变得有利。对此进行具体的说明,例如,将通过利用热封机进行连接从而在连接部形成了大的加热改性(固化)区域的原卷薄膜供给至前述拉伸装置中,将前述溶胀浴4a、染色浴4b、交联浴4c设定为例如30°C左右温度、并以在交联浴4c中的总拉伸倍率达到5. O倍左右的方式进行拉伸时,前述加热改性区域基本上没有被拉伸,会在该加热改性区域前后形成产生大的变形的区域。接着,该连接部在拉伸浴4d中受到进一步拉伸时产生断裂。另一方面,与用热封机进行熔接的情况相比,本实施方式中的加热改性区域变小,因此减少了变形的集中。并且,由于加热改性区域小,容易被各浴中的试剂液溶胀。S卩,被软化,可以防止更进一步的变形的集中。例如,在前述将溶胀浴4a、染色浴4b、交联浴4c设定为30 V左右的温度的情况下,难以期待由溶胀带来的软化效果,但是若将拉伸浴设定为5(T62°C,则该加热改性区域的溶胀加快,可以使该加热改性区域自身拉伸。S卩,可以使熔接中没有受到热影响的区域与熔接部分的拉伸性接近,能够抑制断裂等问题并且实施高倍率的拉伸。此外,由于通过热封机进行熔接的薄膜加热改性区域大,因此由溶胀带来的软化进行得缓慢,即便以同样的温度条件进行拉伸,仍然容易产生断裂。这样,在本实施方式的偏光薄膜的制造方法中,可以形成因拉伸而导致断裂的风险低的连接部。另外,如之前所述,在本实施方式中,由于可以抑制颜料的使用,污损溶胀浴、染色浴的试剂液的风险变低,能够实现减少试剂液的净化所需要的工夫,并且可防止颜料附着在连接部以外的作为偏光薄膜而被利用的部分从而使成品率降低。S卩,本实施方式中,可以不使用光吸收剂、或者即使使用也尽量减少其用量地对聚乙烯醇系树脂薄膜等吸水性高分子薄膜实施高品质的接合,并且可以在偏光薄膜的制造方法中实现效率的提高。 需要说明的是,对利用本实施方式所例示的制造方法制造的偏光薄膜的厚度没有特别限定,优选为5 40 μ m。如果厚度为5 μ m以上,则机械强度不会降低,另外,如果为40 μ m以下,则光学特性不会降低,应用于图像显示装置也能实现薄型化。利用本实施方式制造的偏光薄膜可以作为层叠于液晶单元基板的偏光薄膜等用于液晶显示装置等。另外,除液晶显示装置以外,还可以作为电致发光显示装置、等离子显示器及场发射显示器等各种图像显示装置中的偏光薄膜使用。另外,在实际应用时,也可以在两面或单面层叠各种光学层来形成光学薄膜、或实施各种表面处理而用于液晶显示装置等图像显示装置。作为前述光学层,只要满足所要求的光学特性就没有特别限定,例如,除了用于保护偏光薄膜的透明保护层、用于视觉补偿等的取向液晶层、用于层叠其它薄膜的粘合层以外,还可以使用在偏光转换元件、反射板、半透过板、相位差板(包括1/2、1/4等波片(λ板))、视觉补偿薄膜、增光膜等图像显示装置等的形成中使用的薄膜。作为前述表面处理,可列举出硬涂处理、防反射处理、用于抗粘连、防漫射或防眩光的表面处理。需要说明的是,在本实施方式中,针对偏光薄膜的制造中所使用的原卷薄膜举出了实例,但本发明的吸水性高分子薄膜的接合方法并不限定于前述的原卷薄膜的接合方法。例如,在聚乙烯醇系树脂薄膜与其他的热塑性树脂薄膜的接合中,使聚乙烯醇系树脂薄膜成为吸水状态而进行激光熔接的情况、使薄膜以外的部件的表面与吸水状态的聚乙烯醇系树脂薄膜面接触并进行激光熔接的情况也作为本发明的吸水性高分子薄膜的接合方法而隶属于构思的范围内。另外,在本发明中,与吸水性高分子薄膜接合的对象材料并不仅限于该吸水性高分子薄膜以外的材料。例如,将带状的吸水性高分子薄膜卷成筒状而使一部分重合,使该重合部成为吸水状态并进行激光熔接、或者将吸水性高分子薄膜对折并进行激光熔接这样的情况也在本发明的构思范围内。进而,在本发明中,并不限定吸水性高分子薄膜为聚乙烯醇系树脂薄膜。
需要说明的是,吸水性高分子通常是指侧链上具有亲水基团的高分子材料、指淀粉与聚丙烯酸构成的物质、甲基丙烯酸甲酯与醋酸乙烯酯的共聚物、交联聚丙烯酸盐这样的吸水性高分子,关于对聚乙烯醇系树脂薄膜进行说明的各种效果,只要是这样的吸水性高分子所形成的薄膜,则可与通常使用聚乙烯醇系树脂薄膜的情况同样地发挥效果。另外,在本实施方式中,从吸水容易、且可以利用例如具有I. 9μπΓ2. 2μπι的波长的激光高效地进行激光熔接的观点出发,作为接合的高分子薄膜例示有聚乙烯醇系树脂薄膜这样的吸水性高分子薄膜,但即使是例如由聚乙烯树脂薄膜等侧链上不具有亲水基的这种聚合物构成的薄膜,只要是可以通过接触热水蒸汽等而吸水的薄膜,就能使所吸入的水吸收激光的光能,并能以该吸收的能量实施热熔接(激光熔接)。并且,这种情况也作为本发明所述的高分子薄膜的接合方法而隶属于构思范围内。在这样的情况下,也可以抑制光吸收剂的使用,从可以洁净、低成本地接合的观点出发,与使用吸水性高分子薄膜时是一样的。实施例 接着列举实施例来进一步详细说明本发明,但本发明并不限于这些。(基本条件)·原卷薄膜聚乙烯醇树脂(PVA)薄膜(KURARAY CO. ,LTD.制造,厚度75 μ m、宽度30mm)·重叠宽度宽度I. 5mm(加热熔融接合方法) 激光掺铥光纤激光(波长2 μ m、功率100W、光斑直径2πιπιΦ、功率密度3180W/cm2、扫过速度50mm/sec、累积照射量8127J/cm2、平顶光束) 加压部件石英玻璃板(IOmm厚) 加压条件以载荷50kgf/cm2按压原卷薄膜重叠部(实施例I)使重合配置的2片PVA薄膜中的下侧的PVA薄膜的吸水率为18%、使激光照射部的波长在I. 9^2. 2 μ m的范围内的最大光吸收率为22%,按照上述条件实施激光接合。其结果,不使用特别的光吸收剂而确认到了良好的接合性。得到的接合体的拉伸断裂强度为100N/30mm宽度,为良好(拉伸速度50mm/min、拉伸试验机)。进而将接合体在30°C的水中浸溃I分钟时没有确认到异物在水中溶出。(实施例2)以与实施例I同样的条件,将2片作为原卷薄膜的PVA薄膜通过接合连接。将这样连接的PVA薄膜在如图I所示的拉伸装置中以其拉伸倍率在溶胀浴中为2. 6倍、在染色浴中为3. 4倍、在交联浴中为3. 6倍、在拉伸浴中为6. O倍的方式边拉伸变输送,再通过清洗浴,从而制造偏光薄膜。其结果,连接部无断裂,可连续地制造偏光薄膜。
(比较例I)在重合配置的薄膜的界面上以lOnL/mm2的方式涂布光吸收剂(商品名“ClearweldLD 120C”、Gentex Corporation制造),从而使波长940nm的光吸收率为40%、使用波长940nm的半导体激光以90W的功率进行激光照射,除此以外与上述实施例I同样地进行PVA
薄膜的激光接合。其结果,确认到100N/30mm这样的良好的接合性,但观察在30°C的水中浸溃I分钟的情况时,目视确认到来自光吸收剂的异物在水中溶出的情况。 从以上内容可知,根据本发明,可形成的高品质的接合部。附图标记说明
I :原卷薄膜(吸水性高分子薄膜)、Ia :末端部、Ib :前端部、4f :拉伸浴、9 :棍。
权利要求
1.一种高分子薄膜的接合方法,其特征在于,其为使高分子薄膜的表面与要接合的对象材料的表面面接触并对其界面进行激光熔接的高分子薄膜的接合方法,其中, 使所述高分子薄膜的至少所述界面侧成为吸水状态并照射激光,使所述被吸入的水吸收激光而实施所述激光熔接。
2.根据权利要求I所述的高分子薄膜的接合方法,其中,作为所述激光,使用具有I. 9μπΓ2. 2μπ 的范围内的任意波长的激光。
3.根据权利要求2所述的高分子薄膜的接合方法,其中,在相对于所述激光显示20%以上的光吸收率的条件下实施所述激光熔接。
4.根据权利要求I所述的高分子薄膜的接合方法,其中,进行接合的所述高分子薄膜为聚乙烯醇系树脂薄膜。
5.根据权利要求I所述的高分子薄膜的接合方法,其中,所述高分子薄膜具有5 μ πΓ ΟΟ μ m的范围内的任意厚度。
6.一种偏光薄膜的制造方法,其特征在于,其为将由2片以上的聚乙烯醇系树脂薄膜连接而成的原卷薄膜浸溃在试剂液中来制作偏光薄膜的偏光薄膜的制造方法,其中, 原卷薄膜的所述连接是通过权利要求I所述的高分子薄膜的接合方法来实施的。
全文摘要
本发明的课题在于,对聚乙烯醇系树脂薄膜等高分子薄膜实施抑制光吸收剂的使用且高品质的接合。本发明提供高分子薄膜的接合方法等,其为使高分子薄膜的表面与要接合的对象材料的表面面接触并对其界面进行激光熔接的高分子薄膜的接合方法,使所述高分子薄膜的至少所述界面侧成为吸水状态并照射激光,使所述被吸入的水吸收激光而实施所述激光熔接。
文档编号B29K29/00GK102947074SQ20118003094
公开日2013年2月27日 申请日期2011年6月9日 优先权日2010年6月23日
发明者松尾直之, 下田麻由 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1