专利名称:连接树脂管的方法及其设备的制作方法
技术领域:
本发明涉及连接树脂管的方法和设备。更为具体地说,本发明涉及一种连接树脂管的方法,树脂管包括例如用于输送纯水和超高纯水以冷却超导线圈和制造大规模集成电路(LSI)的设备的碳氟树脂管,用于农业和工业用水的聚氯乙烯管,和用于煤气的聚乙烯管。本发明还涉及连接树脂管的设备。
树脂管一般都用如
图12和13中所示的传统方法来连接。在图12所示的方法中,组成树脂管线1的有两根树脂管1a,1b。树脂管1b在其端头部份1c处用一个喷灯或电阻加热器予以软化。树脂管1b的端头部份1c于是膨胀致使其内径略大于树脂管1a的形状。然后将粘接剂20涂敷在端头部份1c的内表面上。树脂管1a的外表面固定到树脂管1b的内表面上。待粘接剂20硬化后,两根树脂管1a,1b就被连接上了。在图13所示的另一方法中,两个法兰盘21a,21b安装在树脂管1a,1b的周边端上予以连接以形成树脂管线1。该管子是用螺栓和螺母(图中未显示)来连接的。在另一个方法中,参看图12,碳氟树脂管是通过将树脂管1a的外表面和树脂管1b的内表面融化,然后将它们配合在一起来予以连接的。
但是,上述的传统方法中具有管子中会产生死空间的问题。例如,在树脂管被用以为冷却超导线圈和制造大规模集成电路的设备输送纯水或超高纯水时就会产生死空间。在图12中所用的连接树脂管的方法在两根树脂管1a,1b的连接处产生了死空间1d。如水垢等的杂质积存在死空间就使其感染上细菌。其结果是纯水或超高纯水在树脂管线1内时也会含有细菌。同样情况,在图13所示的方法中,不可能将两根树脂管1a,1b完全地连接起来。在交接处出现一个小的间隙。法兰盘在夹紧时使密封垫变形,因而在密封垫和树脂管的内表面之间产生的死空间内存在着如水垢和细菌等的杂质。
公开在日本公开专利申请说明书(特开平)第5-87286号中的另一种连接管子的传统方法中,两根树脂管从套管式管子接头的每一边插入,接头中嵌有电组丝(加热丝)。于是电流使两根管子焊接在一起。然而,通常制造上述套管式管接头的方法是注模法并将涂有树脂的加热丝插入其内。这方法不但费时也很昂贵,因为每一个管腔都要制造管接头并且还需生产注模用的金属模。
这种树脂管都装在工厂中的天花板上或管系槽内。在这些地方都很难操作。因此,复杂的方法或设备都不能用来连接树脂管。
另一种连接树脂管的方法公开在日本公开专利申请说明书(特开平)第5-84829号中,这里使用调频电力。这种方法的问题在于连接处的强度很低,因为只有树脂管的端面是焊接在一起的,而树脂管的焊接面积受到限制,因为加热器安置在管接头处。
本发明被设想来解决上述的问题,而本发明的目的是提供一种用以连接树脂管而不会在接头处产生死空间或间隙的简单的方法,并提供一种适用于该方法的设备。
这种连接树脂管的方法包括一种构形,在这构形内两根树脂管安放在准备连接的位置上,一个圆筒形的金属加热器沿着一个接头(里面和外面)设置。一个绕在加热器上的线圈受到调频电流的激励并以感应发热来加热加热器。这样,树脂管之间的接头就被焊接在一起。
此外,本发明还包括一种用于连接树脂管的设备,这种设备由一个加热器、一个线圈和一个高频电流发生器组成,加热器绕着在两根准备连接的树脂管之间的接头设置,线圈绕着加热器,而高频电流发生器用于激励高频电流进入线圈以便通过感应发热的方式对加热器进行加热。
圆筒形金属加热器上最好有多个孔眼,设置在板的厚度的方向上。当然也可以使用没有孔眼的加热器。
加热器的内径最好比树脂管的外径大一个尺寸公差,而加热器最好在邻近树脂管处被加热。
此外,最好是加热器的至少一种材料能从不锈钢、黄铜或铝中选出。
还有,最好是加热器有一个圆筒形的形状,通过将一块不锈钢板的两端焊接在一起而形成。
还有,最好是设置在圆筒形表面上的多个孔眼的直径都在0.1mm至5mm的范围内。
还有,最好是多个孔眼被设置成几行,而每行中的孔眼都隔开相同的间距。
还有,最好是加热器的宽度在大约1/4至2/3的树脂管的标称直径的范围内。
还有,最好是由具有抗热和电绝缘性能的材料构成的圆筒形制动器在加热器的两侧绕着树脂管设置。
还有,最好是圆筒形制动器的材料从酚醛树脂、环氧树脂、不饱和聚酯树脂,和邻苯二甲酸二烯丙酯树脂中选出。
还有,最好是由酚醛树脂、环氧树脂、不饱和聚酯树脂和邻苯二甲酸二烯丙酯树脂中之一制成的圆筒形制动器形成带形的并绕在树脂管上。
还有,最好是圆筒形制动器所用的材料是用玻璃纤维加强的。
还有,最好是圆筒形金属加热器以这样一种状态绕着每根树脂管设置,其中两根树脂管之间的间隔在0.1mm至10mm的范围内。
在上述的连接树脂管的方法和设备中,高频电流激励了线圈,而磁通量随着频率而变化。当磁通量变化时,感应电动势就产生了。因此,感应电流流入加热器内,而加热器被焦耳热所加热。由于加热器是围绕着处于两根准备连接的树脂管之间的接头设置的,当接头从外面被逐渐加热时,它首先软化然后融化。因此,两根树脂管之间的接头不是急剧加热或用高温加热,因而不会有烧焦接头或分解的树脂开始发泡起沫的危险。其结果是,经焊接的接头具有较高机械强度。在此方法中,树脂管与加热器之间的空气受热而膨胀,但空气通过圆筒形板上的孔眼被释出。因此,即使树脂管被软化,管内也不会产生由于空气膨胀的凸包。也极少有可能在接头处存积有水垢和所输送的纯水在树脂管内受到杂物的污染。
本发明使用了一块圆筒形的金属板作为加热器。圆筒形金属板可以在其厚度的方向上具有孔眼。当使用带有孔眼的圆筒形金属板时,融化的树脂膨胀并从加热器的圆筒形表面上的孔眼中流出。由于有可能根据融化树脂的流出确定树脂管的外部是否已经焊接在一起,因此有必要继续加热直等其内部也焊接在一起。在此之后,高频电流即停止激励线圈,而加热器则停止发热。在树脂冷却下来之后,加热器和两树脂管之间的接头即行连接在一起,因为在孔眼中的融化树脂即行使制动器的功能。加热管加强了树脂管之间的接头,因而树脂管被很牢固地连接起来。取使液压力施加在树脂管的接头上,加热管也会防止管子向外膨胀。同样情况,即使弯曲力施加其上接头也不会破裂。
通过使加热器的内径比树脂管的外径大一个尺寸公差以及在邻近树脂管处对加热器加热就有可能几乎均匀地围绕着两根树脂管之间的接头加热。因此,树脂的融化速度就能保持恒定而树脂的被焊接部份形成一个均匀的结构。接头的机械强度保持稳定。此外,加热器与树脂管之间的间隙非常之小。因此,不仅加热器和树脂管之间的空气而且还有融化的树脂都穿过孔眼流动。其结果是由于空气和融化树脂的膨胀引起的凸包很少会在树脂管内出现。
根据一般加热原理,当电流恒定时,热值根据电阻的增加而增加。因此,当一种具有高电阻的材料,例如不锈钢(SUS304,SUS430),被用于加热器时,其热值要比使用如铝的低电阻材料高出很多。因此这样就能使圆筒形加热器制得更薄些。此外,不锈钢能够通过将板弯曲然后焊接其两端而模制成一个圆筒形状。更加具体地说,本发明加热器在其圆筒形表面上具有很多孔眼。当孔眼是预先在平板材料上钻成或冲出然后再通过焊接板的两端而将平板材料模制成圆筒形要比材料(管子等)首先模制成圆筒形然后再钻孔操作起来更容易,制造费用也更省。当加热器上有很多的孔眼或者计划大量地制造加热器则最好使用冲压法在平板材料上制成孔眼。
根据上述发明的一个优选实施例,圆筒形表面上多个孔眼中的每一个的直径在0.1mm至5mm的范围内,加热器与树脂管之间的空气能在树脂一开始融化时就被释出。因此,树脂管的变形就能有效地加以避免。如果孔眼的直径在这范围内非常小,融化的树脂会以线的形式流出,反之,如果孔眼的直径在这范围内非常之大则融化的树脂膨胀并充塞着孔眼。
一般说来,大于板厚的0.5的孔眼,在平板材料上压制出孔眼比较适合。反之,小于板厚的0.5的孔眼则用钻孔法钻孔。因此,如果孔眼的最大直径大于板的厚度的0.5则用冲压法来模制比较容易。当树脂管连接时,树脂的融化部份(即连接头处)受到树脂自身膨胀或人工装置的压力。如果孔眼直径过大,这压力能使树脂融化并大量地流出孔外从而减小了压力。于是就也有可能丧失过多压力而不能保持树脂管的连接。因此,最好是孔眼的最大尺寸保持在板在厚度的两倍以维持融化部份的压力。
最好是许多孔眼在加热器圆筒形表面上排成数行,而孔与孔之间隔都相等从而使树脂顺利地穿过,因为融化操作一开始树脂即开始膨胀。这种构形使树脂管之间的接头不致变形。特别是,当树脂融化时朝管子内部的膨胀被防止了。此外,当加热器的宽度是树脂管的标称直径的大约1/4至2/3时,围绕接头四周的融化和膨胀部份的范围可以被限制在一个很小的面积内。因此,树脂管的变形,更为具体地说是朝着管子的内部的膨胀可以在树脂管之间的接头处被防止。
另外,最好是圆筒形金属加热器设置在每根树脂管的四周而两根树脂管之间的间隔(缝隙)大约在0.1mm至10mm范围之间。一个较佳的例子如图10所示,其中圆筒形金属加热器16,17与树脂管1a,1b的接头间的距离几乎是完全相等的。两者之间的间隔(缝隙)18大约确定在0.1mm至10mm范围之间。根据这一例子,焊接操作是在图11所示的状态下完成的。在这样的安排下,在接头处没有空气因而树脂管的变形可以避免。在此同时,树脂管1a,1b可以甚至更为可靠地予以连接。因为可以在观察接头隔化程度的同时加以焊接。
将加热器的内表面完全附接在树脂管的外表面是不可能的。因此,由于空气的膨胀和树脂本身的膨胀而膨胀的融化树脂可以从加热器和树脂管之间的间隙中被压出。然而,当由具有抗热和电绝缘性能的材料组成的圆筒形制动器附接在加热器的两侧并围绕着树脂管时,加热器和树脂管之间的间隙就被充填了。这样,加热器和树脂管之间的空气就穿过加热器圆筒形表面上的孔眼逸出。融化的树脂也从这些孔眼中流出。其结果是,融化的树脂将不从加热器和树脂管之间的间隙中渗出。最好是能选择具有抗热和电绝缘性能的材料,诸如热固型树脂,例如酚醛树脂,不饱和聚酯树脂,和邻苯二甲酸二烯丙酯树脂。特别可取的是选择以玻璃纤维加强的材料。此外,当这些材料以条带的形式提供,它们就更容易操作,因为圆筒形制动器是通过把这些材料绕在树脂管上的方式而形成的。
任何种类的能挤压成形的树脂管都能够用于本发明。这种树脂管包括,例如,碳氟树脂,诸如聚偏氟乙烯,四氟乙烯-六氟丙烯共聚物(FEP),和四氟乙烯-全氟化烷基乙烯醚共聚物(PEA),以及大范围的热塑性树脂,诸如聚氯乙烯、聚乙烯、聚丙烯、聚苯撑硫和聚醚醚酮。
以下参照附图对本发明予以说明。
图1是连接树脂管的方法和设备的一个实施例的示意流程图;
图2是第一实施例中一个带有孔眼的加热器的横截面图,显示出正待连接的两根树脂管间的一个接头;
图3是第一实施例中刚连接好后的两根树脂管之间的接头的横截面图;
图4是第二实施例中正待连接的两根树脂管之间的接头的横截面图,其中使用了带孔眼的加热器而圆筒形制动器安置在加热器的两侧;
图5是第二实施例中刚连接好后的两根树脂管之间的接头的横截面图;
图6是第二实施例中准备连接的两根树脂管之间的接头的横截面图,其中使用了无孔眼的加热器;
图7是第三实施例中刚连接好后的两根树脂管之间的接头的横截面图;
图8是一幅显示第三实施例中加热器的温度变化的曲线图;
图9是第四实施例中放置在树脂管内外两侧的无孔眼加热元件的横截面图;
图10是第五实施例中正待连接的两根树脂管之间的接头的横截面图,其中两个圆筒形加热器被设置成中间留有间隙;
图11是第五实施例中刚连接好后的两根树脂管之间的接头的横截面图;
图12是连接树脂管的一种传统方法的横截面图;和图13是连接树脂管的另一种传统方法的横截面图。
实施例1本发明连接树脂管的方法和设备的一个实施例将参照图1-3予以叙述。图1是连接树脂管的方法和设备的一个实施例的示意流程图。图2是第一实施例中准备连接的两根树脂管之间的接头的横截面图。图3是第一实施例中刚连接好后的两根树脂管之间的接头的横截面图。
在图1中,两根形成树脂管线1的树脂管1a,1b面对面地放置在准备连接的位置。由不锈钢制成的圆筒形加热器2绕着树脂管1a,1b之间的接头设置。热感应线圈3以松弛的螺旋形绕在加热器2上。共振电容器4与输出变压器的一个次级绕组串连在热感应线圈3的两个终端之间。输出变压器5的一个初级绕组连接在换流器6上。换流器6连接在直流电源7和商业电源或发电机电源10上。在交流电流变换成直流电流之后,直流电源7就将电力输出。还有,电池9也能对换流器6供应电力。在这例子中,直流电源8通过使用DC-DC变流器将来自电池9的直流电力变换成预定电压和/或电流,然后将电力输出到换流器6。在将来自直流电源7或直流电源8的直流电变换成具有一定电压和频率的交流电之后,换流器6将电力输出至输出变压器5的初级绕组。当交流电流以一定的电压和频率流入输出变压器5的初级绕组时,一个预定的次级电流开始流入次级绕组内。当次级电流流入热感应线圈3时,从热感应线圈3产生的磁通量也相应地变化。由于变化的磁通量,感应电动热就产生出来,而感应电流流入加热器2内。流入加热器2内的感应电流使加热器2发出热,这是因为加热器2从电阻中产生焦耳热。最好能使用集成锁相环路控制(PLL控制),因为换流器6根据线圈的耦合感应(linkage inductance)始终使电容器4和共振线路保持在共振的状态中。
加热器2被加热至几百度以便转换足够的必要能量来焊接树脂管1a,1b。另一方面,虽然热感应线圈3和加热器2形成一个高频变压器,热感应线圈3和加热器2并没有很好地连接因为加热器2太热了。因而,耦合感应增加了以致高频电流不再流至热感应线圈3。为了使电流流至热感应线圈3,共振电容器4连同热感应线圈3的耦合感应一起形成电感-电容(LC)串联共振电路。这样做后,一个从LC串联共振频率得到的高频波可以被加入从而使高频电流流注至热感应线圈3。换流器6探测输出电压和电流,并控制(PLL控制)相位,因而相位差是0。这样,LC共振频率的高频波不断地产生,因而LC共振频率在加热时变化。还有,电流相对于LC共振频率在加热时的变化而流动。
加热器2的电阻值并不太高,因而较大的电流(数百安培)和较低的电压在加热器2内产生,以便将树脂管1a,1b加热至熔点。在另一方面,从实用性和成本来看,太多地增加绕组的匝数也并不太合适。因此,输出变压器被连接以获得阻抗匹配。其结果是在到达输出变压器5之前对换流器6的电阻似乎在增加因而需要的电力可以减少。直流电源7通过与一个计时器相结合可以确定和输出必要的能量用于焊接管子。
如图2中所示,加热器2具有一个圆筒的形状并且是用不锈钢(如SUS304,SUS430)所制成。加热器的圆筒形表面上有许多个孔眼2a。孔眼2a可以在不锈钢管的圆筒形表面上被钻出。但也有可能通过用钻取法或冲压法在不锈钢板上制出多个孔眼2a,然后弯曲该板形成一个圆筒并将其两端焊接在一起的方式模制出这圆筒。这后一方法比首先模制一个圆筒形材料然后钻出多个孔眼不但比较容易而且在制造成本上也较低廉。当计划在加热器上需要大量的孔眼或者需要大量地生产加热器,最好是使用冲压法在平板材料上制出孔眼。
在下述的例子中,使用具体材料和尺寸对加热器2进行描述。对于根据日本工业标准(J/S)的标称直径75A同样尺寸的聚偏氟乙烯(以下简称PVDF)管子,使用了厚度为0.5mm的不锈钢板SUS304作为加热器2的材料。由于具有标称直径75A的PVDF管子的外径为89.0mm,故加热器被计算出具有89.2mm的内径和30mm的长度。孔眼2a被制成五排,离中心的间隔为5mm的长度。每一排具有28个孔眼同间距地安排在一条线上。孔眼2a是直径1mm的一个圆筒形。虽然它取决于将被连接的树脂管的直径,但为了容易加工和运用,不锈钢的厚度最好在0.5和1.0mm之间。
虽然取决于材料的硬度,但一般地说在平板材料上压制出小于材料厚度的0.5的孔眼是困难的,因为冲压金属模的构成形状能被折断。因此,在冲压法中最好规定孔眼2a的最大直径大于材料厚度的大约0.5。在另一方面,当树脂管1a,1b被连接时,树脂的一个融化部份(即在其接头处)容易受到来自树脂本身膨胀或人为因素的压力。然而,如果孔眼的直径太大,则这压力可能会使树脂融化并大量地流出孔眼外以减小压力。于是,也有可能失去太多的压力以致不能维持树脂管的连接。因此,最好是使孔眼2a的最大直径尽可能小,例如小于材料厚度的两倍以便维持在融化部份的压力。因此,最好选定一个孔眼2a的直径(最大尺寸或最大直径)是厚度的0.5至2倍之间。
当高频电流被激励入热感应线圈3,从热感应线圈3产生的磁通量根据频率而变化,而感应电动势在加热器2中产生。感应电动势促使电流流入加热器2内,而焦耳热由加热器2的内部电阻产生。其结果是加热器2发射出热并使树脂管1a,1b的接头处的温度逐渐地从外增加。由于加热器2的内部和树脂管1a,1b的外部几乎是接合的,加热器2和树脂管1a、1b之间的膨胀空气穿过孔眼2a逸出。预定的压力在轴向上施加到树脂管1a,1b上以连接管子。因此,当树脂管1a,1b之间的接头处的温度达到一个预定的软化或融化点时,从外部融化和膨胀的树脂1c开始穿过孔眼2a流出,如图3中所示。融化树脂的量逐渐增加,这种融化树脂的一部分在加热器2的两侧形成堆积升高部份13。外侧的树脂被加热直至树脂管的内部也融化,两根树脂管1a,1b就被焊接在一起不留间隙。由于树脂管1a,1b之间的接头是逐渐地加热的,树脂管1a,1b之间的接头就不会烤焦或起泡的危险。其结果是焊接的接头具有高的机械强度。此外,加热器2只是部份地放置在接头处,因此树脂管1a,1b只在有限的区域内软化和融化。当树脂管被焊接在一起时,膨胀的空气和树脂穿过孔眼2a被释出,因而在树脂管1a,1b之间的接头处很少会出现凸包的现象。
在本发明中,加热器2在其圆筒形表面上具有多个孔眼。这些孔眼2a当管子被焊接在一起时有效地使膨胀的空气和树脂逸出。孔眼还能够使操作人员根据融化的树脂的流出容易确认在树脂管1a,1b之间接头的外面部份是否已经开始融化了。当接头的外面部份继续被加热,融化的树脂就充塞孔眼2a。因此,加热器2和树脂管1a,1b就完全被连接成一个部份了。换句话说,当焊接过程完毕后,加热器2就对两根树脂管1a,1b之间的接头作了加强。不锈钢由于其高的机械强度,特别适合于作为一种加强材料。
实施例2本发明连接树脂管的方法和设备的第二个实施例将参照图4和图5予以描述。图4是准备连接的两根树脂管之间的接头的横截面图。图5是在连接后两根树脂管之间的接头的横截面图。具有与图2和3相同标号的元件这里就不再加以描述以免重复。
在第一个实施例中,加热器2的里面部份放置在紧贴树脂管1a,1b的外面部份处。加热器2是通过弯曲一块不锈钢板并焊接其两端形成一个圆筒形而模制成的。其结果很难使加热器2的内径尺寸几乎完全等于树脂管1a,1b的外径。同样情况,也很难经常维持其圆形。加热器2的内径通常设计成比树脂管1a,1b的外径大一个预定的尺寸容差以便大量地生产加热器。第二实施例往往构成这种情况,即在加热器2的内侧部份和树脂管1a,1b的外侧部分之间存在着一个间隙。
实际上,重力就使加热器2的内侧部份和树脂管1a,1b的外侧部份之间形成一个间隙2b,如图4中所示(为了说明的目的,间隙2b被绘制成大于其实际的大小)。如果在这种情况下对加热器2加热,如在第一实施例中那样,融化和膨胀的树脂就不仅会从孔眼2a中而且还从间隙2b中流出,造成会从加热器2的两侧突出树脂凸包(被称作“空腔”)。当发生这种情况,则有可能不仅接头在其表面处受损害,而且由于膨胀的空气和融化的树脂未能通顺地被释出,接头的内部也显得粗糙不平。因此,由具有抗热和电绝缘性能的材料组成的圆筒形制动器11被放置在加热器2的两侧以便充塞加热器2和树脂管1a,1b之间的间隙。制动器对减少融化树脂的空腔或突出部份,对防止融化部份厚度的减小,对调节融化时的内部压力,和对防止接头内部变成粗糙不平方面都是非常有效的。具有抗热和电绝缘性能的材料有热固性树脂,例如,酚醛树脂、环氧树脂、不饱和聚酯树脂、和邻苯二甲酸二烯丙酯树脂,尤其是那些用玻璃纤维加强的树脂。因此,当这些材料以条带形式来使用时,它们就更容易操作,因为条带可以容易地绕在树脂管上形成圆筒形制动器,在工作完成后,条带也很容易被除去。
下面将说明准备连接的树脂管的标称直径与加热器2的长度之间的关系。当加热器2很长时,树脂管1a,1b之间接头四周较大的面积将被加热。当树脂管1a,1b被加热时,即使温度还未达到熔点时,管子就开始膨胀了。因此,当较大面积被加热时,因树脂本身膨胀引起的内部压力将较高。如果因树脂本身膨胀引起的内部压力过高时,树脂管1a,1b从外侧开始融化直等其余部份变成如此的薄以致因内部压力造成的皱折形成在树脂上。因此,在树脂管1a,1b之间接头的内部出现粗糙不平部份。所以,有必要确定最能适合树脂管1a,1b的厚度的加热面积,也就是加热器2的长度,以便完全消除由于皱折引起的粗糙不平表面,或尽量减少它。各种不同标称直径的树脂管被准备好以对应于各种不同长度的加热器2。每个加热器2都试验性地连接起来。结果显示在表1中(如下)。树脂管被连接得很好不致在接头内部引起任何凸包。
表1标称直径 加热器长度65A 20~30mm75A 20~30mm100A 30~45mm125A 35~65mm从表1中可以明显地看出,加热器2的长度最好是在树脂管的标称直径的大约1/4和2/3之间。
在上述的几个实施例中,用作树脂管1a,1b的材料是聚偏氟乙烯(PVDF),但本发明并不只限于使用这种树脂。任何种类的热塑性树脂管都能使用。这种树脂管的树脂包括,例如碳氟树脂,其中有聚偏氟乙烯,四氟乙烯-六氟丙烯共聚物(FEP),和四氟乙烯-全氟化烷基乙烯醚共聚物(PFA),以及各种各样的热塑性树脂,其中有聚氯乙烯,聚乙烯,聚丙烯,聚苯撑硫和聚醚醚酮。此外,树脂管的形状也并不限于直管。弯管,接头管,或阀的端头处的管也都包括在内。本发明的基本原理并不是只用于连接树脂管,也能用于连接玻璃管(包括石英玻璃和硅酮玻璃)。
此外,换流器6的振荡频率可以有伸缩性地设定在至少为15~80KHz的范围内,从而使它可以应付不同的材料和不同直径的准备连接的树脂管。还有可能预先将一些数据,例如,温度数据,使不同材料和不同直径的树脂管软化和融化所需的加热时间的数据记录入存贮器内,并将数据输入到一个微机内,该微机自动控制输入到热感应线圈内的电流。以这种方式,在工厂内的连接操作就可以简化。一种非常便宜的将细线绞合的编织线通常用作热感应线圈3的材料。当树脂管的连接操作完成后,热感应线圈3就可以被割断并从树脂管线1上除去。此外,树脂管1a,1b在其接头处的温度达到一个预定的软化或融化点之后就用压力在轴向的方向上使其焊接在一起,一种预定的焊接夹具可以用来获得最好的焊接压力。
实施例3本发明连接树脂管的方法和设备的第三个实施例将参照图6和图7予以描述。图6和7是一种通过在管子外面设置一块圆筒形金属板来连接两根树脂管的实施例的横截面图。使用了图1中所用的同样的高频发电机。
加热器12用诸如铝,黄钢或不锈钢的圆筒形金属板制成。在这实施例中,在加热器12厚度的方向上没有孔眼。当高频电力输入到热感应线圈3内时,它逐渐地提高围绕着树脂管1a,1b之间接头四周的温度。一旦树脂管1a,1b之间接头处的温度到达一个预定的软化或融化点时,树脂管就被焊接在一起。当加热时,融化的树脂在体积上膨胀,因而两根树脂管1a,1b就被完全接合住,其间不留空隙。由于树脂管1a,1b之间的接头是逐渐地加热的,因此树脂管1a,1b之间的接头没有被烤焦或起泡的危险。其结果,焊接的接头具有高机械强度。此外,加热器12只是部份地放置在接头处,因此树脂管只在有限的面积内软化和融化。因此,在树脂管1a,1b之间的接头内侧很少会出现凸包。
此外,换流器6的振荡频率可以有伸缩性地设定在至少为15~80KHz的范围内,从而使它可以应付不同的材料和不同直径的准备连接的树脂管。还有可能预先将一些数据,例如,温度数据,使不同材料和不同直径的树脂管软化和融化所需的加热时间的数据录入存贮器内,并将数据输入到一个微机内,该微机自动控制输入到热感应线圈内的电流。以这种方式,在工厂内的连接操作就可以简化。一种非常便宜的将细线绞合的编织线通常用作热感应线圈3的材料。当树脂管的连接操作完成后,热感应线圈3就可以被割断并从树脂管线1上除去。此外,树脂管1a,1b在其接头处的温度达到一个预定的软化或融化点之后就用压力在轴向上使其焊接在一起,一种预定的焊接夹具可以用来获得最好的焊接压力。
参照着图6和7并用具体的材料对此实施例予以说明。管子1a,1b(外径76mm,厚度4.2mm)是用聚偏氟乙烯(PVDF-65A,融点178~180℃)制成,而圆筒形金属加热器12(材料铝,内径76.2mm,厚度1.0mm,长度20mm)被放置在管子的外侧上。两个端面配合得正好,如图6中所示。
于是,热感应线圈3由编织线(材料铜,芯线直径0.12mm,整线直径6.6mm)组成,其松弛地绕着(匝数4匝),如图7中所示。焊接操作通过输入频率74KHz的118W电力在9分钟时间内完成。
在此实施例中,加热器在9分钟内被加热至270℃,然后在电力不再供应后于10分钟内冷却至100℃。图8显示了温度随时间而变化的曲线。如上可见,焊接操作所必需的温度控制是很容易执行的。这一焊接操作以输入电力至加热器12开始,加热器于是从其整个表面发出热(薄片发热)。一部分紧挨着加热器12的树脂首先开始融化。融化树脂的量逐渐增加,一部份这种融化树脂在加热器12两侧形成堆聚升高部份13。一部份融化的树脂流入树脂管1a,1b端头处的间隙内,从而融化了在边界部份的树脂。由于在树脂管1a,1b内表面上的热传递比较慢,这部份开始融化得较晚。在此时间产生的压力使端面熔焊起来。最好这一部份最后也能融化。实际上,内表面最后形成一道墙(固态的)并没有太多地改变其形状。因此,在这种连接管子的方法中可以确认两根树脂管是在提供结合压力时熔焊在一起的,这种压力对熔焊端面是必需的。
在下一步骤,当电力供应停止时,或电力供应量逐渐弱时,加热器12开始冷却下来,整个构形变成固体化,融化树脂的堆聚升高部份(空腔)13仍留在加热器的两端。因此,树脂管1a,1b被完全地焊接在一起了。将上述树脂管在接头处沿轴向切成两部份并检查其横截面时,确认管子完全被焊成一根管子了。
使用加热器12通过上述程序所获得的树脂管之间的接头即使在液压压力被施加到管子上时也不会在内侧形成凸包。接头也得到加强,特别是在弯曲的方向上。此外,融化部份修饰得平滑没有死空间。
实施例4在上面显示的第三实施例中(图6和7),举出了一个环形金属加热器12被放置在树脂管1a,1b之间的接头四周的例子。还有可能形成一个如图9中所示的接头。在图9中所示的实施例中,圆筒形金属加热器14,15分别放在树脂管1a,1b之间的接头的外表面和内表面上。对于连接厚的管子,将圆筒形金属加热器14,15放置在树脂管的内外两个表面上是可取的。同时,圆筒形金属加热器15是如此的薄以致即使加热器14被安放在内侧,内表面也不致因而成为粗糙,它几乎不会影响液体在树脂管线内的流动。
实施例5在上面显示的第三实施例中(图6和7),举出了一个环形金属加热器12被放置在树脂管1a,1b之间的接头四周的例子。在图10和11所示的实施例中,圆筒形金属加热器16和17绕着每根树脂管的四周放置,其间留有一个大约2mm的间隔(缝隙)。换句话说,一个缝隙部份18被安排在两个圆筒形金属加热器16,17之间。管子1a,1b(外径76mm,厚度4.2mm)由聚偏氟乙烯(PVDF-65A,融点178~180℃)制成,而圆筒形金属加热器16,17(材料铝,内径76.2mm,厚度1.0mm,长度10mm)被放置在管子的外面,两个端面正好配合。根据第三实施例连接的树脂管显示出在接头处没有空气,因而防止了树脂管的变形。此外,管子能够更为可靠地被连接,因为能够在焊接的同时观察到融化的树脂是如何流入到缝隙部份18内的。融化的树脂在缝隙部份18内在一个堆聚升高的状态下冷却形成一个堆聚升高部份19。
权利要求
1.一种连接树脂管的方法,其包括下列步骤(a)将两根准备连接的树脂管安放就位;(b)沿着所述树脂管之间的接头放置一个圆筒形金属加热器;和(c)将所述加热器绕以一个线圈,其中所述加热器通过高频电流加以激励,该高频电流是通过感应加热的方式对所述加热器进行加热,从而使所述树脂管之间的所述接头被焊接在一起。
2.一种连接树脂管的设备,所述设备包括一个绕着准备连接的两根树脂管之间的接头设置的加热器;一个围绕着所述加热器的线圈;和一个用于激励高频电流流入所述线圈通过感应加热对所述加热器进行加热的高频电流发生器。
3.如权利要求1或2所述的连接树脂管的方法和设备,其特征在于其中所述加热器可以在其圆筒形表面上有多个厚度方向的孔眼。
4.如权利要求1至3中之一项所述的连接树脂管的方法和设备,其特征在于其中所述加热器的内径比所述树脂管的外径大一个尺寸容差,所述加热器的紧靠所述树脂管处被加热。
5.如权利要求1至4中之一项所述的连接树脂管的方法和设备,其特征在于其中所述加热器至少有一种材料是选自包括不锈钢,黄铜和铝的材料族内。
6.如权利要求5所述的连接树脂管的方法和设备,其特征在于其中所述加热器具有一个圆筒的形状,该形状是通过将一块不锈钢板的两端焊接在一起的方式形成的。
7.如权利要求6所述的连接树脂管的方法和设备,其特征在于其中设置在所述圆筒形表面上的所述多个孔眼中每一个的直径都在0.1mm至5mm的范围内。
8.如权利要求7所述的连接树脂管的方法和设备,其特征在于其中所述多个孔眼在一块不锈钢板上是排成若干行,每一所述行中的每一所述孔眼间的间距都是相等的。
9.如权利要求1至8中之一项所述的连接树脂管的方法和设备,其特征在于其中所述加热器的宽度在大约1/4至2/3的所述树脂管的标称直径范围内。
10.如权利要求1至9中之一项所述的连接树脂管的方法和设备,其特征在于其中由具有抗热和电绝缘性能材料组成的圆筒形制动器在所述加热器的两侧绕着所述树脂管附接在其上。
11.如权利要求1至10中之一项所述的连接树脂管方法和设备,其特征在于其中所述圆筒形金属加热器绕在每个树脂管上,树脂管与树脂管之间的间隙在0.1mm至10mm的范围内。
全文摘要
当树脂管通过感应加热被连接时,本发明的树脂管在加热过程中不会因为空气和树脂的膨胀而形成内部凸包。由不锈钢制成的圆筒形加热器2绕在由聚偏氟乙烯制的两根树脂管1a、1b之间的接头上。加热器2于是由感应加热被加热而将树脂管1a、1b的接头焊接住。加热器2在其圆筒形表面上具有多个孔眼2a,因而位于加热器2和树脂管1a,1b之间的空气和融化的树脂都能穿过孔眼2a被释出。
文档编号B29C65/36GK1109154SQ9410936
公开日1995年9月27日 申请日期1994年8月25日 优先权日1993年9月24日
发明者井口热, 赤羽笃, 山下武宏, 松冈弘市 申请人:旭有机材工业株式会社