复合结构体制造方法及制造装置制造方法

文档序号:4471364阅读:251来源:国知局
复合结构体制造方法及制造装置制造方法
【专利摘要】本发明提供一种复合结构体的制造方法及制造装置。第二部件在其与第一部件接触的部分中含有磁性体。通过将第二部件导入到感应加热部对该第二部件进行感应加热,加热第二部件的接触部分,从而将第二部件接合到第一部件上。采用该复合结构体的制造方法及制造装置,能够防止被加强的第一部件变形的同时,将作为用于加强的第二部件的热塑性树脂成型体接合到第一部件上。
【专利说明】复合结构体制造方法及制造装置
【技术领域】
[0001]本发明涉及复合结构体制造方法及制造装置。
【背景技术】
[0002]汽车的挡泥板(fender)、车顶(roof)等汽车用外饰配件一般由钢铁等金属板形成。为了降低燃耗和生产成本,人们研究将所述金属板做得较薄从而实现轻量化。
[0003]然而,将所述金属板做得较薄时则有可能无法获得所需的刚度。因此,考虑将所述金属板作为被加强部件,制造在该金属板的一面上具备由热塑性树脂构成的肋状的加强部件的复合结构体,由此来确保该金属板的刚性。
[0004]作为所述复合结构体的制造方法,在现有技术中已知有下述一种方法:将由热塑性树脂构成的肋状加强部件推压到用加热装置加热后的金属板表面上。在所述制造方法中,所述被加热后的金属板由搬送机器人搬送到肋部成型推压装置,从该肋部成型推压装置吐出的由熔融树脂成型的所述肋状加强部件被推压辊推压到该金属板的表面上(参照日本专利公开2011 - 16275号公报)。
[0005]然而,在现有的制造方法中,为了通过所述推压辊将由熔融树脂成型的所述肋状加强部件推压向所述金属板从而形成所述复合结构体,存在有根据该加强部件的形状不同导致成型设备复杂化的问题。并且,所述肋状加强部件有必要进行冷却并固化,存在有所述复合结构体的形成速度降低的问题。
[0006]而且,在现有技术的制造方法中,被加热后的所述金属板的温度在由所述搬送机器人搬送途中下降,从而产生所述肋状加强部件焊着不良的问题。
[0007]所以,本发明的目的在于提供一种能够将作为加强部件的肋状热塑性树脂成型体焊着到该被加强部件上的复合结构体的制造方法。
[0008]并且,本发明的目的还在于提供适合于实施所述制造方法的制造装置。
[0009]为了达到上述目的,本发明具有下述特征。本发明用于制造复合结构体,该复合结构体由作为被加强部件的板状第一部件和作为加强部件的肋状第二部件,该方法的特征在于具备以下步骤:
[0010]将热塑性树脂制成型体导入到感应加热装置的步骤,所述第二部件具有与所述第一部件的一表面接触的接触部分,该第二部件由所述热塑性树脂制成型体构成,该热塑性树脂制成型体至少在所述接触部分中含有磁性体;
[0011]由所述感应加热装置对所述第二部件进行感应加热从而加热所述接触部分的步骤;
[0012]从所述感应加热装置导出所述第二部件并将所述接触部件接合到所述第一部件的一表面上的步骤。
[0013]在本发明的制造方法中,首先,所述第二部件由至少在与所述第一部件接触的接触部分中含有磁性体的热塑性树脂制成型体构成,将所述成型体导入到感应加热装置中。在本发明的制造方法中,所述第二部件可以是长尺寸部件,也可以是具有加强所述第一部件所需长度的部件。
[0014]接着,在所述感应加热装置中,通过对第二部件感应加热,让该第二部件中含有的磁性体发热,加热所述接触部。
[0015]然后,从所述感应加热装置导出至少所述接触部被加热了的所述第二部件,并将所述接触部接合到所述第一部件上。其结果,所述第二部件和所述第一部件形成一体化,能够制成在该第一部件的一表面上具备第二部件的复合结构体。
[0016]在本发明的制造方法中,所述感应加热装置仅对所述第二部件进行加热,完全不对所述第一部件进行加热。所以,根据本发明的制造方法,能够防止所述第一部件的变形。
[0017]在本发明的制造方法中,所述感应加热装置将所述接触部分加热到构成所述第二部件的热塑性树脂的软化温度以上且不足劣化温度的温度范围内。
[0018]为了将所述第二部件加热到所述温度范围内,所述感应加热装置优选为由多个感应加热部构成。所述感应加热装置由所述多个感应加热部构成,由此能够控制所述第二部件的加热状态。
[0019]为了控制所述第二部件的加热状态,例如所述多个感应加热部优选为以互不相同的加热速度对该第二部件加热。在本发明的制造方法中,通过组合以互不相同的加热速度对所述第二部件进行加热的感应加热部,在加热所述第二部件时,能够分别控制低温区域和高温区域的各个加热速度。
[0020]另外,当所述多个感应加热部以互不相同的加热速度加热所述第二部件时,所述多个感应加热部能够以越靠近导入该第二部件的一侧越小的加热速度加热该第二部件、以越靠近导出该第二部件的一侧越大的加热速度加热第二部件。
[0021]在这种情况下,首先在导入所述第二部件的一侧,以较小的加热速度将该第二部件加热到不足所述热塑性树脂的软化温度但接近于该软化温度的温度区域。其结果,在导入第二部件的一侧,所述第二部件被预备加热到接近于所述热塑性树脂的软化温度的温度区域。
[0022]接着,将所述第二部件移动到所述导出一侧,以更大的加热速度将该第二部件加热到所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内。其结果,在所述导出一侧,所述第二部件被急速加热到所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内。所以,能够缩短在高温区域中的加热时间。
[0023]另外,通过上述方法加热所述第二部件的方法能够在所述导出一侧对大量所述第二部件进行一次性加热。所以,在所述第二部件具有规定长度的情况下,适合对该第二部件进行批量处理。
[0024]此外,在本发明的制造方法中,通过感应加热装置让所述磁性体发热从而加热所述第二部件。因此,所述感应加热装置在所述导出一侧加热所述第二部件的速度如果过大,所述热塑性树脂的温度在该第二部件从该感应加热装置被导出后也继续上升而达到劣化温度,有可能导致第二部件劣化。
[0025]因此,在所述感应加热部以不同的速度加热所述第二部件时,所述多个感应加热部也可以以越靠近导入该第二部件的一侧越大的加热速度加热该第二部件、以越靠近导出该第二部件的一侧越小的速度加热该第二部件。
[0026]在这种情况下,首先,在导入所述第二部件一侧,以较高的加热速度将所述第二部件加热到不足所述热塑性树脂的软化温度但接近于该软化温度的温度区域。接着,将所述第二部件移动到所述导出一侧,以较小的加热速度将该第二部件加热到所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内。其结果,在所述导出一侧,所述第二部件被缓慢地加热到所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内。
[0027]所以,能够可靠地对所述第二部件的温度进行控制,使其处于所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内。
[0028]在本发明的制造方法中,所述多个感应加热部可以相互串联连接,也可以相互并联连接。但是,所述多个感应加热部被相互串联连接时,所述感应加热装置变得既长又大,导致需要高电压。
[0029]因此,在本发明的制造方法中,所述多个感应加热部优选为相互并联连接。在采用这种方式时,能够防止所述多个感应加热部的电感总计值增大,能够降低加在所述多个感应加热部上的电压。所以,能够将所述第二部件加热到所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内,而无需使用高电压。
[0030]另外,在本发明的制造方法中,所述第二部件可以整体含有所述磁性体,也可以通过下述方式含有磁性体:该第二部件具备在由第一热塑性树脂制成型体构成的与所述第一部件接触的接触部件上层叠由第二热塑性树脂制成型体构成的支承部件的双层结构,在所述接触部件中含有所述磁性体。然而,所述第二部件如果整体含有所述磁性体,则需要较大的电力来进行加热。
[0031]因此,在本发明的制造方法中,所述热塑性树脂制成型体优选具备在所述接触部件上层叠支承部件的双层结构,在该接触部件中含有该磁性体。在采用这种方式时,由于仅所述接触部件被加热,能够降低所需电力。
[0032]另外,所述热塑性树脂制成型体具备所述双层结构时,优选为所述接触部件由柔软性比所述支承部件高的热塑性树脂制成型体构成。像这样的所述第二部件中,由于所述支承部件由相对来讲比所述接触部件质地要硬的热塑性树脂制成型体构成,所述接触部件被感应加热成可以进行焊着,在其软化后,能够由所述支承部件维持形状。另一方面,由于所述接触部件由柔软性比所述支承部件高的热塑性树脂制成型体构成,如上所述进行加热时,该接触部件能够柔软变形,从而能够简单并可靠地将该接触部件接合到所述第一部件上。
[0033]另外,由于所述接触部件由柔软性比所述支承部件高的所述第一热塑性树脂制成型体构成,因此能够吸收所述第二部件和所述第一部件之间的膨胀率之差,能够防止该第二部件从该第一部件上剥离。但是,如果所述接触部件整体中均匀地含有所述磁性体时,所述第二部件被接合到所述第一部件上时,变为柔软后的该接触部件被所述支承部件推压而变薄,有时无法确保用于吸收该第二部件和该第一部件之间的膨胀率之差的足够厚度。
[0034]因此,所述接触部件优选为该接触部件的与所述第一部件接触的一侧含有的所述磁性体比该接触部件的与所述支承部件一侧含有的所述磁性体多。在这种情况下,例如所述接触部件也可以具备与所述第一部件接触的接触层和配设在所述接触层和所述支承部件之间的中间层,并仅在所述接触层中含有所述磁性体。
[0035]其结果,所述接触部件如上所述受感应加热后,所述磁性体含量较高的所述第一部件一侧、例如是所述接触层变得更为柔软而更容易发生变形。而所述磁性体相对含量较低的所述第二部件一侧、例如是所述中间层比所述第一部件一侧的接触部件要难以变形。所以,所述接触部件能够可靠地确保用于吸收所述第二部件和所述第一部件之间的膨胀率之差的足够厚度,能够防止该第二部件从该第一部件上剥离。
[0036]此外,由于所述第二部件具备由所述第二热塑性树脂制成型体构成的支承部件,在所述接触部件接合到所述第一部件上时,有时无法获得相对该第一部件足够的形状追随性。因此,所述支承部件优选为在内部含有未硬化的热硬化树脂层。
[0037]所述支承部件通过在内部含有未硬化的热硬化树脂层,能够获得适度的柔软性,能够在维持所述第二部件的形状的同时获得相对第一部件的足够的形状追随性。所述热硬化树脂层能够在以后的步骤、例如对所述被加强部件进行涂饰的步骤等中被加热而产生硬化,能够让所述第二部件具有所需的强度。
[0038]另外,本发明的制造装置用于制造由作为被加强部件的板状第一部件和作为加强部件的肋状第二部件构成的复合结构体,该制造装置的特征在于具备:感应加热装置,通过对由至少在与所述第一部件接触的接触部分含有磁性体的热塑性树脂制成型体构成的第二部件感应加热,来加热所述接触部分;导入机构,将所述第二部件导入到所述感应加热装置中;以及推压机构,通过将从所述感应加热装置导出的所述第二部件推压向所述第一部件的一方表面,所述第二部件在接触部分与所述第一部件接合。
[0039]在本发明的制造装置中,首先,所述第二部件由至少在与所述第一部件接触的接触部分含有磁性体的热塑性树脂制成型体构成,并通过所述导入机构将该成型体导入到感应加热装置中。接着,通过所述感应加热装置感应加热所述第二部件,使该第二部件中含有的所述磁性体发热,从而加热所述接触部分。
[0040]然后,至少加热所述接触部分,通过所述推压机构将被所述感应加热装置导出的所述第二部件的所述接触部分推压向所述第一部件的一方表面。其结果,所述第二部件和所述第一部件形成一体化,能够制成在所述第一部件的一方表面上具备所述第二部件的复合结构体。
[0041]在本发明的制造装置中,所述感应加热装置将所述接触部分加热到构成所述第二部件的热塑性树脂的软化温度以上且不足劣化温度的温度范围内。
[0042]为了将所述第二部件加热到所述温度范围内,所述感应加热装置优选由多个感应加热部构成。所述感应加热装置通过由所述多个感应加热部构成,能够对所述第二部件的加热状态进行控制。
[0043]为了控制所述第二部件的加热状态,例如所述多个感应加热部优选磁通密度互不相同。所述多个感应加热部因磁通密度互不相同,就能够以互不相同的加热速度对所述第二部件进行加热。本发明的制造装置中,通过组合磁通密度互不相同的多个感应加热部,就能够在加热所述第二部件时,分别在低温区域和高温区域中对加热速度进行控制。
[0044]另外,所述多个感应加热部的各磁通密度各不相同时,所述多个感应加热部优选是越靠近导入所述第二部件的一侧磁通密度越小、越靠近导出该第二部件的一侧磁通密度越大。这时,所述多个感应加热部能够以越靠近导入所述第二部件的一侧加热速度越小、越靠近导出所述第二部件的一侧加热速度越大的方式加热所述第二部件。
[0045]此外,所述多个感应加热部也可以是越靠近导入所述第二部件的一侧磁通密度越大、越靠近导出该第二部件的一侧磁通密度越小。这时,所述多个感应加热部能够以越靠近导入所述第二部件的一侧加热速度越小大、越靠近导出所述第二部件的一侧加热速度越小的方式加热所述第二部件。
[0046]在本发明的制造装置中,所述多个感应加热部可以相互串联连接,也可以相互并联连接。但是,所述多个感应加热部被相互串联连接时,所述感应加热装置则变得既长又大,有时需要采用高电压。
[0047]因此,在本发明的制造装置中,所述多个感应加热部优选相互并联连接。采用这种方式时,能够防止所述多个感应加热部的电感总计值增大,从而能够降低加在所述多个感应加热部上的电压。所以,具有这种构成的本发明的制造装置能够将所述第二部件加热到所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内,而无需采用高电压。
【专利附图】

【附图说明】
[0048]图1是表示本发明的复合结构体的制造装置的一构成例的侧视图。
[0049]图2是表示本发明的复合结构体的制造装置上使用的加强部件的第一构成例的模式性截面图。
[0050]图3是表示图1所示的制造装置中的感应加热线圈(induction heating coil)的第一配置例的模式图。
[0051]图4是表示通过图3所示的感应加热线圈被加热的磁性体和热塑性树脂成型体的温度变化的图表。
[0052]图5是表示图1所示的制造装置中的感应加热线圈的第二配置例的模式图。
[0053]图6是表示通过图5所示的感应加热线圈加热的磁性体和热塑性树脂成型体的温度变化的图表。
[0054]图7是表示本发明的复合结构体的制造装置上使用的加强部件的第二构成例的模式性截面图。
[0055]图8是表示本发明的复合结构体的制造装置上使用的加强部件的第三构成例的模式性截面图。
[0056]图9是表示本发明的复合结构体的制造装置上使用的加强部件的第四构成例的模式性截面图。
【具体实施方式】
[0057]以下,参照附图进一步详细说明本发明的实施方式。
[0058]图1所示的实施方式中的复合结构体制造装置I通过将肋状的第二部件(加强部件)3接合到第一部件(被加强部件)、例如厚度是0.7mm的钢铁制金属板2的一个表面上来制造复合结构体。金属板2例如用于汽车外部装饰配件。
[0059]接着,对使用复合结构体制造装置I制造所述复合结构体时的第一实施例进行说明。
[0060]在本实施例中,加强部件3由如图2所示的整体含有磁性体4的热塑性树脂制长尺状成型体5构成。磁性体4例如是直径80?150 μ m、长度I?3mm的金属纤维。磁性体4相对加强部件3整体具有30?60%的质量比。例如可以举出铁素体不锈钢、钢、铸铁、钢铁、镍等作为形成所述金属纤维的金属。例如可以采用苯乙烯类弹性体(styrene elastomer)作为所述热塑性树脂。
[0061]加强部件3例如可以通过下述方式制得。首先,将颗粒状的苯乙烯类弹性体和由金属纤维构成的磁性体4混合成的混合物熔融,挤压成型成棒状。将制成的挤压成型体裁断成颗粒。接着,可以利用模具将由所述颗粒熔融成的熔融树脂挤压成型为板状,并通过冷却固化后,制成长尺状的加强部件3。
[0062]图1所示的复合结构体制造装置I让卷绕在梭心6上的长尺状的加强部件3经由中继辊7被拉出,从加强部件3的起始端一侧向末端一侧依次与金属板2的单面接合。金属板2载置在夹具8上。
[0063]复合结构体制造装置I容纳在壳体11内。可以通过未被图示的机器人在金属板2上方的任意位置上移动该复合结构体制造装置I。壳体11上设置有将加强部件3导入壳体11内部的导入口 12a和导出加强部件3的导出口 12b。
[0064]复合结构体制造装置I具备作为导入机构的一对夹送辊13。该导入机构拉出卷绕在梭心6上的加强部件3,并将拉出的加强部件3通过导入口 12a连续地导入到壳体11内。在夹送辊13的下游一侧设置作为感应加热装置的感应加热器14。该感应加热器14通过感应加热以能够焊着的形式对加强部件3加热。在感应加热器14的下游一侧设置有在规定的位置上切断加强部件3的刀具15。
[0065]另外,在壳体11的底部设置一对推压辊16和大气常压等离子清洗机17。所述一对推压棍16作为推压机构将从导出口 12b被导出的加强构件3推压向金属板2 ;所述大气常压等离子清洗机17在感应加热器14的下方对金属板2的表面进行脱脂清洗。
[0066]在本实施例中,感应加热器14具备作为多个感应加热器的第一感应加热线圈14a和第二感应加热线圈14b。该第一感应加热线圈14a和第二感应加热线圈14b以相互串联的方式与未图示的电源连接的。第一感应加热线圈14a设置在导入加强部件3的一侧,第二感应加热线圈14b设置在导出第二感应加热线圈14b的一侧。
[0067]第一感应加热线圈14a的磁通密度比第二感应加热线圈14b的磁通密度大。第一感应加热线圈14a与第二感应加热线圈14b相比能够以更大的加热速度对加强部件3进行加热。第一感应加热线圈14a例如可以通过增加线圈单位长度的卷绕数或者通过缩短线圈长度来使得磁通密度比第二感应加热线圈14b的磁通密度大。
[0068]感应加热器14虽然具备两个感应加热线圈14a,14b,但是只要感应加热线圈14a,14b设置成越靠近导入加强部件3的一侧磁通密度越大、越靠近导出加强部件3的一侧磁通密度越小,则没有必要将感应加热的数量限定成两个。
[0069]接着,就复合结构体制造装置I制造复合结构体的制造方法进行说明。首先,利用夹送辊13经由中继辊7将卷绕在梭心6上的长尺状成型体、即加强部件3拉出,并连续地导入到感应加热器14的第一感应加热线圈14a及第二感应加热线圈14b的内部。
[0070]然后,通过感应加热器14对加强部件3进行感应加热,能够对加强部件3的至少与金属板2接触的部分加热。因加强部件3含有的磁性体4受到所述感应加热而发热,力口强部件3被加热至所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内。
[0071]具体来讲,首先,在所述导入侧,由第一感应加热线圈14a以例如350°C /秒这种相对较大的加热温度将加强部件3例如加热至不足所述热塑性树脂的软化温度、但接近于该软化温度的温度。接着,在加强部件3从所述导入一侧移动到所述导出一侧后,在所述导出一侧由第二感应加热线圈14b以例如200°C /秒这种相对较小的加热速度加热加强部件3。
[0072]这时,由于第二感应加热线圈14b以较小的加热速度对加强部件3进行加热,因此不会达到所述热塑性树脂的劣化温度,能够可靠地将温度控制在所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内对加强部件3进行加热。
[0073]接着,至少要与金属板2接触的部分被加热成能够进行焊着的加强部件3被导入到由大气常压等离子清洗机17进行了脱脂清洗的金属板2和推压辊16,16之间。这时,通过将送入金属板2和推压辊16之间的加强部件3的角度调小,能够减轻加强部件3处、特别是要与金属板2接触的被加热了的部分处因所述角度弯曲而产生的应力。
[0074]然后,由推压辊16将通过上述方式被加热了的加强部件3推压向金属板2的表面。这时,因所述感应加热,加强部件3的至少要与金属板2接触的部分被加热成能够焊着的状态。所以,能够通过焊着将加强部件3接合在金属板2单面而无需加热金属板2。这样就能够制造将加强部件3和金属板2 —体化的复合结构体。
[0075]并且,当与金属板2接合的加强部件3的长度接近于加强金属板2所需的规定长度时,通过用刀具15切断加强部件3而停止导入该加强部件。另一方面,被切断的加强部件3通过推压辊16,16被推压向金属板2并与其接合。其结果,规定长度的加强部件3和金属板2构成一体化从而形成复合结构体。
[0076]复合结构体制造装置I经由未图示的机器人从长尺状成型体、即加强部件3的始端一侧向末端一侧移动的同时,在金属板2的宽度方向上也产生移动,并反复进行上述动作。
[0077]根据本实施例的复合结构体制造装置1,所述感应加热仅是对加强部件3加热,而完全不会对金属板2进行加热。所以,能够防止金属板2的变形。
[0078]而且,根据本实施例的复合结构体制造装置1,由于具备升温速度不同的多个感应加热线圈14a,14b,因此能够防止过度加热加强部件3而致使其热劣化。能够可靠地将该加强部件3的温度控制在所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内。
[0079]接着,就使用复合结构体制造装置I制造所述复合结构体时的第二实施例进行说明。
[0080]在本实施例中,除了图1中所示的感应解热器14的第一感应加热线圈14a和第二感应加热线圈14b相互以并联的方式与未图示的电源并联之外,以其他的条件与第一实施例相同的方式制造所述复合结构体。
[0081]根据本实施例的复合结构体制造装置1,由于感应加热线圈14a,14b以相互并联的方式与所述电源连接,该情况与该感应加热线圈14a,14b以相互串联的方式连接的情况相比能够降低电感(inductance)的总计值。这样,由于能够降低加在感应加热线圈14a,14b上的电压,所以不需使用高电压作为所述电源,就能够将加强部件3加热成所述热塑性树脂的软化温度以上且不足劣化温度的温度范围内,使该加强部件3处理能够进行焊着的状态。
[0082]并联连接在所述电源上的感应加热线圈14a,14b的数量并不限定在两个,也可以设置三个以上的感应加热线圈。
[0083]接着,就使用复合结构体制造装置I制造所述复合结构体时的第三实施例进行说明。
[0084]在本实施例中,在图1中所示的复合结构体制造装置I中,如图3所示使用具备分别具有不同加热速度的感应加热线圈18a,18b,18c的感应加热器18来取代具备感应加热线圈14a,14b的感应加热器14。本实施例中使用的复合结构体制造装置I除了使用感应加热器18取代感应加热器14之外,其余的与图1中所示的复合结构体制造装置I具有完全相同的构成。
[0085]在本实施例中,通过组合分别具有不同加热速度的三个感应加热线圈18a,18b,18c,能够在加热加强部件3时分别控制低温区域及高温区域的各加热速度。
[0086]如图3所示,本实施例的感应加热器18沿虚线箭头所示的加强部件3的移动方向,从导入加强部件3的一侧到导出加强部件3的一侧依次具备第一感应加热线圈18a,第二感应加热线圈18b以及第三感应加热线圈18c。这里,感应加热线圈18a,18b,18c以相互并联的方式与电源19连接。
[0087]感应加热线圈18a,18b,18c的各个感应加热线圈的导线直径、线圈半径以及线圈单位长度的绕数均相同,仅各线圈的线圈长度不同。感应加热线圈18a,18b,18c的各个长度Aa,Ab,Ac间的关系是Aa〈Ab〈Ac。从而形成越靠近导入加强部件3 —侧的磁通密度越大、越靠近导出加强部件3 —侧的磁通越小。
[0088]加强部件3在从被导入的一侧向被导出的一侧移动的同时,依次受感应加热线圈18a,18b,18c加热。这时的加强部件3及磁性体4的温度变化示于图4。
[0089]如图4所示,在即将让加强部件3导入到第一感应加热线圈18a之前,加强部件3及磁性体4的温度都是To。然后,将加强部件3导入到第一感应加热线圈18a中使该加强部件3通过。这样,磁性体4被第一感应加热线圈18a感应加热至温度Tma。其结果,加强部件3被加热至温度Tra。
[0090]接着,将加强部件3导入到第二感应加热线圈18b中使该加强部件3通过。这样,磁性体4被第二感应加热线圈18b感应加热至温度Tmb。其结果,加强部件3被加热至温度Trb0
[0091]这时,由于第二感应加热线圈18b的磁通密度比第一感应加热线圈18a的磁通密度小,因此第二感应加热线圈18b的加热速度比第一感应加热线圈18a的加热速度小。所以,在感应加热线圈18a之后由感应加热线圈18b感应加热加强部件3,能够将该加强部件3的温度Trb控制在构成加强部件3的热塑性树脂的不足软化温度Ts但接近于该软化温度Ts的温度区域内。
[0092]然后,将加强部件3导入第三感应加热线圈18c并使该加强部件3通过。这样,磁性体4受第三感应加热线圈18c感应加热至温度Tmc。其结果,加强部件3被加热至温度Trc0
[0093]这时,由于第三感应加热线圈18c的磁通密度比第二感应加热线圈18b的磁通密度小,因此第三感应加热线圈18c的加热速度比第二感应加热线圈18b的加热速度小。所以,在感应加热线圈18b之后由感应加热线圈18c感应加热加强部件3,能够可靠地将加强部件3的温度Trc控制在热塑性树脂的软化温度Ts以上且不足劣化温度Td的温度范围内。
[0094]具有不同加热速度的感应加热线圈18a,18b,18c的数量并不限定在三个。也可以设置两个感应加热线圈或设置三个以上的感应加热线圈。另外,也可以将感应加热线圈18a,18b,18c设定成线圈长度都相同但构成线圈的导线的直径、线圈半径以及线圈单位长度的绕数不同,从而改变这些感应加热线圈的磁通密度。
[0095]接着,就使用复合结构体制造装置I制造所述复合结构体时的第四实施例进行说明。
[0096]在本实施例中,在图1中所示的复合结构体制造装置I中,如图5所示使用具备分别具有不同加热速度的感应加热线圈18d,18e, 18f的感应加热器18来取代具备感应加热线圈14a,14b的感应加热器14。本实施例中使用的复合结构体制造装置I除了使用感应加热器18取代感应加热器14之外,其余的与图1中所示的复合结构体制造装置I具有完全相同的构成。
[0097]在本实施例中,通过组合分别具有不同加热速度的三个感应加热线圈18d,18e,18f,能够在加热加强部件3时分别控制低温区域及高温区域的各个加热速度。
[0098]如图5所示,本实施例的感应加热器18沿虚线箭头所示的加强部件3的移动方向,从导入加强部件3的一侧到导出加强部件3的一侧,依次具备第一感应加热线圈18d,第二感应加热线圈18e以及第三感应加热线圈18f。这里,感应加热线圈18d,18e, 18f以相互并联的方式与电源19连接。
[0099]感应加热线圈18d,18e,18f的各个感应加热线圈的导线直径、线圈半径以及线圈单位长度的绕数均相同,仅各线圈的线圈长度不同。感应加热线圈18d,18e,18f的各线圈长度Ad,Ae, Af间的关系是Ad>Ae>Af,从而形成越靠近导入加强部件3 —侧的磁通密度越小、越靠近导出加强部件3 —侧的磁通密度越大。
[0100]具有不同加热速度的感应加热线圈18d,18e,18f的数量并不限定在三个。也可以设置两个感应加热线圈或设置大于三个的感应加热线圈。另外,也可以将感应加热线圈18d,18e, 18f设定成线圈长度均相同但构成线圈的导线直径、线圈半径以及线圈单位长度的绕数不同,从而改变这些感应加热线圈的磁通密度。
[0101]加强部件3在从被导入的一侧向被导出的一侧移动的同时,依次受感应加热线圈18d,18e,18f加热。这时的加强部件3及磁性体4的温度变化示于图6。
[0102]如图6所示,在即将把加强部件3导入到第一感应加热线圈18d之前,加强部件3及磁性体4的温度都是To。然后,将加强部件3导入到第一感应加热线圈18d中使该加强部件3通过。这样,磁性体4被第一感应加热线圈18d感应加热至温度TmcL其结果,加强部件3被加热至温度Trd。接着,将加强部件3导入到第二感应加热线圈18e中使该加强部件3通过。这样,磁性体4被第二感应加热线圈18e感应加热至温度Tme。其结果,加强部件3被加热至温度Tre。
[0103]这时,由于第二感应加热线圈18e的磁通密度比第一感应加热线圈18d的磁通密度大,因此第二感应加热线圈18e的加热速度比第一感应加热线圈18d的加热速度大。所以,在感应加热线圈18d之后由感应加热线圈18e进行感应加热,能够对加强部件3进行急速加热,从而将其温度Tre控制在构成加强部件3的热塑性树脂的不足软化温度Ts但接近于该软化温度Ts的温度区域内。
[0104]接着,将加强部件3导入到第三感应加热线圈18f中使该加强部件3通过。这样,磁性体4被第三感应加热线圈18f感应加热至温度Tmf。其结果,加强部件3被加热至温度Trf。[0105]这时,由于第三感应加热线圈18f的磁通密度比第二感应加热线圈18e的磁通密度更大,因此第三感应加热线圈18f的加热速度比第二感应加热线圈18e的加热速度更大。所以,在感应加热线圈18e之后由感应加热线圈18f进行感应加热,能够对加强部件3进行急速加热,从而能够可靠地将其温度Trf控制在所述热塑性树脂的软化温度Ts以上且不足劣化温度Td的温度范围内。
[0106]在本实施例中,由于在所述热塑性树脂的软化温度Ts附近的高温区域中对加强部件3进行急速加热,因此能够缩短该高温区域的加强部件3的加热时间。
[0107]另外,在所述各实施例中,将由长尺状成型体5构成的加强部件3加热到能够进行焊着的状态后,在与金属板2进行接合的步骤中将该加强部件3切断成规定长度。但是,在所述各实施例中,也可以将由事先被切断成具有规定长度的成型体构成的加强部件3加热成能够焊着的状态,并将该加强部件3接合到金属板2上。
[0108]另外,在所述各实施例中,虽然使用金属板2作为被加强部件3,但也可以采用合成树脂制板材来取代金属板2。
[0109]此外,在所述各实施例中,虽然均如图2所示采用热塑性树脂制的长尺状成型体5整体含有磁性体4的加强部件3,但是也可以采用如图7所示的加强部件31。加强部件31由具有双层结构的长尺状成型体5构成。该双层结构是指:在与金属板2接触的接触部件51上层叠支承部件52。
[0110]加强部件31并不限定为双层结构,也可以设置成在接触部件51上层叠支承部件52从而形成三层以上的结构。
[0111]在加强部件31中,接触部件51由例如苯乙烯类弹性体等热塑性树脂构成,接触部件51中分散有磁性体4。磁性体4例如是直径80?150 μ m、长度I?3mm的金属纤维。磁性体4相对接触部件51整体具有30?60%的质量比。例如可以举出铁素体不锈钢、钢、铸铁、钢铁、镍等作为构成所述金属纤维的金属。
[0112]另一方面,支承部件52由含有质量比20%的玻璃纤维的尼龙6等热塑性树脂构成。所以,在加强部件31中,接触部件51构成比支承部件52柔软性强的热塑性树脂(苯乙烯类弹性体)制的成型体。
[0113]接着根据加强部件31,只要接触部件51被加热到能够焊着到金属板2上的程度即可,无需对支承部件52进行加热。所以,能够降低加热所需的能量。
[0114]加强部件31例如可以通过下述方法制得。首先,将颗粒状的苯乙烯类弹性体和由金属纤维构成的磁性体4混合成的混合物熔融,挤压成型为棒状。将制成的挤压成型体裁断形成第一颗粒。然后,将第一颗粒和由含有玻璃纤维的尼龙6构成的第二颗粒分别熔融。
[0115]接着,在上下重叠设置的两个模具中的其中一模具中,将熔融了第一颗粒的第一熔融树脂挤压成型为板状从而形成接触部件51。与此同时,在另一方模具中将熔融了第二颗粒的第二熔融树脂挤压成型为板状从而形成支承部件52。并且,通过冷却固化,能够制得由接触部件51和支承部件52双层结构构成的长尺状的加强部件31。
[0116]加强部件31并不限定为双层结构,也可以在接触部件51上设置支承部件52从而形成三层以上的结构。
[0117]另外,也可以使用如图8所示的加强部件32来取代图7中所示的加强部件31。加强部件32具备以下构成:在图7中所示的加强部件31中,接触部件51由与金属板2接触的接触层53和配设在接触层53和支承部件52之间的中间层54,仅接触层53中含有磁性体4。
[0118]在加强部件32中,接触层53和中间层54例如由苯乙烯类弹性体等同一热塑性树脂构成。这里,接触层53例如相对加强部件3整体具有30?60%质量比的磁性体4,中间层54则完全不含磁性体4。
[0119]其结果,在加强部件32中,接触部件51构成为:与支承部件52—侧相比,在与接触板2接触的一侧上含有多量磁性体4。另外,可以采用与加强部件31相同的材料作为磁性体4。
[0120]加强部件32并不限定于三层结构,也可以在接触层53上面经由中间层54设置支承部件52从而形成三层以上的结构。
[0121]采用加强部件31与金属板2接合时,变得柔软的接触部件51经由支承部件52受推压辊16,16推压。其结果,接触部件51的厚度降低,有可能无法确保用于吸收加强部件31和金属板2之间的膨胀率差异的足够厚度。
[0122]但是,根据加强部件32,与所述各实施例相同该加强部件32受感应加热后,含有磁性体4的接触层53变得柔软而容易产生变形。完全不含有磁性体4的中间层54则比接触层53难以产生变形。所以,加强部件32因接触层51而能够确保用于吸收与金属板2的膨胀率差异的足够的厚度,从而能够可靠地防止加强部件3从金属板2剥离。
[0123]加强部件32例如可以通过下述方法制得。首先,将颗粒状的苯乙烯类弹性体和由金属纤维构成的磁性体4混合成的混合物熔融,挤压成型为棒状。将制成的挤压成型体裁断成第一颗粒。然后,将第一颗粒、仅由苯乙烯类弹性体构成的第二颗粒以及由含有玻璃纤维的尼龙6构成的第三颗粒分别熔融。
[0124]接着,在上下重叠设置的三个模具中的其中一模具中,将熔融了第一颗粒的第一熔融树脂挤压成型为板状从而形成接触层53。与此同时,在第二个模具中将熔融了第二颗粒的第二熔融树脂挤压成型为板状从而在接触层53上形成中间层54。并且,同时在第三模具中将熔融了第三颗粒的第三熔融树脂挤压成型为板状从而在中间层54上形成支承部件52。
[0125]而且,通过使制得的层叠体冷却固化,能够制得具有接触层53、中间层54和支承部件52的三层结构的长尺状成型体5构成的加强部件32。
[0126]另外,也可以采用如图9所示的加强部件33来取代图7中所示的加强部件31。加强部件33具备以下构成:在图7中所示的加强部件31中,支承部件52其内部含有未硬化的热硬化树脂层55。
[0127]加强部件31具备由含有所述玻璃纤维的尼龙6构成的支承部件52,支承部件52与由苯乙烯类弹性体构成的接触部件51相比硬度较高。所以,在接触部件51被焊着到金属板2上时,加强部件31有可能在支承部件52处无法获得足够的形状追随性。
[0128]但是,通过采用加强部件33,支承部件52在其内部含有未硬化的热硬化树脂层55而使支承部件52具有适度的柔软性,从而能够在维持支承部件52的形状的同时,能够相对金属板2具有足够的形状追随性。热硬化树脂层55能够在以后的步骤、例如是涂饰金属板2的步骤等中受加热从而产生硬化,能够让加强部件33具有所需的强度。
[0129]加强部件33例如可以通过下述方法制得。首先,将颗粒状的苯乙烯类弹性体和由金属纤维构成的磁性体4混合成的混合物熔融,挤压成型为棒状。将制成的挤压成型体裁断成第一颗粒。然后,将第一颗粒以及由含有玻璃纤维的尼龙6构成的第二颗粒分别熔融。
[0130]接着,在上下重叠设置的两个模具中的其中一模具中,将熔融了第一颗粒的第一熔融树脂挤压成型为板状从而形成接触部件51。与此同时,在另一模具中将熔融了第二颗粒的第二熔融树脂挤压成型为在内部具有沿长度方向延伸的空腔部的板状,从而形成支承部件52。
[0131]并且,将制得的层叠体冷却并固化,将未硬化的热硬化树脂填充到所述空腔部内从而形成未硬化的热硬化树脂层55,由此能够制得加强部件33。
【权利要求】
1.一种用于制造复合结构体的方法,该复合结构体由板状的第一部件和肋状的第二部件构成,所述制造方法的特征在于,具备以下步骤: 将热塑性树脂制成型体导入到感应加热装置的步骤,所述第二部件具有与所述第一部件的一表面接触的接触部分,该第二部件由所述热塑性树脂制成型体构成,该热塑性树脂制成型体至少在所述接触部分中含有磁性体; 由所述感应加热装置对所述第二部件进行感应加热从而加热所述接触部分的步骤;和 从所述感应加热装置导出所述第二部件并将所述接触部件接合到所述第一部件的一表面上的步骤。
2.根据权利要求1所述的复合结构体的制造方法,其特征在于,所述第二部件是长尺寸部件。
3.根据权利要求1所述的复合结构体的制造方法,其特征在于,所述第二部件具有加强所述第一部件所需的长度。
4.根据权利要求1所述的复合结构体的制造方法,其特征在于,所述感应加热装置将所述接触部分加热到构成所述第二部件的热塑性树脂的软化温度以上且不足劣化温度的温度范围内。
5.根据权利要求1所述的复合结构体的制造方法,其特征在于,所述感应加热装置由多个感应加热部构成。
6.根据权利要求5所述 的复合结构体的制造方法,其特征在于,所述多个感应加热部以互不相同的加热速度对所述第二部件进行加热。
7.根据权利要求6所述的复合结构体的制造方法,其特征在于,所述多个感应加热部以越靠近导入该第二部件的一侧越小的加热速度加热所述第二部件、以越靠近导出该第二部件的一侧越大的加热速度加热所述第二部件。
8.根据权利要求6所述的复合结构体的制造方法,其特征在于,所述多个感应加热部以越靠近导入该第二部件的一侧越大的加热速度加热所述第二部件、以越靠近导出该第二部件的一侧越小的速度加热所述第二部件。
9.根据权利要求5所述的复合结构体的制造方法,其特征在于,所述多个感应加热部相互串联连接。
10.根据权利要求5所述的复合结构体的制造方法,其特征在于,所述多个感应加热部相互并联连接。
11.根据权利要求1所述的复合结构体的制造方法,其特征在于,所述第二部件整体含有所述磁性体。
12.根据权利要求1所述的复合结构体的制造方法,其特征在于,所述第二部件具备双层结构,该双层结构是指在由第一热塑性树脂制成型体构成的接触部件上层叠由第二热塑性树脂制成型体构成的支承部件,在所述接触部件中含有所述磁性体。
13.根据权利要求12所述的复合结构体的制造方法,其特征在于,所述接触部件由柔软性比所述支承部件高的热塑性树脂制成型体构成。
14.根据权利要求13所述的复合结构体的制造方法,其特征在于,所述接触部件中,与所述支承部件侧相比在与所述第一部件接触的一侧更多地含有所述磁性体。
15.根据权利要求14所述的复合结构体的制造方法,其特征在于,所述接触部件具备与所述第一部件接触的接触层和配设在所述接触层和所述支承部件之间的中间层,并仅在所述接触层中含有所述磁性体。
16.根据权利要求13所述的复合结构体的制造方法,其特征在于,所述支承部件在内部含有未硬化的热硬化树脂层。
17.一种复合结构体的制造装置,该复合结构体在板状被加强部件的一方表面上具备由热塑性树脂构成的肋状加强部件,该复合结构体的制造装置的特征在于,具备: 感应加热装置,通过对由至少在与所述被加强部件接触的接触部分含有磁性体的热塑性树脂制成型体构成的第二部件感应加热,来将所述加强部件的所述接触部加热到能够被焊着到所述被加强部件上的温度; 导入机构,将所述加强部件导入到所述感应加热装置中;以及 推压机构,从所述感应加热装置导出所述加强部件,推压所述被加强部件的一方表面从而通过所述接触部将所述加强部件焊着到所述被加强部件上。
18.根据权利要求17所述的复合结构体的制造装置,其特征在于,所述感应加热装置将所述加强部件的至少所述接触部加热到构成所述加强部件的热塑性树脂的软化温度以上且不足劣化温度的温度范围内。
19.根据权利要求17所述的复合结构体的制造装置,其特征在于,所述感应加热装置由多个感应加热部构成。
20.根据权利要求19所述的复合结构体的制造装置,其特征在于,所述多个感应加热部的各磁通密度互不相同。
21.根据权利要求20所述的复合结构体的制造装置,其特征在于,所述多个感应加热部越靠近导入所述加强部件的一侧磁通密度越小、越靠近导出该加强部件的一侧磁通密度越大。
22.根据权利要求20所述的复合结构体的制造装置,其特征在于,所述多个感应加热部越靠近导入所述加强部件的一侧磁通密度越大、越靠近导出该加强部件的一侧磁通密度越小。
23.根据权利要求19所述的复合结构体的制造装置,其特征在于,所述多个感应加热部相互串联连接。
24.根据权利要求19所述的复合结构体的制造装置,其特征在于所述多个感应加热部相互并联连接。
【文档编号】B29C65/32GK103770327SQ201310498702
【公开日】2014年5月7日 申请日期:2013年10月22日 优先权日:2012年10月22日
【发明者】鴫原智彦, 星野孝之, 筏井阳介, 加美勇辉, 村川敏浩 申请人:本田技研工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1