专利名称:聚合材料挠性管形片的螺旋切割方法和装置的制作方法
英国专利816,607号中公开了聚合材料挠性管形片的螺旋切割,该专利的目的是制造分子偏斜取向的高强度带材。这种带材主要用于制造单轴向片的高强度交向层压片。为获得满意的性质,在进行螺旋切割之前,管形膜片沿其原来的纵向有很强的方向性,螺旋切割是在一心轴上完成的。管子以螺旋运动送进,用固定的刀具切割,或者管子以直线运动送进,而用转动的刀具切割,在这种情况下,接受螺旋切割下来的膜片的绞车必须以行星式运动随刀具转动。
在英国专利1,526,722号中也使用了挠性管形膜片的螺旋切割。被切割的管子一般具有单轴聚合物颗粒,这是在挤压中形成的。但是,在螺旋切割之前,挤压不必在其熔点以下提供严格的方向性。该专利的目的还是制造高强度的层压片,但是片材在层压之后或层压过程中经拉伸被双轴取向,其中横向和纵向的拉伸过程是相互独立的步骤,每一步聚基本是单轴向的。在使挠性管形片作螺旋运动而刀具固定的直线行进法中,将卷轴及膜片装在一开卷装置中,开卷装置绕一轴线转动,该轴线基本穿过卷轴的重心并垂直于卷轴轴线。如前所述,在另一种方法中,管子以直线运动送进,而刀具与接受螺旋切割后膜片的绞盘一起转动。在这种情况下,在绞盘、刀具共同的转动轴线和卷绕装置的卷轴轴线之间有一个角度,该角度小于切割角而大约等于90°。
本发明的目的是使操作过程中,开卷和卷绕装置中的卷筒更重,速度更快,取向和切割方向间夹角更大,最终的角度取向卷材的宽度更大。
在权利要求1中描述了本发明的一个方面,其内容是一种将聚合材料的挠性管形片以压扁的形状送往一个第一位置并将其螺旋切割成从管形片上拉出的带材的方法,其特征在于从上述第一位置拉动管形片,将其张开成管形,在一心轴上拉动管形片,在心轴上经过时被螺旋切割,而且螺旋切割的位置是固定的,压扁的管形片是从一卷筒送到第一位置的,在一放出区从卷筒上放出,以螺旋运动方式拉到心轴上,而且管形片是当上述放开区绕卷筒旋转而使管子转动时基本沿卷筒的轴向从卷筒上拉出的。
本发明这一方面的技术大大减小了转动的开卷装置上的机械力引起的问题,从而克服了转动不稳和切割波动现象,然而当使开卷卷筒的轴线垂直于开卷装置的转动轴线时,由于动态不平衡几乎总会出现上述现象。
本发明这一方面的技术也消除了因膜片在卷筒上缠绕过松而在开卷过程中出现伸缩的危险,因此可使用重得多的卷筒和高得多的速度。
在权利要求2中描述了本发明这一方面的一个特别实用的实施例按照权权要求1所述的方法,其特征在于所述卷筒具有与管子转动轴线相同的轴线,从开卷区至第一位置,管形片被导向并保持压扁的形状,从而使压扁的管形片的中线被引导使其基本与卷筒的轴线重合。
在切割过程中支承管形片的心轴可与管形片一起转动,但是为了简化,心轴一般保持稳固。此时刀具则可以固定在心轴上。为了加固管形片,并且便于它在心轴上滑动,最好将管形片用空气吹胀。空气是穿过心轴连续地向第一位置提供的。
由于当管子在心轴上朝被螺旋切割的位置滑动时被空气吹胀而直挺,由切割和被切割下的带材的拉力引起的变形会大大减小。对于任何具体的膜片所需要的直挺程度将取决于所使用的材料和工艺条件。但是,选择管中空气压力却是容易做到的,因此,容易使管子直挺以便获得对于具体工艺来说是最佳的变形阻力。只要膜片可以承受,一般希望空气压力大得足以使膜片从心轴拉出时每米宽度上的拉力至少为200克,而且只要片允许,拉力至少为每米2公斤。
主要当平片宽度至少为20Cm时,本发明才显示其优越性。这一宽度可达到300Cm,甚至更高。
切割角一般至少为20°,切割角大至70°较容易实现良好的精度,但是,切割角也可趋近于90°。
心轴的直径最好是可变的。例如,心轴的结构可以是由一组圆形肋撑住的橡胶管形板,这些肋由可伸展的装置支承(例如以雨伞撑条相似的方式)。调节这种可伸展装置即可调整心轴的有效直径,因此,同一心轴可用于不同宽度的管子。也可以变化直径而控制气压。当切割易碎的片例如薄的,刚性的和/或高度取向的片时,这一点特别重要,此时要减小气压和气流量是很重要的。在这种情况下,心轴的可变直径可以受管子内气流或过压力的读数的反馈式控制。
心轴的表面可作波纹处理以减小板与心轴间的摩擦力。这种波纹一般由基本呈纵向的肋构成。波纹促进了空气在心轴整个圆周上的流动,因而改善了膜片和心轴之间的环行气流的润滑效果。
用空气膨胀并不是绝对的作法,因为不采用此法,而通过不同运动的同步化也可实现直线切割。
开卷装置的转动轴承可以位于装置的一端,即与切割相对的一端,但是,如果本系统的轴,轴承和支承不是特别重型的结构,那么当本系统承受较大重量时,就容易产生疲劳断裂。如
图1所示,将开卷装置安装在一围绕管形片的滚柱轴承上即可解决上述问题。本发明的方法的目的是制造高强度的交向层压片,为此目的,两层或多层螺旋切割的膜片相互层压在一起,以其原来的管形片的纵向相互十字交叉。因此,管形片最好具有单轴向熔体取向。或者可与此相结合,在聚合材料熔融温度以下使管形片纵向取向。
根据几何学,关于扁管宽度(h),切割角(扁管纵向和切割方向之间的夹角)(V)和最终宽度(W)之间存在下述公式W=2kcosV例如,切割角为60°,最终宽度就等于扁管宽度,切割角为45°,则最终宽度将是扁管宽度的
(
1.41)倍,而切割角为30°,则最终宽度将是扁管宽度的
(
1.73)倍。当切割角大于60°时,一定的螺旋切割机可获得的宽度将迅速减少。
本发明的另一方面具有下述目的对于一定的最终熔体取向角及一定的螺旋切割机(特别是切割角约为60°或接近90°)来说,提高可获得的最终宽度。本发明的这一方面虽然可与具有权利要求1所述的专用开卷系统的螺旋切割一起使用,但是也可以独立于上述开卷系统单独使用。
在本发明的这一方面中,管形片的材料最初是通过一挤压模挤压制成的,在熔融至半熔融状态下拉出,同时在输出装置和至少是挤压模出口之间作相对转动,因而形成螺旋熔体定向,而且进行螺旋切割的方向使相对于切割下的带材的取向角增加。
理论上可以假定,如果上述相对转动具有足够的转速,即可省略螺旋切割(除去取向角需要为90°的情况)。但在实际上,随着取向角的增加,进行上述挤压的困难也随之增加。已经发现,取向角的增加肯定会增加双轴向熔体取向材料的成分,这一般不是我们所希望的,起码在生产交向层压片的情况是这样。例如,通过上述在输出装置和挤压模间相对转动的方法产生高于30°的取向角通常是不可行的。
因此,本发明的这一方面以简单易行的方式,可使相对于被切割下的带材的纵向的角度大大增加,从挤压的30°经30°角切割形成60°角,或经60°切割形成90°。在第一种情况下最终宽度是扁管宽度的1.73倍,在第二种情况下,最终宽度与扁管宽度一样。
按照本发明的两个方面所得到的带材可以相当宽,一般为50Cm或更宽,因此本发明首次提供了50Cm宽或更宽的,熔体取向角达70°至90°的带材。这种材料构成了本发明的又一个方面。这种带材最好但并非必须使用权利要求1所描述的那种专用开卷系统的螺旋切割来制造。这种带材带来的重大优点是,作为本发明的成果,使生产变得简单,无需使用拉幅架或类似装置。具体来说,利用本发明可方便地生产例如3米宽的片材,卷在几吨重的卷筒上(特别是在同时采用了本发明的上述两个方面时)。
挤压制成的片材,其晶体一般呈现从挤压模输出时的方向,然而按照本发明的新颖片材,其特征在于宽度至少50Cm,在呈现从挤压模输出方向的晶体和片材纵向之角的夹角范围为70°至90°。
这种新颖片材例如可以用来生产新型的双轴向的膜片,在这种膜片中,至少大部分横向取向是从挤压模输出时形成的,其纵向取向是在低得多的温度下形成的。这种纵向取向和较低温度下的附加横向取向最好按照WO 88/05378中所描述的方法进行。
本发明的各个方面对于制造交向层压片具有特别的价值,这种交向层压片具有从挤压得来的基本单轴向晶体,且不同片层的晶体为交向层压关系,但是这种交向层压基本是双轴向取向的。这种交向层压片在GB 1,526,722中有所描述。当制造这种交向层压片时,最好使一层或多层中的晶体通过挤压与纵向形成70°至90°角,特别是还要与具有与纵向0°或接近0°角的晶体的一层或多层片层压在一起。
已经发现,具有上述角度(特别是大约90°结合以大约0°)的这种类型的层压片在45°的方向上呈现最大的扯裂强度,而且发现,在一条缝合的缝上对高扯裂强度的需要在45°角上是最高的。因此,这种交向层压片非常适于缝制袋子,缝制雨衣,以及缝制其它产品。
这种层压片的一种具体的推荐组成是,层压片每层(每层是由若干共同挤压的分层组成)的主层是高分子量高密度的聚乙烯及很低分子量低密度的聚乙烯的混合物。很低分子量低密度的聚乙烯最好从具有与高分子量聚乙烯相同或更高的断裂伸度(在室温慢速拉伸条件下测出)的,而且能够在形成显著微相(microphase)过程中,在熔融的同质组份混合物中明显偏折出来的共聚物和/或支化聚乙烯中选择。这种聚乙烯的混合比最好是25∶75至75∶25。具有比高分子量聚乙烯低得多的分子量的聚丙烯包合物最好占聚丙烯及两种聚乙烯总重量的0-70%。高分子量高密度聚乙烯最好具有0.2的熔体指数(ASTMD1238条件E),低密度聚乙烯最好是线性低密度聚乙烯。
现在对照以下附图详细描述本发明图1是具有转动的开卷装置的螺旋切割装置的顶视图,其中开卷的卷筒轴线基本与被吹胀的管子的轴线重合,扁管在该卷筒的一端上被导向。该图也表明一个围住管形片的适用的大型液柱轴承。从卷筒上拉出片材的导向系统没有画出。
图2是图1中未画的导向系统的立体图。各液柱仅用虐线来表示其轴线。
上述两图所示的装置包括一开卷装置1,开卷装置1的一端有一根轴2,开卷装置1绕轴2的轴线转动,轴2通过重型滚柱轴承4受立柱3支承,立柱3安装在厂房的地板上。为简化起见,图中所示开卷装置1具有一个由一端板5和两侧板6组成的箱体。图中,开卷装置正转至两侧板位于水平位置之时,因而只能看到虚线所示的上部的板。实际上,这些板最好用成型钢的框架,这样更轻便。
转动的开卷装置的另一个有效支承件是一大型的滚柱轴承34。轴承34在图中所示为固定在侧板6上(其连接用虚线表示)的,一大环的横截面和两个通过轴承支承在一支承件(未画)上的支承卷筒即滚柱32。如图所示,这两个滚柱在侧向上支承着转动的开卷装置,因而当然须有一个,或最好有几个这样的滚轮支承开卷装置的重量。最好有由这样的滚轮即滚柱组成的一个环形阵列。
立柱3上装有固定的齿轮7,齿轮7与一装在端板5上的另一齿轮8啮合,因而形成一种行星式运动。齿轮8驱动开卷装置1中的各滚柱和滚轮,但是为了简化,未画出这些运动的传动装置。
压扁的管形片10的卷筒9的轴线基本与吹胀的管子的轴线重合,因而也与开卷装置1转动轴线重合。卷筒9的轴由固定在端板5上的轴承24和固定在一梁26上的轴承25支承。图中可见梁26的横截面。梁26连接于两侧板6。轴承24和25可以借助未画出的装置打开以便更换卷筒。图中示意地画出了开卷装置的制动器27。
为了便于理解图2,扁管的两边缘在其路径的不同工位分别标为a和b。
被开卷的扁管由空转辊28,卷片棒29(可呈固定辊形式),空转辊30以及一组压送辊11(与图1中标号11相似)导向。上述辊及其轴承的棒直接地或通过梁(未画)安装在开卷装置1的侧板6和端板5上。压扁的管形片在放出区31拉出,整个的压扁的管形片的导向系统和放出区31都绕轴线23旋转。
压扁的管形片10借助一组压送辊11从卷筒9和上述压扁的管形片导向系统拉出,压送辊11形成本方法的第一位置。在齿轮8和压送辊11之间的传动装置决定了切割角。传动比最好是可变的,例如设置变换齿轮的装置。
设有一圆柱形切割心轴14,由鼓风机13(例如离心式鼓风机)通过心轴向第一位置吹气以便吹胀扁片10。心轴14通过立柱15安装在地板上,并与在其上滑动的管形片10有紧的配合。空气通过心轴和片间的窄间隙逸出,并将产生润滑效果。心轴的端部16可以倒圆以避免挂住管形片。
为了实现吹胀的管形片的顺利的螺旋运动,从第一位置到管子吹胀的位置最好设置一种被驱动的支承。吹胀管子的适宜的支承可以是一对皮带,如图1所示,设有两条被动皮带17,用来支承管子,抵抗从心轴14向第一位置运动的空气形成的向后的力,并促进管子的形状从扁形向圆柱形的顺利变换。皮带以管形片基本相同或稍高的速度被驱动。不采用两条皮带,也可使用两组较小直径的辊(只需驱动最后的一条辊)。对于较窄的压扁的管形片,只需使用大直径的一对筒形辊就可以了。
管形片由刀架18上的简单刀具或刀片切割,刀架18可用普通的方法安装在心轴上,其角度可以调整。图中在刀具左侧的边缘19首先向下在切割心轴之下运动,变成最终片材的右侧边缘。
切割下来的片材是由图中示意画出的被驱动的卷绕装置20拉动的。如上所述,切割角是由开卷装置1和压送辊11之间的速比决定的,但是刀具或刀片的方向以及卷绕装置20拉动的方向也必须加以调整以便使它们与转动速比决定的切割角相适应。卷绕装置20包括一个跳动辊21和两个辅助空转辊22以便控制卷绕装置20的转速,从而形成适宜的拉力。
适当调整管中空气压力(相对于包围管子的环境气压),卷绕装置20可采用大的拉力(然而对于很脆的管形片来说,则必须使用较小的拉力)。因此,当切割100微刻度(micro gauge)和1米宽的压扁的管形片时,一般可使用每米最终宽度5至20公斤的拉力。
作为图示装置的进一步修改,齿轮7可以不固定在立柱3上,而是可由一单独的电机驱动,该电机可被电子调速以调整整个开卷装置的转动,从而可以方便地调整切割角。
卷筒9相对于开卷装置1的箱体或框架的转向最好应该,但又非必须,与箱体的转向相反。这样可使卷筒9的绝对转速尽可能小。
取决于切割角V和管子的扁宽k,卷筒的力矩半径r= (k)/(π·tgv) 既使开卷装置的箱体(及放出区31)可绕轴线23高速转动,卷筒9的绝对转速为零。因此,转动机件的重量对于螺旋切割装置的能力来说,是一个很大的限制因素。因此,希望用一较轻的框架来代替开卷装置的端壁5和侧壁6,环34及另一端相似的环是框架的整体部件。
为了以理想的方式引导和转动扁管,卷片棒29或固定辊相对于轴线23必须形成接近于45°的角(除非分若干步骤来改变方向)。这个角最好可在一个窄的角度范围内自动调整,这一调整是由一个可以传感两边缘之一的位置的传感器来完成的。这样就可控制片10的中线使之达到转动轴线23,既使当卷筒9被不整齐的缠绕,即稍微偏离在轴上的正确位置时也能做到这一点。
当开卷装置很快地转动时(通常希望做到这一点),如图2所示,片的导向可因空气的扰动而发生故障。为了克服这个问题,在整个转动的开卷装置1的周围可设置挡风罩(最好是透明的),将其固定在开卷装置上随其一道转动。
当刀具处于不变的位置且管形片沿卷筒的轴向拉出时,放出区31正在绕卷筒旋转,最好设有类似图2所示的导向系统,但这并不是必须的。特别是当切割角很小,例如30°时,管形片可以起皱,甚至压缩成纤维状,而随后用空气吹胀使其恢复成管状。但是,在这种情况下,只用支承皮带17是不够的,最好应该使用窄皮带组成的圆形阵列。在这种支承系统的出口,该圆形阵列的直径应该接近于管形片的直径。在支承区域进口处,该圆形阵列的最佳直径及支承区域的必要长度可以通过简单实验的方法来确定。
只要支承皮带阵列严格以放出区31绕卷筒旋转的转速相同的转速绕圆形阵列的轴线转动,就无需压送辊11跟随上述转动。如果压送辊不跟随上述转动,管形片就会在压送辊前被压缩和扭转,但是当其从压送辊离开时会被展开。如图所示,卷筒9是从内部固定的,管子从其外部拉离,但是卷筒9也可从外部固定,而从其内部进行开卷。
虽然图示的装置是通过心轴14与气源连通的,但是,这种放开区旋转时管形片从卷筒一端上拉出的开卷系统可以不用这种心轴和气源,例如用不同运动的严格同步化来代替气源。
还需强调指出的是,独立于当放出区旋转时在卷筒一端上拉出管形片的开卷系统,可以采用在挤压模和输出装置间相对转动而形成的螺旋取向,结合以使取向角加大的螺旋切割。
实施本发明的方法的装置是新颖的并构成本发明的又一个方面。
实例每平方米80克聚乙烯基,扁管宽度2080毫米的挤压制成的管形片,从1,000公斤卷筒取出的60°螺旋切割。其组成同于美国专利4,629,525例3,膜片号R1。在此例中装置如附图所示,但是,开卷装置的箱体由轻型结构替代,在开卷装置周围设置透明的圆形挡风罩以防止片受气流扰动。
如前所述,切割角的控制是电子式的。心轴的外径,包括其表面的薄肋阵列,为1300毫米,扁管宽度2080毫米相当于1324毫米直径,也就是说,管形片和心轴的半径差是12毫米。片的最终宽度为2080±10毫米。取出速度是120米/分。换言之,生产能力是每小时1200公斤,其中不考虑生产50分钟后的更换卷筒的停顿。
喷气是靠一离心式鼓风机进行的,其全部鼓风量是每小时2000立方米,其中大约一半发挥了作用,即每小时1000立方米。按照鼓风机的数据,这相应于600毫米H2O过压(由于这一压力并不很大程度上取决于气流,所以这一数值虽然粗略但很可靠)。
这种装置工作十分可靠,螺旋切割是直线式的,如前所述,误差为±10毫米即±0.5%。
螺旋切割下的膜片在全宽上抻展,并按照美国专利4,629,525号例3的方法层压形成一种双层的高强度层压片,但是在全面技术的机械上进行。
权利要求
1.一种将聚合材料的挠性管形片以压扁的形状送往一个第一位置并将其螺旋切割成从管形片上拉出的带材的方法,其特征在于从上述第一位置拉动管形片,将其张开成管形,在一心轴上拉动管形片,在心轴上经过时被螺旋切割,而且螺旋切割的位置是固定的,压扁的管形片是从一卷筒送到第一位置的,在一放出区从卷筒上放出,以螺旋运动方式拉到心轴上,而且管形片是当上述放开区绕卷筒旋转而使管子转动时基本沿卷筒的轴向从卷筒上拉出的。
2.按照权利要求1所述的方法,其特征在于所述卷筒具有与管子转动轴线相同的轴线,从开卷区至第一位置管形片被导向并保持压扁的形状,从而使压扁的管形片的中线被引导使其基本与卷筒的轴线重合。
3.按照权利要求1或2所述的方法,其特征在于用空气将管形片吹胀,空气是通过心轴连续送往第一位置从而形成直挺的管子,这有利于在心轴上的滑动并抵抗切割时的变形。
4.按照权利要求3所述的方法,其特征在于管子内的气压足以承受螺旋切割下的带材从心轴拉开时每米宽度至少0.2公斤的拉力。
5.按照权利要求3所述的方法,其特征在于所述心轴的表面制成波纹形,最好是制成纵向的肋以减小管形片与心轴间的摩擦。
6.按照任何一项前述权利要求所述的方法,其特征在于所述开卷的装置是安装在一轴承上的,该轴承是包围管形片的滚柱轴承。
7.按照任何一项前述权利要求所述的方法,其特征在于所述管形片在低于其聚合材料熔化温度下已经过纵向取向。
8.按照权利要求7所述的方法,其特征在于所述管形片是挤压模挤压制成的,通过在熔融至半熔融状态拉出并同时在挤压模输出装置和挤压模出口之间的相对转动的方式进行螺旋熔体取向,而且螺旋切割是以增加取向角的方向进行的。
9.按照权利要求8所述的方法,其特征在于结果形成的角是70°至90°。
10.按照任何一项前述权利要求所述的方法,其特征在于然后将两个或更多被螺旋切割下的片相互层压,片的原纵向十字相交。
11.一种将聚合材料的挠性管形片以压扁的形状送往一个第一位置并将其螺旋切割成从管形片拉出的带材的方法,其特征在于从上述第一位置拉动管形片,将其张开成管形,在一心轴上拉动管形片,在心轴上经过时被螺旋切割,而且所述管形片原来是用挤压模挤压制成的,通过在熔融至半熔融状态拉出并同时在挤压模输出装置和挤压模出口之间的相对转动的方式进行螺旋熔体取向,而且螺旋切割是以增大取向角的方向进行的。
12.一种晶体呈现从挤压模挤出方向的至少50Cm宽的聚合材料的片材,其特征在于片材的纵向和上述晶体的夹角为70°至90°。
13.按照权利要求12所述的聚合材料的片材,其特征在于上述夹角至少为75°。
14.实施权利要求1至11中任一项所述方法的装置,具有安装一卷筒压扁形状的管形片材的装置,一心轴,从卷筒拉出片材的装置,张开被拉出片材使其成管形且将其拉过心轴的装置,当片材经过心轴时螺旋切割片材的装置,以及从心轴拉出被切下的带材并吹胀管形片使其成为一直挺管子的装置。
全文摘要
将挠性聚合材料的压扁管形片10送至第一位置(例如在压送辊11之间),用刀具18将其螺旋切割成从装置20拉出的带材。从第一位置拉出的扁管被张开呈管形,然后拉到心轴上并在心轴上被切割。此时最好用来自鼓风机13的空气将其吹胀。切割位置是固定的扁管从一卷筒9送至第一位置,并在一放出区从卷筒上放出,以螺旋运动拉到心轴上。这种运动是通过沿卷筒轴向从卷筒拉动管形片同时使放出区绕卷筒旋转而形成的。
文档编号B29C67/00GK1049818SQ90103318
公开日1991年3月13日 申请日期1990年6月26日 优先权日1988年6月24日
发明者奥尔·斑迪特·云斯谬森 申请人:奥尔·斑迪特·云斯谬森