专利名称:树脂件的连接方法和接头结构的制作方法
把两树脂件连接在一起的方法主要有超声波振动焊接和加热焊接。按照超声波振动焊接,有待连接在一起的两树脂件的表面的形状做成可造成应力集中。在把两树脂件紧压在一起的同时用超声波发生器产生的超声波振动这两个树脂件,从而在待连接表面处产生摩擦热。从而待连接表面熔化而连接在一起。
另一方面,加热焊接的已知例子有加热焊接、涡流电磁感应焊接和直接加热焊接。在加热焊接中,待连接的互相相对的两表面全部加热熔化后互相紧压而连接在一起。按照涡流电磁感应焊接,把一其上撒有铁粉之类导电粉末的树脂粘接件置于待连接在一起的两表面之间,在设置在待连接表面旁边的一线圈中通以高频电流,该线圈中生成的涡流加热导电粉末,从而树脂粘接件熔化而把两表面连接在一起。按照直接加热焊接,把一加热件布置在待连接的两表面之间,用该加热件熔化待连接表面,从而两表面连同该加热件连接在一起(见日本专利申请公开No.SHO 62-267125)。
但是,超声波振动焊接和涡流电磁感应焊接一般需要昂贵的设备,因此生产成本高。在超声波振动焊接中由于待连接表面由振动产生的摩擦热熔化,因此待连接表面的形状受到限制,从而其应用常常限于平直表面。但是这类平直的表面形状很难确保在与连接表面垂直的方向(换句话说,在拉动方向即把连接表面分开的方向)也即主要方向上获得足够的接头强度,尽管在与连接表面平行的方向上该接头的强度足够大,因为该平行方向为连接表面的剪切方向。这里的“待连接表面”指两树脂件的位于相对位置上、用来把两树脂件连接在一起的互相相对的表面。在下文中这两个表面在连接前称为“连接前表面”,在连接后称为“连接后表面”。
涡流电磁感应焊接和直接加热焊接除了树脂材料在连接后表面之间必定有铁粉或加热件之类的东西。因此在回收树脂材料之前必须先除去树脂材料中的加热件之类的东西。这对树脂材料的回收显然不利。此外,比方说在直接加热焊接中,当与待连接表面接触的加热件熔化这两表面时,熔化集中发生在加热件接触区中。从而当待连接表面面积很大时熔化的区域就不够大。若为了解决这一问题而增加加热件的数量,则对材料的回收更不利。在近年来对环境问题和资源回收日益关切的情况下,树脂材料的回收是一个非常重要的课题。
鉴于此,本发明的主要目的是提供一种树脂连接方法(工艺)和一种接头结构(连接结构),其特点是大大提高连接后表面处的接头强度并便于回收。
按照本发明的树脂接头结构,两树脂件在互相相对的表面处连接在一起。所有这些相对表面在两树脂件的互相相对方向上都有一基本互相平行的侧面。一树脂件的侧面与另一树脂件的相应侧面加热熔化后连接在一起。连接后表面可具备与树脂件的互相相对方向基本垂直的互相相对表面,这些互相相对表面以不焊接状态互相抵靠。每一侧面可具备相对树脂件的互相相对方向倾斜的斜面。
本发明的把互相相对的两树脂件连接在一起的方法包括在树脂件的待连接部位形成一与树脂件的互相相对方向基本平行的侧面、加热熔化至少其中一个侧面、然后把一树脂件的该侧面用压力粘接到另一树脂件的相应侧面上而把这两个树脂件连接在一起。当两侧面具备相对于树脂件的互相相对方向倾斜的斜面时,至少其中一个斜面加热熔化后用压力粘接到相应侧面上而把两树脂件连接在一起。
按照本发明,提供与树脂件的互相相对方向基本平行或倾斜的侧面,然后至少其中一个侧面加热熔化后用压力粘接到相应侧面上。从而树脂件在与侧面平行的方向上和与侧面相交的方向上都无法移动,从而该接头结构的抗拉强度和抗剪切强度也即接头强度提高。
若要进一步提高接头强度,可在待连接两表面上分别设置可互相紧紧啮合的一凸起部和一下凹部。下凹部的内侧面和凸起部的外侧面中的至少一侧面加热熔化后用压力粘接到相应侧面上。下凹部的宽度或直径可设定成比凸起部小。或者,也可把凸起部的外侧面做成为斜面,以使其宽度或直径向着其自由端渐渐变小;或者,也可把下凹部的内侧面做成为斜面,以使其宽度或直径向着其内端渐渐变小。
按照上述结构,在两树脂件的连接前表面处分别提供可紧紧啮合的下凹部的内侧面和凸起部的外侧面,然后加热熔化至少其中一个侧面后用压力粘接到相应侧面上。由于凸起部和下凹部加热熔化后互相紧紧啮合,因此相应两侧面紧压在一起,从而确保获得足够的接头强度。
此外,下凹部的宽度或直径可做成比凸起部小,或者,也可把下凹部的宽度或直径做成在其内端处比凸起部小,而在其开口处等于凸起部的宽度或直径。这种结构可使熔化后的树脂材料的多余部分流入其中。由于熔化后的树脂材料的多余部分无法流出,因此可形成所需状态的接头结构。
而且,可把下凹部的纵向尺寸做得比凸起部大而在凸起部与下凹部之间留出空隙。这一结构也可使得熔化后的树脂材料的多余部分流入其中而以所需状态形成接头结构。
凸起部的外侧面和/或下凹部的内侧面可做成斜面,以使凸起部的宽度或直径和/或下凹部的宽度或直径分别向着凸起部的外端和/或下凹部的内端渐渐减小。这种结构在顺利连接凸起部与下凹部的同时可提高这两个部分之间的接头的强度。
待连接的表面可具备与两树脂件的相对方向垂直的互相相对的表面。当树脂件的这些互相相对表面以不熔化状态互相抵靠而相应侧面在熔化状态下用压力粘接在一起时,两树脂件在其侧面处熔化而粘接,而由互相相对的表面保持连接后表面的位置精度。从而可确保两表面的稳定连接。
一红外线加热器可移动地放置在至少一个树脂件的至少一个侧面旁而加热熔化该侧面。这就无需把红外线加热器作为加热件留在连接后表面之间即可连接两树脂件。此外,这一特点还有一个优点,在回收树脂材料时无需清除额外的东西,从而便于回收。
此外,在红外线加热器与相对表面之间可用一隔热件使该相对表面与热隔绝。从而相对表面不会被加热而保持不熔化状态。这可在进行连接时确保表面的位置精度并使连接后的表面保持稳定。
按照本发明,两树脂件中的至少一个在其与两树脂件的互相相对方向基本平行的侧面处熔化粘接到另一个树脂件上。当以相反方向的外力把两树脂件拉开时,上述外力以剪切力作用在用压力粘接在一起的两侧面上,从而接头强度提高。
此外,待连接的表面可包括与树脂件的互相相对方向基本垂直的相对表面并且不加热从而不熔化粘接地互相抵靠。这些表面在进行连接时作为基准面而确保连接精度。下面对附图进行简要说明图1为表示应用本发明的一进气歧管的结构的侧视图;图2为沿图1中II-II线剖取的剖面图;图3为示出本发明第一实施例的接头结构和连接方法的剖面图;图4为第一实施例的两树脂件连接后的剖面图;图5为示出本发明第二实施例的接头结构和连接工艺的剖面图;图6为第二实施例的两树脂件连接后的剖面图;图7为示出本发明第三实施例的接头结构和连接方法的剖面图;图8为第三实施例的两树脂件连接后的剖面图。
下面特别以图1所示一树脂制成的进气歧管为例说明本发明的树脂件连接方法和接头结构。进气歧管1用具有热塑性能的聚酰胺之类现有材料制成。其他合适材料举例说包括丙烯酸树脂和聚丙烯树脂之类树脂。
进气歧管1由三个部件构成,在该侧视图中为其上有一连接法兰2的内部件(第二树脂件)3以及都从外部方向连接到内部件上的第一外部件(第一树脂件)4和第二外部件5。该进气歧管用未示出的螺栓紧固到发动机E的汽缸体E1上。尽管下面的说明集中在内部件3与第二外部件5之间的接头结构上,但本发明当然可用于内部件3与第二外部件5之间的接头7和第一外部件4与第二外部件5之间的接头8的接头结构中。
图2详示出内部件3与第一外部件4之间的接头6的结构。内部件3的横向两侧有凸缘部3A、3A;而第一外部件4的横向两侧有凸缘部4A、4A。凸缘部3A、3A和凸缘部4A、4A上有互相相对的连接后表面3B和4B。连接后表面3B、3B上有与连接后表面3B、3B连成一体并伸向相应连接后表面4B、4B的凸起部9、9。相对的连接后表面4B、4B上有供凸起部9、9熔化后插入其中的下凹部10、10。顺便说一句,图3-8只示出一侧上的连接后表面3A、4A。下面继续结合这些
本发明各实施例。
如图3所示,凸起部9基本位于待连接表面3B(以下称为连接前表面3B)中部,其上有与箭头A所示内部件3与第一外部件4互相相对的方向平行的外侧面9a、9b。凸起部9的端面(第二基准面)9c、9d分别为与外侧面9a、9b基本垂直的平直表面。
下凹部上有基本与相应外侧面9a、9b(第二侧面)平行的内侧面(第一侧面)10a、10b以及与内侧面10a、10b基本垂直的内端面10c。内侧面10a、10b之间的距离L1和外侧面9a、9b之间的距离L设定成满足关系式L1<L。下凹部10的纵向尺寸D和凸起部9的纵向尺寸H设定成满足关系式H<D,从而当凸起部9插入在下凹部10中时凸起部9的外端面(第二相对面)9e与下凹部10的内端面10c之间形成一间隙T(见图4)。
凸起部9和下凹部10在此实施例中分别沿着表面3B、4B连续伸展。但它们也可中断。例如凸起部9和下凹部10的横截面可呈圆形。
而且,位于下凹部10的开口10a处的内侧面(第一侧面)10d、10e相对其相应的内侧面10a、10b向外张开s的宽度。内侧面10d、10e之间的距离L3设定成基本等于外侧面9a、9b之间的距离L。因此,侧面9a、9b与侧面10a、10b之间分别形成其大小达到宽度s的重叠量。宽度s例如最好为0.1-0.3mm左右,尽管它视凸起部9和下凹部10的由下述红外线加热器熔化的所需深度(所需熔化量)而变。
用作加热装置的红外线加热器11、12可移动地放置在外侧面9a、9b和内侧面10a、10b旁。红外线加热器11正对着外侧面9a、9b,其上有隔热层13插入在红外线加热器11与端面9c、9d之间而隔绝红外线加热器11的热量。在该实施例中,红外线加热器11上除了与外侧面9a、9b正对的相对表面11a,11b以外盖有一横截面为U形的隔热器。
红外线加热器12与内侧面10a、10b正对,其上在红外线加热器12与内端面10c之间有隔热层14隔绝红外线加热器12的热量。在所示实施例中,一隔热层贴在红外线加热器12的与内端面10c正对的内表面12c上。红外线加热器11、12与一未示出的高压电源连接而可在短时内把外侧面9a、9b和内侧面10a、10b加热到树脂的软化点而熔化它们。加热若进行得慢,整个连接面3B、4B就会发生热扭变。因此只需用加热器11、12加热外侧面9a、9b和内侧面10a、10b直到熔化深度Y1、Y2至少等于重叠量。要求在短时内以高温进行这一加热。
在连接前的内部件3和第一外部件4旁用一夹具(未示出)夹住这两个部件并用力使第一外部件4压靠内部件3,从而红外线加热器11、12一旦完成对这两个部件的加热,这两个部件就互相压靠。
由于树脂的导热率一般很低,因此在短时内以高温加热外侧面9a、9b和内侧面10a、10b使得外侧面9a、9b和内侧面10a、10b只在其表面熔化而其中部形状保持不变。当内部件3和第一外部件4紧接着加热熔化而用力压靠时,熔化的凸起部9和熔化的下凹部10嵌在一起而在熔化深度Y1、Y2上互相熔化粘接。图4中以标号15、15示出熔化粘接部。视互相熔化深度Y1、Y2和重叠量s的大小而可形成多余的熔化树脂。这些多余的熔化树脂由于间隙T的存在而可不流出到下凹部10之外。
这样可减小多余的熔化树脂溢出到端面9a、9b和与端面9a、9b正对的端面4C、4D的数量,从而接头6可保持良好状态。由于接头6由凸起部9和下凹部10熔化连接而成,因此接头6在图3中箭头A所示相对方向上以及以该图中箭头B所示与该相对方向垂直的方向伸展的表面4C、4D和9c、9d的剪切方向上的强度都提高。
此外,从红外线加热器11、12传到端面9c、9d和端面4C、4D的热量很少,因此这些端面不熔化。在把部件3、4连接在一起时,这些端面从而可用作基准面,从而部件3、4在箭头A所示方向上的连接位置得以稳定。也即,内部件3与第一外部件4之间用侧面9a、9b和相应的侧面10a、10b进行连接,而由不熔化的端面9c、9d、4C、4D在进行连接时确保定位精度。
按照该实施例所使用的方法,接头6可熔化而成,而不是靠振动产生的摩擦热熔化这两个部件3、4的连接前表面。而且也不象现有连接方法那样需要有含有金属粉末的粘接件或用作加热件的加热钢丝与连接表面接触。因此,该实施例的方法可以减小对待连接表面的形状所加的限制,并且接头6中除了内部件3和第一外部件4的树脂材料外无需添加其他东西。
由于接头6中不添加其他东西,因此在回收进气歧管1而切碎或重新熔化该歧管时无需清除粘接件中的金属粉末或加热钢丝,从而提高了可回收性。
下面说明第二实施例。图5和6所示第二实施例的内部件3的结构与第一实施例相同,但第一外部件4中的下凹部16的形状与第一实施例不同。因此,结构与第一实施例相应部件相同的部件用相同标号表示而不再赘述。
在第二实施例的下凹部16中,内侧面(第一侧面)16a、16b之间在开口处的距离L1a设定成基本等于凸起部9的两外侧面之间的距离L,而在内端面16c处的距离L1b设定成小于凸起部9的两外侧面之间的距离L。因此内侧面16a、16b成为斜面,内侧面16a、16b之间的距离向着内端面16c渐渐变小。
下凹部16的纵向尺寸D′设定成大于凸起部9的纵向尺寸H,从而与第一实施例一样,内端面16c与凸起部9的外端面9e之间形成一间隙T1(见图6)供多余的熔化树脂流入其中。内侧面16a、16b旁有一红外线加热器12而把这些内侧面加热熔化到熔化深度Y3。在该实施例中,红外线加热器12与内端面16c之间也有一隔热层14使内端面16c保持不熔化状态。熔化深度Y3与外侧面9a、9b的熔化深度Y1重叠。
当用红外线加热器11、12短时加热具有下凹部16的第一外部件4和内部件3时,外侧面9a、9b和内侧面16a、16b只在其表面熔化而其中部形状保持不变。当内部件3和第一外部件4紧接着加热熔化而用力压靠时,熔化的凸起部9和熔化的下凹部10嵌在一起而在熔化深度Y1、Y3上互相熔化粘接。图6中以标号17示出熔化粘接部。视互相熔化深度Y1、Y3的大小而可形成多余的熔化树脂。这些多余的熔化树脂由于间隙T1的存在而可不流出到下凹部16之外。
这样可减小多余的熔化树脂溢出到端面9a、9b和与端面9a、9b正对的端面4C、4D的数量,从而接头6可保持良好状态。由于接头6由凸起部9和下凹部16熔化连接而成,因此接头6在图5中箭头A所示相对方向上以及该图中箭头B所示的表面4C、4D和9c、9d的剪切方向上的强度都提高。
此外,从红外线加热器11、12传到端面9c、9d和端面4C、4D的热量很少,因此这些端面不熔化。在把部件3、4连接在一起时,这些端面从而可用作基准面,从而部件3、4在箭头A所示方向上的连接位置得以稳定。也即,内部件3与第一外部件4之间用侧面9a、9b和相应的侧面16a、16b进行连接,而由不熔化的端面9c、9d、4C、4D在进行连接时确保定位精度。
接头6在第二实施例中也是熔化而成,而不是靠振动产生的摩擦热熔化两连接前表面3B、4B。而且也不象现有连接方法那样需要有含有金属粉末的粘接件或用作加热件的加热钢丝与连接前表面3B、4B接触。因此,该实施例的方法可以减小对待连接表面的形状所加的限制,并且接头6中除了内部件3和第一外部件4的树脂材料外无需添加其他东西。
由于接头6中不添加其他东西,因此在回收进气歧管1而切碎或重新熔化该歧管时无需清除粘接片中的金属粉末或加热钢丝,从而提高了可回收性。在该实施例中,下凹部16的内侧面16a、16b分别做成斜面。当然也可把凸起部的外侧面9a、9b做成斜面而下凹部16的内侧面16a、16b之间的距离保持不变或者把内侧面16a、16b和外侧面9a、9b都做成斜面。
下面说明第三实施例。按照图7和8所示第三实施例,内部件3和第一外部件4在其连接前表面3B、4B处分别有侧面18、19。侧面18、19与箭头A所示内部件3与第一外部件4的相对方向基本平行。红外线加热器20、21分别加热侧面18、19而使之连接在一起。
连接前表面3B形成在一在内部件3的凸缘部3A上从外侧O向内侧I切出的台阶部上。一侧面(第二侧面)18从其中部进入一向内侧I倾斜的斜面(第二斜面)18a。在连接前表面3B的侧面18与底端面(第二基准面)22A之间有一凹座29供多余的熔化树脂流入其中。在连接前表面3B的顶端面(第二相对面)22B上有一伸向第一外部件4的引导凸脊24。
连接前表面4B形成在一在第一外部件的凸缘部4A上从内侧I向外侧O切出的台阶部上。一侧面(第一侧面)19从其中部进入一向外侧O倾斜的斜面(第一斜面)19a。连接时,斜面19a和斜面18a互相邻接。在连接前表面4B的侧面19与底端面25A之间有一凹座26供多余的熔化树脂流入其中。在连接前表面4B的底端面25A上有一凹槽27。在把内部件3与第一外部件4连接在一起时,该凹槽27供引导凸脊24插入而用作连接表面3B、4B的定位并防止接头6在箭头B所示剪切方向上发生位移。最好在加工凸缘部3A、4A的同时加工出这些凸脊24和凹槽27。
凸脊24和凹槽27在该实施例中可沿着表面22B和表面25A连续伸展。但也可以中断。例如,凸脊24和凹槽27在方向A上可呈圆形。
红外线加热器20、21分别可移动地正对侧面18a、19a。隔热层22、23使底端面22A、25A与加热器20、21的热量隔绝。在所示实施例中,红外线加热器20、21上除了与侧面18a、19a正对的相对表面20a、21a外盖有一横截面为正U形的隔热器。相对的表面20a、21a分别与侧面18a、19a基本平行。
在连接前的内部件3和第一外部件4旁用一夹具(未示出)夹住这两个部件并用力使它们压靠。红外线加热器20、21一旦完成对这两个部件的加热,就用力使它们压靠。
当如上进行连接时,侧面18a、19a受到短时的高温加热而只在其表面熔化,其中部形状保持不变。当内部件3和第一外部件4紧接着加热熔化而用力压靠时,熔化的侧面18a。19a嵌在一起而在熔化深度Y5、Y6上互相熔化粘接。图8中以标号28示出熔化粘接部。视互相熔化深度Y5、Y6的大小而可形成多余的熔化树脂。这些多余的熔化树脂流入凹座29、26中而留在其中。
这样可减小多余的熔化树脂溢出到底端面和顶端面22B、25A和底端面和顶端面(第二和第一基准面)22A、25B的数量,从而接头6可保持良好状态。由于连接前表面3B、4B形成在台阶部上,因此两部件因侧面18a和侧面19a互相抵靠而在箭头B所示剪切方向上无法移动,从而剪切方向上的强度提高。
此外,从红外线加热器20、21传到底端面和顶端面22B、25A和底端面和顶端面22A、25B的热量由于隔热层22、23的作用而很少,因此这些端面不熔化。在把部件3、4连接在一起时,这些端面从而可用作基准面,从而部件3、4在箭头A所示方向上的连接位置得以稳定。也即,内部件3与第一外部件4之间用熔化侧面18a和19a进行连接,而由端面22B、25A和相应端面22A、25B之间的抵靠在进行连接时确保连接的定位精度。
接头6在第三实施例中也是熔化而成,而不是靠振动产生的摩擦热熔化两连接前表面3B、4B。而且也不象现有连接方法那样需要有含有金属粉末的粘接件或用作加热件的加热钢丝与连接前表面3B、4B接触。因此,该实施例的方法可以减小对待连接表面的形状所加的限制,并且接头6中除了内部件3和第一外部件4的树脂材料外无需添加其他东西。由于接头6中不添加其他东西,因此在回收进气歧管1而切碎或重新熔化该歧管时无需清除粘接件中的金属粉末或加热钢丝,从而提高了可回收性。
在上述实施例中,两侧面都加热熔化,但也可只熔化其中的一个侧面。
权利要求
1,一种连接互相相对的第一树脂件(4)和第二树脂件(3)的方法,包括下列步骤在所述第一树脂件(4)上形成第一基准面(4C、4D;25B)、以离开所述第二树脂件的方向与所述第一基准面错开的第一相对面(10c;16c;25A)以及一连接所述第一基准面和所述第一相对面的第一侧面(10a、10b、10d、10e;16a、16b;19、19a),以使所述第一相对面、所述第一基准面和所述第一侧面形成台阶形;在所述第二树脂件(3)上形成第二基准面(9c、9d;22A)、以朝着所述第一树脂件的方向与所述第二基准面错开的第二相对面(9e;22B)以及一连接所述第二基准面和所述第二相对面的第二侧面(9a、9b;18、18a),以使所述第二相对面、所述第二基准面和所述第二侧面形成台阶形;其中,当所述第一树脂件(4)与所述第二树脂件(3)连接后,所述第二基准面(9c、9d;22A)抵靠所述第一基准面(4C、4D;25B),而所述第二侧面(9a、9b;18、18a)与所述第一侧面(10a、10b、10d、10e;16a、16b;19、19a)焊接;加热所述第一侧面(10a、10b;16a、16b、19a)和所述第二侧面(9a、9b;18a)中的至少一个侧面,以使所述至少一个侧面的至少一部分熔化;在所述至少一个侧面的至少一部分处于熔化状态的同时使所述第一基准面(4C、4D;25B)与所述第二基准面(9c、9d;22A)互相抵靠;和用压力使所述第一侧面(10a、10b、10d、10e;16a、16b;19a)与所述第二侧面(9a、9b;18a)连接在一起。
2,按权利要求1所述的方法,其中,所述第一基准面(4C、4D)和所述第一侧面(10a、10b、10d、10e)基本互成直角。
3,按权利要求1所述的方法,其中,所述第二基准面(9c、9d)和所述第二侧面(9a、9b、)基本互成直角。
4,按权利要求1所述的方法,其中,所述第一侧面(19)包括第一斜面(19a),所述第一斜面相对垂直于所述第一基准面的方向(A)倾斜。
5,按权利要求1所述的方法,其中,所述第二侧面(18)包括第二斜面(18a),所述第二斜面相对垂直于所述第二基准面的方向(A)倾斜。
6,按权利要求1所述的方法,其中,所述第一树脂件(4)和所述第二树脂件(3)中的一个有一下凹部(10;16;27),另一个有一可与所述下凹部适配啮合的凸起部(9;24)。
7,其按权利要求6所述的方法,其中,所述下凹部(10;16)形成在所述第一基准面(4C、4D)上,其上有作为所述第一侧面(10a、10b、10d、10e;16a、16b)的内侧面;所述凸起部(9)从所述第二基准面(9c、9d)上伸出,其上有作为所述第二侧面(9a、9b、)的外侧面。
8,按权利要求7所述的方法,其中,所述凸起部(9)的宽度(L)在其整个长度上基本保持恒定;所述下凹部(10;16)在开口处的宽度(L3;L1a)基本等于所述凸起部(9)的所述宽度(L),而在内端面(10c;16c)处的宽度(L1;L1b)小于所述凸起部的所述宽度(L)。
9,按权利要求7所述的方法,其中,所述凸起部的所述外侧面为斜面,以使所述凸起部的宽度向着其外端面变小。
10,按权利要求7所述的方法,其中,所述下凹部(16)的所述内侧面(16a、16b)为斜面,以使所述下凹部的宽度(L1a;L1b)向着其内端面(16c)变小。
11,按权利要求7所述的方法,其中,所述下凹部(10;16)的纵向尺寸(D;D′)大于所述凸起部(9)的纵向尺寸(H)。
12,按权利要求1所述的方法,还包括下列步骤在所述第一基准面(4C、4D;25B)和所述第二基准面(9c、9d;22A)上设置在所述加热步骤中把所述两基准面保持在不熔化状态的装置。
13,按权利要求12所述的方法,其中,所述步骤包括用隔热层(13;22;23)盖住所述两基准面。
14,按权利要求1所述的方法,其中,所述加热步骤包括下列子步骤在所述至少一侧面旁设置一红外线加热器(11、12;20、21),然后加热所述至少一侧面而使所述至少一侧面的至少一部分熔化;以及使所述红外线加热器(11、12;20、21)移离所述至少一侧面。
15,一种树脂接头结构,它包括第一树脂件(4),其上有第一基准面(4C、4D;25B),以离开所述第二树脂件的方向与所述第一基准面错开的第一相对面(10c;16c;25A),和一连接所述第一基准面和所述第一相对面的第一侧面(10a、10b、10d、10e;16a、16b;19、19a),以使所述第一相对面、所述第一基准面和所述第一侧面形成台阶形;和与所述第一树脂件连接的第二树脂件(3),所述第二树脂件上有与所述第一基准面(4C、4D;25B)保持非焊接接触的第二基准面(9c、9d;22A),以朝着所述第一相对面的方向与所述第二基准面错开的第二相对面(9e;22B),和一连接所述第二基准面和所述第二相对面的第二侧面(9a、9b;18、18a),以使所述第二相对面、所述第二基准面和所述第二侧面形成台阶形,所述第二侧面与所述第一侧面(10a、10b、10d、10e;16a、16b;19、19a)焊接。
16,按权利要求15所述的结构,其中,所述第一基准面(4C、4D)和所述第一侧面(10a、10b、10d、10e)基本互成直角。
17,按权利要求15所述的结构,其中,所述第二基准面(9c、9d)和所述第二侧面(9a、9b、)基本互成直角。
18,按权利要求15所述的结构,其中,所述第一侧面(19)包括第一斜面(19a),所述第一斜面相对垂直于所述第一基准面的方向(A)倾斜。
19,按权利要求15所述的结构,其中,所述第二侧面(18)包括第二斜面(18a),所述第二斜面相对垂直于所述第二基准面的方向(A)倾斜。
20,按权利要求15所述的结构,其中,所述第一树脂件(4)和所述第二树脂件(3)中的一个有一下凹部(10;16;27),另一个有一可与所述下凹部适配啮合的凸起部(9;24)。
21,其按权利要求20所述的结构,其中,所述下凹部(10;16)形成在所述第一基准面(4C、4D)上,其上有作为所述第一侧面(10a、10b、10d、10e;16a、16b)的内侧面;所述凸起部(9)从所述第二基准面(9c、9d)上伸出,其上有作为所述第二侧面(9a、9b、)的外侧面。
22,按权利要求21所述的结构,其中,所述凸起部(9)的宽度(L)在其整个长度上基本保持恒定;所述下凹部(10;16)在开口处的宽度(L3;L1a)基本等于所述凸起部(9)的所述宽度(L),而在内端面(10c;16c)处的宽度(L1;L1b)小于所述凸起部的所述宽度(L)。
23,按权利要求21所述的结构,其中,所述凸起部的所述外侧面为斜面,以使所述凸起部的宽度向着其外端面变小。
24,按权利要求21所述的结构,其中,所述下凹部(16)的所述内侧面(16a、16b)为斜面,以使所述下凹部的宽度(L1a;L1b)向着其内端面(16c)变小。
25,按权利要求21所述的结构,其中,所述下凹部(10;16)的纵向尺寸(D;D′)大于所述凸起部(9)的纵向尺寸(H)。
全文摘要
两树脂件(3,4)在待连接表面(3A,4A)处分别形成侧面(9a,9b)(10a,10b)。侧面(9a,9b)和侧面(10a,10b)与两树脂件(3,4)的相对方向基本平行。在用设置在相应侧面旁的红外线加热器(11,12)加热熔化侧面(9a,9b)(10a,10b)后把侧面(9a,9b)(10a,10b)压接在一起。
文档编号B29C65/18GK1169358SQ9711154
公开日1998年1月7日 申请日期1997年5月13日 优先权日1996年5月14日
发明者河村滋 申请人:三菱自动车工业株式会社