专利名称:一种层压包装材料,制造所述层压材料和由该层压材料制成的包装容器的方法
技术领域:
本发明涉及一种层压包装材料,该层压包装材料包括纸或纸板的芯层和聚酰胺的阻气层,该聚酰胺的阻气层包括间二甲苯二胺和己二酸(尼龙-MXD6)的缩聚物,该缩聚物通过共挤涂布来涂敷在芯层以及至少一层热密封塑料层的一侧上。
本发明还涉及一种制造本发明的层压包装材料以及由该层压包装材料制成的包装容器的方法。
背景技术:
在包装工业中,公知的是采用专用性能的层压包装材料来包装和输送液体食物。通常,这种层压包装材料由刚性结构但可折叠的芯层组成,该芯层例如由纸或纸板制成,以获得良好的力学结构稳定性。塑料的液密涂层涂布在芯层的两侧,并有效的保护液体吸收纤维的芯层抵抗水分渗入。这些外层通常由热塑材料,最好是聚乙烯构成,聚乙烯还赋予包装材料极佳的热密封性能,因此,该包装材料可转化成具有理想的几何外形的成品包装物。
层压包装材料仅由纸或纸板和液密塑料构成,然而面对气体,特别是氧气,它缺乏气密性。这是在包装许多食物中面临的最大缺点,食物接触氧气后,其保存期限,味道和营养含量急剧恶化。这种食物的一个例子是果汁,当果汁暴露在氧气中时,其维生素C含量降低。为了给包装材料提供阻气层,特别是阻挡氧气层,本领域中公知的是在芯层的打算转到面向成品包装物内部的一侧上涂布一层物质,该物质拥有极佳的氧气密封性能,例如铝箔(‘Alifoil’),EVOH(乙烯乙烯醇)或PVOH(聚乙烯醇)。
通常理想的是能够制造在冷藏时具有所谓的“延长的保存期限”(ESL)的包装容器,即在8℃时储藏约6周后可保持维生素C含量和包装的产品的质量,在7℃时可储藏约8周,或者在4℃时可储藏约10周。
然而,公知的阻气层具有一些缺点,例如,从成本的观点来看,在一些情况下,在环境和回收方面,食物包装中代替铝箔作为阻气材料被认为是适合的。防渗聚合物例如EVOH和PVOH分别对潮气非常敏感,当它们暴露在潮湿环境下时,迅速的丧失了其抵抗氧气的阻气性能。其中,有必要用另一种聚合物层例如潮气不可渗入的聚乙烯层包绕阻气层EVOH和PVOH。或者,EVOH和PVOH分别可与一种或多种公知的食物认可的聚合物结合,以形成连续完好的整体层,该整体层具有在潮湿环境下也保留的极佳阻气性能。然而,制造分别包括EVOH和PVOH阻气层的包装材料需要的材料成本和用于制造必须的多层层压制品的成本高。这是因为在层压制品的每侧上,该阻气层必须由至少一个,通常两个塑料保护外层包绕。
美国专利477088公开了一种用于制造果汁包装的包装层压制品,该果汁包装由一个纸或纸板的芯层和涂布于其上的阻气层以及离聚物粘合剂层组成,该阻气层包括尼龙(没有详细描述),该离聚物粘合剂层即涂布在阻气层上的Surlyn,以作为粘合到最内(朝向包装的内部)聚烯烃层上的中间粘合层。
EP0520767公开了一种由纸或纸板的芯层、阻气层和涂布于其间的粘合层构成的包装层压制品,该阻气层包括非晶态聚酰胺(Selar PA3426美国杜邦公司)。
然而,这些公知的包装层压制品的主要缺点是它们不具有足够好的阻气性能,因而不能以经济的聚合物层厚度来延长包装的保存期限。
具有名为“尼龙-MXD6”的间二甲苯二胺和己二酸的聚酰胺缩聚物是半结晶聚酰胺,并且与其它传统的聚酰胺相比具有特殊的性能,例如高的抗张强度和抗挠强度和模量,较高的玻璃态转化温度,较低的吸水率,以及极佳的阻挡例如氧气的阻气性。
美国专利5164267(已放弃)描述了一种层压复合物,该层压复合物由基于纤维素材料的衬底层与多层膜层压构成,该多层膜包括至少一层基于聚酰胺的层,该聚酰胺由脂肪族二羧酸与二甲苯二胺缩聚制成,例如尼龙-MXD6,其中多层膜共挤涂布在衬底上,且聚烯烃层是与衬底接触的接触层。
然而,实际上不可能将仅由尼龙-MXD6构成的阻气层用于液体食物纸板或纸板箱包装层压制品中,因为,例如在形成和折叠包装材料时,该材料提供很容易破裂的易碎层,因此对气体和液体的阻挡效果很差。而且,在消极的将包装材料密封到包装容器内的过程中,该过程还导致包装具有较差的气封,此时,在阻气层内的尼龙-MXD6也似乎影响热封性能。
JP-A-06305086描述了二轴向张紧的聚酰胺膜和纸层的层压制品,其中聚酰胺膜包括至少两个聚酰胺层,至少其中一个层包含尼龙-MXD6。通过干燥层压法,利用粘合剂,或通过挤压层压法,双轴取向膜层压到纸层上。这样,通过不同的工艺,例如吹膜法,预制该双轴膜,然后层压到其它层上。
JP-A-06305086中产生的层压制品与本发明的权利要求l的层压制品差别很大。为了在纸层和聚酰胺层之间提供粘合,必须采用粘合剂,例如尿脘粘合剂、丙烯酸粘合剂和聚酯粘合剂,或者中间粘合层,在层压制品中它们依次需要多种和/或不同的材料,这样,从工作环境和自然资源管理的角度来看,导致产生较高的成本和较高的环境破坏。而且,在这种层压制品中,在纸层和聚酰胺层之间的粘合最可能是最差,因为预制膜的表面氧化和/或硬化,而且不能很容易地粘合到挤压粘合层上。特别是,制造这种层压制品的工艺更繁琐,而且成本效率很低,因为它需要预制双轴取向膜的附加步骤。
发明概要因此,本发明的一个目的是提供一种所述类型的新颖的、节省成本、环境良好和良好整体性的层压包装材料,它具有极佳的阻气性,特别是阻挡氧气,以及良好的阻液性,和良好的力学性能,例如在层之间的弹性和粘合强度。
本发明的另一个目的是提供一种用于制造包装容器的包装材料,该包装容器特别适合储藏果汁,它具有在冷藏条件下约6-10周的延长的保存期限。
根据本发明通过一种层压的包装材料可获得这些目的,该层压包装材料包括纸或纸板的芯层和聚酰胺的阻气层,该聚酰胺的阻气层包括间二甲苯二胺和己二酸(尼龙-MXD6)的缩聚物,该缩聚物通过共挤涂布来涂敷在芯层以及至少一层热封塑料层的一侧上,其中阻气层还包括一个第二结晶聚酰胺或半结晶聚酰胺。
通过将尼龙-MXD6与另一种结晶或半结晶聚酰胺混合,例如PA-6或PA-6/66,其性能可自行设计,因此可获得例如在破裂处改进的伸长率和改进的密封性。在尼龙-MXD6的破裂处的伸长率仅约为2.3%。对于标准的PA-6,它通常是400-600%。然而,过高含量的PA-6将导致较差的阻气性,因为这按指数规律随PA-6的含量而降低。在该文中,可使用的聚酰胺的例子是聚酰胺-6(PA-6)、PA-66、PA-6/66及其混合物。
最好,根据本发明,尼龙-MXD6和第二结晶聚酰胺的混合物是不混溶混合物,即两相混合物。对其的DSC测量表示两个不同的熔点或间隔,即它表示两个而不是一个熔化峰值,尼龙-MXD6作为基体,这种不混溶混合物具有进一步改进阻氧性能以及改进的抗张强度的优点。
为了获得在阻气性、力学性能、密封强度和抵抗鼓胀方面最佳的性能,根据本发明在阻气层中的混合物中包含的尼龙-MXD6的比例以重量百分比计大于50%并小于100%,较好的是60%到90%,更好的是70%到80%。
根据本发明的一个优选实施例,第二聚酰胺是“尼龙粘土混合物”(NCH),这是由结晶聚酰胺,例如PA-6、PA-66、PA-6/66或PA-12,以及均匀分布的硅酸盐层构成的分子合成物。通过将粘土矿物分散在单体中并使之聚合,这样,NCH在聚合工艺中形成,从而在尼龙聚合物中产生了极细和良好分散的硅酸盐片晶形态。这样,导致改进的阻氧性能和极佳的力学性能。在“应用聚合物科学杂志第49卷,1259-1264(1993)”,和“第55卷119-123(1995)”中描述了这种聚酰胺。PA-6的优点是成本低,而基于PA-6,PA-66或PA-6/66的NCH的优点在于与其各基础聚合物相比,它具有明显较好的阻氧气性能,而且NCH比纯PA-6的阻挡潮气性能好,约是其两倍。适合本发明的混合物的NCH的一个例子是基于PA-6,并且可从UBE工业公司商业上获得(1022CM1等级)。
通过这样使尼龙-MXD6与基于例如PA-6的NCH混合,可获得最优的阻气性能以及机械性能。尼龙-MXD6的比例(其成本相对较高)可降低,且其阻气性不会损失到与采用纯PA-6相同的程度。与此同时,还获得一种混合物,它具有在破裂处显著较高的伸长率,因此在成形和折叠时对破裂成形具有较大的阻力,以提供均匀的气密阻挡层。以重量百分比计,75%的尼龙-MXD6和25%的NCH-PA6的混合物在破裂处具有超过200%的伸长率。
而且,通过采用作为尼龙-MXD6混合物的第二成分的NCH,降低了“鼓胀”效应。“鼓胀”意味着包装容器壁从包装的角部之间的垂直平面向外膨胀的效果。利用NCH对鼓胀增加的阻力很可能是部分由于NCH材料本身的刚度性能的作用。NCH-PA6的抗张模量例如约为830-880,而对于PA-6它仅是约580-600N/mm2。另外,NCH的潮阻气挡性能好的程度接近PA-6的两倍。重要的是降低鼓胀效应,因为在一些国家的顾客对包装容器的鼓胀外观特别有偏见,他们相信鼓胀外观意味着食物产品已经发酵。
根据本发明的第二优选实施例,提供更加节省成本和环境良好的包装层压制品,其中进一步改进了阻气性能,与此同时,提供适合制造具有改进密封性的包装容器的包装层压制品。通过直接在纸或纸板的芯层上共挤涂布,而不需要任何中间粘合剂或粘合聚合物层,这样,涂敷聚酰胺阻气层,从而实现上述目的。以这种方式,中间粘合层多余,这样节省了材料,从环境资源回收和成本的观点来看,这样提供了更经济的层压制品。这样,术语“挤压涂布”意味着在衬底上同时挤压和涂布一层可挤压塑料,这与所谓的“挤压层压”不同,该挤压层压是通过在衬底层的网和预制膜层之间挤压中间粘合层,以便将预制膜层压到衬底上。已经显示出具有三层结构,即尼龙-MXD6混合阻气层,复合薄膜粘结层和通过共挤涂布在芯层的内侧上的聚烯烃层,的层压制品的阻气性与具有5层结构的层压制品相比提高约30-40%,该5层制品还具有与纸板层接触的聚烯烃层,和在聚烯烃层与阻气层之间的复合薄膜粘结层。
而且,在第一步骤中,当共挤纸板上的三层结构时,与当共挤纸板上的具有两个外聚烯烃层的5层结构相比,三层的最外聚烯烃层可在较低温度下挤压。通常是这种情况(最好在一个工艺中包含尽可能少的挤压机),即在通过三个挤压机和一个5层进给机进行5层共挤时,两个外层必须在相同温度下挤压。为了在LDPE层和纸板之间提供粘合剂,约320度的温度是理想的。然而,对于层压制品的外层,LDPE可在280度的更低温度下挤压。在该低温下挤压的LDPE承受很少的氧化并将非常适合在将包装层压制品转化成纸容器的过程中进行随后的热封。如果在低温下挤压聚乙烯,则消除了产生包装产品的“塑料味道”的危险。在5层结构中,其中间的一些地方的挤压温度必须选择折衷,以便平衡粘合到纸板上,以抵抗外LDPE层的热封性,因为两个LDPE层由相同的挤压机挤压。
包括尼龙-MXD6和PA-6或NCH的混合物的阻气层证实非常良好的粘合到纸或纸板的芯层上,该粘合以制造节省成本的层压制品所必须的高线速度进行。这根本不是自信,因为在该方面不同的聚酰胺具有不同的性能。PA-6通常良好的粘合到纸板上,与此同时,非晶态聚酰胺不能粘合。具有良好的粘合意味着塑料层粘合到纸板上,同时其强度大于纸板本身内的内聚性。这样,在剥离试验中破坏的外观发生在纸板层内,而不是在层之间。这可以看到,“剥离的”塑料层表面由纸纤维覆盖,类似的,PA-6和NCH的混合物层或NCH层没有粘合到纸板上,而尼龙-MXD6一定程度上粘合。然而,在尼龙-MXD6和纸之间的粘合很容易破坏,因为尼龙-MXD6层易碎,而且本身不可弯曲,当层压制品弯曲或扭曲时将破裂并与纸板分层。
与具有聚乙烯中间层的芯层上的阻气层的层压制品相比,还证实了阻气层直接设在芯层上导致接近30-40%的改进的阻挡氧气性。这可能是因为在芯层和直接设置的阻气层之间潮气相等。当阻气层直接与纸或纸板层接触时,即结果是渗进阻气层内的包装容器的内含物的潮气分布到芯层和阻气层上,结果较小比例的潮气留在聚酰胺层内,因此,在这种特别情况下,阻气层内保持较好的阻气性。
阻氧性能的令人吃惊的增加通常不发生所有聚酰胺上,特别是仅发生在尼龙-MXD6,很可能是因为尼龙-MXD6的阻气性在较高的湿度下降低,在液体食物产品包装情况下通常如此。
阻气层实际上可使用任何理想的厚度,但根据本发明的一个优选实施例,它特别适合用于果汁的包装容器中,该包装容器具有延长的保存期限,阻气层用在接近3-30克/米2,较好的是4-12克/米2,最好的是5-8克/米2的芯层上。其原因是在低于5克/米2的用量下,应用进程的不确定性和阻挡性可能较大。在应用数量大于8克/米2时,包装层压制品的成本节约很少。
在转向面朝离开芯层的阻气层的一侧,可涂布聚烯烃层,该聚烯烃层通过涂布在阻气层和聚烯烃层之间的粘合聚合物层粘合到阻气层上。聚烯烃层可包括不同类型的聚乙烯,例如超低密度聚乙烯(ULDPE),低密度聚乙烯(LDPE),线性低密度聚乙烯(LLDPE)和茂合金属聚乙烯(m-PE)或其混合物。特别是,m-PE和m-PE与一些上述公开类型的聚乙烯的混合物使包装材料在热密封时具有极紧的密封性,以形成完成的包装容器,这还有助于包装容器的气密性。这样,包装容器的气封性取决于包装材料本身的气封性和密封如何紧固,这有可能由包装材料制造包装容器。
布置在阻气层和聚烯烃层之间的粘合聚合物层例如由用羧酸原子团改性的聚乙烯构成,该聚乙烯例如是用顺丁烯二酸酐接枝的聚乙烯,例如一些种类的Admer和Bynel。或者,可使用粘合聚合物与PE的混合物,以提供粘合到聚酰胺阻气层。
两个外聚烯烃层的目的是,一方面保护包装材料不被潮气和液体从外部渗入,另一方面,通过传统的所谓热密封来使包装材料具有可密封的主要功能,因此,在提供热和压力下,塑料的相互面对层可通过表面熔化连接在一起。在包装材料转化成包装容器期间,热密封形成力学性能较强的液体密封接头。为了提供具有良好紧密性的密封,内聚烯烃层涂布成接近15-35克/米2,较好的是25-30克/米2,且外聚烯烃层的数量接近12-20克/米2,较好的是15-20克/米2。在LDPE在内层的情况下,该数量应至少接近25克/米2,最好接近30克/米2。内聚烯烃层13还可以用作两个或多个分离的聚烯烃层,该聚烯烃层由相同的或不同类型的聚烯烃构成,其数量加起来为上述数量。
外聚烯烃层可设有适当的装饰印刷和/或识别包装产品的信息性质,该外聚烯烃层涂布在芯层侧面上的包装材料上,并在完成的包装容器内打算转到面向外部。
根据本发明的第三优选实施例,在转化成包装容器的工艺中,提供具有改进的密封性的包装层压制品。已经发现重要的是,层压制品的两个外热塑层的一些最小厚度/表面重量,用以获得最优强度,气密密封和降低的鼓胀。对于具有三层共挤涂布的阻挡膜的层压制品来说,这是很明显的。在这种三层层压制品中,包含极少的阻液塑料,且鼓胀的危险增加。可以看到,为了增加密封强度和降低鼓胀,在最内层的密封聚合物的量,即在包装层压制品的内侧上,最好低密度聚乙烯(LDPE)应至少为25克/米2。当聚酰胺阻挡层和复合薄膜粘结层分别以数量为约6和约3克/米2来涂敷,而LDPE的最外层最好应具有约15-20克/米2的表面重量,换句话说,在纸板的内部上的阻液聚合物的总量和在纸板外部的聚合物的量之间应有一定关系。由于液体和气体的密封接头的密封强度和刚度改进,包装容器在其包装产品中的维生素C的剩余量得以改进。很少的潮气通过密封渗入层压制品本身,这导致对容器壁的鼓胀的改进的阻力。因此,通过调节外聚烯烃层的量,因此在最内层的LDPE量至少为25克/米2,最好是30克/米2,且外层的量小于20克/米2,最好是约16克/米2,阻挡层涂布成5-8克/米2,复合薄膜粘结层涂布成3-6克/米2,这些改进的性能得到固定。从5层层压制品也可看到这种效果。然而,其数量比三层层压制品的限制少。然而,最惊奇的是,与对应的5层层压制品相比,三层层压制品具有改进的密封强度和鼓胀特性,5层层压制品中,更大量的阻挡液体聚烯烃涂敷在朝向产品的芯层的内侧。
根据本发明的第四优选实施例,提供节省成本的包装层压制品,它具有进一步延长的保存期限,以及良好的芳香和味道保留性能,所谓的不会刮光表层的性能。
尼龙-MXD6材料本身还具有极佳的“阻挡芳香”性能,即朝向阻挡芳香和味道物质的阻挡性能,所谓的不会刮光表层的性能。
优选的层压制品的阻气性和在层压制品的包装产品内的维生素C的保留量进一步改善。通过包装层压制品获得这些目的,该包装层压制品具有沉积在纸板衬底芯层内侧上的第一阻挡层和第二阻挡层,该第二阻挡层包括尼龙-MXD6和第二结晶或半结晶聚酰胺的混合物,并进一步朝向内部和包装产品沉积,在最内部的阻挡层和包装产品之间具有较薄的复合薄膜粘结层和聚乙烯产品接触层。由于少量的聚烯烃聚合物用作层压制品的最内层,可防止非极性物质例如某些味道和芳香物质刮光以便从产品进入包装材料内。芳香和味道物质移动进入较薄的产品接触层内,但当它们到达尼龙-MXD6和第二结晶或半结晶聚酰胺的混合物的阻挡层时,可防止它们进一步移动,因此很少的所述物质能够吸收进入聚烯烃层。在该优选的包装层压制品中,由于最内部的聚乙烯层较薄,当将层压制品转化和密封成包装容器时,它不足以产生密封粘合。因此,热塑聚合物的另外密封层用于芯层的内侧,在最内阻挡层的另一侧上,即在第一和第二阻挡层之间。在密封时,相当薄的产品接触层和最内的阻挡层将“密封”,即在这些层中的聚合物将熔化,并且热量将到达而且熔化可热密封聚合物的中间层。以这种方式,尽管层压制品的外层内侧较薄,将可获得更多的热密封聚合物以产生热密封。
该优选的高性能ESL包装层压制品当然还具有与纸板直接接触的阻气层的优点,由于在阻气层内较低的潮气含量,提供30-40%的改进的阻气性。
根据本发明的另一方面,如权利要求14所述,提供本发明的包装层压制品的制造方法。
本发明的层压包装材料最好通过单步共挤步工艺制造,其中在芯层内部上的所有聚合物层通过共挤作用在芯层。在所述单步共挤工艺之前或之后,可热密封聚合物可涂敷到芯层外侧上,即芯层侧面转到面朝离开阻挡层。共挤的一个重要的优点是熔融聚合物的热量在多层挤压膜中良好的保存,直到挤压膜冲击衬底,在该衬底上挤压涂敷,这样,提供改进的粘合到衬底上(由于所谓的热惯性)。另一个优点是节省了另外的挤压处理步骤,这样提供更多时间和节省成本的工艺。
为了在多层共挤膜和纸板衬底之间获得足够的粘合,表面应通过预处理例如电晕处理和/或火焰处理或臭氧处理来激活,这种表面激活处理方法在本领域是公知的。最好,纸板衬底通过火焰处理和/或电晕处理来预处理,其中火焰处理是最佳的,而新挤压膜最好在它涂敷到纸板上之前用臭氧处理。
根据本发明由层压包装材料制成的结构稳定的包装容器在从属权利要求16中公开,根据本发明的包装容器可设有打开装置,这种开/关装置对于在液体食物包装领域中的普通技术人员是公知的。
由于本发明,提供一种环境更友善的,节约成本和制造经济的包装材料,它具有极佳的阻气性,特别是阻挡氧气性,即使在暴露到潮湿环境下也是如此。根据本发明的包装材料还具有良好的内聚性,以便使用用于制造适合液体食物特别是果汁的包装容器时抵抗分层,该包装材料可以所谓延长保存期限,即在冷藏条件下保存至多4-12周的时间。
附图的简要描述下面参见附图并根据实施例来详细描述本发明,其中
图1a、1b、1c是根据本发明的层压包装材料的横截面视图;图2a、2b、2c是在图1所示的对应层压包装材料制造的方法的示意图;和图3是传统的结构稳定的包装容器的透视侧立视图,该包装容器由本发明的层压的包装材料制成。
优选实施例的详细描述参见图1a,它是根据本发明的优选的层压包装材料10a的横截面视图。包装材料10a包括纸或纸板的刚性结构但可折叠的芯层11。在芯层11的一侧上,涂敷有聚酰胺混合物的阻气层12,该聚酰胺混合物包含尼龙-MXD6和PA-6或最好是基于PA-6的尼龙粘土混合物(NCH)。在聚酰胺混合物内的尼龙-MXD6的量以重量百分比计较好是混合物的60-90%,最好是70-80%,在阻气层内的聚酰胺混合物的量最好是5-10克/米2。
包括尼龙-MXD6和PA-6或NCH的混合物的阻气层12经证实很好的粘合到纸或纸板的芯层11上。与将聚乙烯的中间层与芯层11上的阻气层12层压相比,已经证实阻气层12直接设置在芯层11上导致阻氧性提高30-40%的阻挡氧气层。
在阻气层12的一侧,该阻气层12转到面朝离开芯层11,涂敷聚烯烃层13,该聚烯烃层13通过粘附到阻气层12和聚烯烃层13之间的粘合剂聚合物层14粘合到阻气层12上。聚烯烃层13最好是LDPE或m-PE或其混合物,并最好以至少25克/米2的量涂敷。粘合层14由聚乙烯接枝组成并以约3-6克/米2的量涂敷,该聚乙烯接枝由顺丁烯二酸酐改性。在芯层的相对侧上的外层15最好类似的是LDPE或m-PE,或这两种聚合物的混合物,并最好以至少15克/米2的量涂敷。
参见图1b,它表示根据本发明的另一种优选的层压包装材料10b的横截面图。包装材料10b包括纸或纸板的结构刚性但可折叠的芯层11。在芯层11的一侧,涂敷有包含尼龙-MXD6和PA-6或最好是基于PA-6的尼龙粘土混合物(NCH)的聚酰胺混合物的阻气层12。在聚酰胺混合物内的尼龙-MXD6的量以重量百分比计较好是混合物的60-90%,最好是70-80%,在阻气层内的聚酰胺混合物的量最好是5-10克/米2。
在阻气层12的一侧,该阻气层12转到面朝离开芯层11,涂敷聚烯烃层13,该聚烯烃层13通过粘附到阻气层12和聚烯烃层13之间的粘合剂聚合物层14粘合到阻气层12上。聚烯烃层13最好是LDPE或m-PE或其混合物,并最好以至少25克/米2的量涂敷。粘合层14由聚乙烯接枝组成并以约3-6克/米2的量涂敷,该聚乙烯接枝由顺丁烯二酸酐改性。在芯层的相对侧上的外层15最好类似的是LDPE或m-PE,或这两种聚合物的混合物,并最好以至少15克/米2的量涂敷。
阻气层12通过粘合聚合物层16和聚乙烯层17的中间粘合层粘合到芯层上,粘合聚合物层16靠近阻气层12,并与粘合聚合物层14具有相同的聚合物和几乎相同的厚度,且聚乙烯层17与层13的聚合物相同,并且厚度几乎相同。
参见图1C,它表示根据本发明的另一种优选的层压包装材料10c的横截面图。包装材料10c包括纸或纸板的刚性结构但可折叠的芯层11。芯层11的一侧上,涂敷有第一阻气层12和第二阻气层12’,这两种阻气层基本上由尼龙-MXD6和PA-6或最好是基于PA-6的尼龙粘土混合物(NCH)的聚酰胺混合物构成。在聚酰胺混合物中的尼龙-MXD-6的量以重量百分比计较好的是混合物的60-90%,最好是70-80%,在阻气层中的聚酰胺混合物的量最好是5-10克/米2。
在面朝离开芯层11的阻气层12的一侧,涂敷聚烯烃13’,该聚烯烃13’通过在阻气层12和聚烯烃13’之间涂敷的粘合剂聚合物层14来粘合到阻气层12上。聚烯烃13’最好是LDPE或m-PE,或其混合物,并涂敷最好至少15-20克/米2的量。粘合层14由聚乙烯接枝组成并以约3-6克/米2的量涂敷,该聚乙烯接枝由顺丁烯二酸酐改性。在芯层的相对侧上的外层15最好类似的是LDPE或m-PE,或这两种聚合物的混合物,并最好以至少15-20克/米2的量涂敷。
在聚乙烯层13’的一侧,该聚乙烯层13’转到面朝离开芯层11,第二阻挡气体和味道层12’通过粘合聚合物层16’和聚乙烯层17’的中间粘合层涂敷。或者,在一次挤压操作中所有层的共挤的情况下,聚乙烯层13’和17’实际上作为一个单层涂敷。
在面朝离开芯层11的阻气层12’的一侧,涂敷最内的聚烯烃层18,该聚烯烃层18通过粘附到阻气层12’和聚烯烃层18之间的粘合聚合物层14’粘合到阻气层12’。最内的聚乙烯层18应较薄,以防止太多的芳香和味道物质从包装好的产品溢出到包装材料内。较好的是该层应以约6-12克/米2的量,更好的是最大以10克/米2的量,最好以约7-9克/米2的量涂敷。
粘合剂层16’和14’包括与粘合剂聚合物层14相同的聚合物,并应具有3-5最好4克/米2的厚度,而聚乙烯层17’包括相同的聚合物,并具有与最内的聚乙烯层18几乎相同的厚度。
图1C的层压的包装材料的优点是,在层压制品内部的薄聚烯烃层14’和18以及阻挡气体和芳香层12’一起防止非极性物质从包装好的产品迁移入包装材料内,因为薄聚烯烃层不久由该物质浸透,且阻挡层12’有效地阻挡向包装层压制品的内部的所有其它迁移。
层压制品的密封性能仍然极佳,因为中间聚烯烃层13’和17’以及粘合层16’提供大部分可热密封聚合物,该可热密封聚合物补偿在最内的聚乙烯层18中损失的可热密封聚合物的量。在沿密封区加热和加压时,阻挡层12’变得“密封透”,这样在热熔密封操作中包含大部分层13’和17’。
通过采用尼龙-MXD6和PA-6或最好是NCH的聚酰胺混合物的两个阻气层,将进一步改进阻气性。而且,层压制品的刚度将变高,因为聚酰胺层的相对刚度和它们相互距离为低刚性材料层(导致所谓的I梁效果的危险),这会改善包装的外观,或者甚至有可能使用低刚性质量的芯层。因此,在这种层压制品中,鼓胀的效果将很少看到,因为包装层压制品具有较高的总刚度。
图2a示意性表示制造图1a的层压包装材料的方法。
纸板衬底芯层11的网向前,并穿过表面激活台21,这里表面通过电晕和/或火焰处理最好是火焰处理得以激活。通过在进给机22中产生三层膜,层12,13和14以所述顺序共挤22。膜24穿过模具和纸板衬底之间的气隙供送给模具23。指向纸板表面的表面层12最好通过暴露到臭氧处理25中的气隙内激活处理。共挤过和仍热的熔化的多层膜24与纸板网一起供给通过辊隙26,这样通过聚合物层的压力和热导致粘合。重要的是共挤聚合物的量足够高,以保持足够温热,直到它与纸板衬底接触为止。如果三层12,13和14是一起其挤到网上,这是一般的情况。然而,例如仅有层12和14的共挤不具备优点,因为两层共挤膜非常迅速的冷却,而且不会温热到能够良好的粘合到纸网26。
聚烯烃层15可通过挤压涂布从而涂布在芯层的一侧上,在图2a所示的共挤涂布方法之前或之后,该芯层转到朝向离开阻气层12。
图2b示意性表示图1b的层压包装材料的制造方法。
如图1a所示,除了在芯层11上的所述三层结构外,还有可能在不脱离本发明的范围前提下,提供包括四和五层与芯层11层压到一起的层压结构。四层结构具有在芯层和阻气层12之间的粘合接触层。在五层结构的情况下,如图1b所示,聚烯烃层17以及粘合层16涂布在芯层11和阻气层12之间,然后聚烯烃层17布置成靠近芯层11。然而,这些多层结构成本更高的制造, 因为消耗更多的材料量。与图2a所述的制造三层结构的工艺相比,该工艺仍非环境良好(很少的资源减少),且消耗更多的能量。
最好,以与图2a类似的方式,图1b的层压制品通过五层12、13、14、16和17共挤到纸板网11上来制造。纸板衬底芯层11的网向前,并穿过表面激活台21,在此,表面通过电晕和/或火焰处理激活。层17、16、12、14和13以所述顺序共挤22,这样提供经过模具23的多层膜24’,层17指向纸板表面。共挤过和仍热的熔化多层膜24’最好通过臭氧25进行表面激活处理,然后与纸板网一起供给通过辊隙26,这样通过聚合物层的压力和热粘合到一起。
另一种方式,在芯层11内部的五层可以两个步骤涂敷,即通过在第一步骤首先将层17、16、12和14共挤到纸板上,然后在第二步骤将层13挤压涂布在层14上,或者通过在第一步骤首先将层17挤压到芯层上,然后,在第二步骤将四层16、12、14和13共挤到新涂敷的层17上。然而,这些替代方法包含更繁琐和低成本效率的工艺。
在图2b所示的共挤涂布方法之前或之后,聚烯烃层15可通过挤压涂布在芯层的一侧上来涂敷,该芯层转到面朝离开阻气层12。
图2c示意性表示图1c的层压包装材料的制造方法。
根据一个实施例,对于可获得七层进给机的情况,以与图2a和2b类似的方式,图1c的层压制品通过将七层12、14、13’+17’、16’、12’、14’和18共挤到纸板网11上来制造。
根据一个优选实施例,在第一步骤中,层12、14和13’共挤涂布到纸板网上,在第二步骤中,层17’、16’、12’、14’和18共挤涂布到层13’上。这样,纸板衬底芯层11的网向前并穿过表面激活台21,在此表面由电晕和/或最好是火焰处理来激活。层12、14和13以所述顺序共挤在进给机22内,产生三层膜24”,该三层膜24”经过模具23供送到模具和纸板衬底之间的气隙。多层膜24”的层12指向纸板表面。就在与纸网接触之前,层12的表面最好由臭氧处理25进行预处理。共挤过和仍热的熔化的臭氧处理多层膜24”与纸板网一起经过辊隙26供送,这样,通过聚合物层的压力和热粘合到一起。
在第二步骤中,层17’、16’、12’、14’和18共挤涂布22’到在第一步骤制成的层压制品上,例如五层膜24”’。或者,只有四层16’、12’、14’和18的多层膜挤压到在第一步骤制成的层压制品上。共挤过和仍热的,熔化的多层膜24”’由臭氧可选择的表面激活处理,并与涂布的纸板网11’一起经过辊隙26’供送,这样,通过聚合物层的压力和热粘合到一起。
在图2c所示的共挤涂布方法之前或之后,聚烯烃层15可通过挤压涂布涂敷到芯层的侧面上,该芯层转到面朝离开阻气层12。
从根据本发明的层压好的包装材料10看,具有良好阻挡氧气性能的液密的、尺寸稳定的包装30可利用公知的包装和填充设备制造,该设备在连续工艺中将填充和密封的板形或网形包装材料形成完成的包装30。这种传统的包装容器的一个例子如图3所示。
根据本发明的包装容器可设有打开装置31,这种打开/关闭装置通常在液体食物包装中公知。
将层压包装材料转化成包装容器的工艺例如通过首先使网形层压包装材料10的纵边卷成一个管,该管内填充有想要的包含物,这样来实施该工艺,然后,通过在包含物水平下方的管的重复横向密封,使单个的包装30分开。通过最终的折叠成形和密封工艺,包装30通过在横向密封区内的切口相互分离,并获得理想的几何外形,通常平行管。或者,包装30的形成可通过将板折叠成形为纸箱坯料,然后填充和封闭该坯料以形成完成的包装来完成。
对本领域的普通技术人员来说,显然本发明不仅限于图示的实施例,在不超出本发明的由附属的权利要求书限定的范围的前提下,可做许多不同的修改和变化。例如,图1所示的材料结构通常不限于图示数量层,该数量可大可小,但可响应包装材料的理想用途自由变换。
实例实例1阻挡层性能的对比不同的聚酰胺阻氧层针对完全的包装材料结构进行测量,即共挤5层结构(克/米2)LDPE(13)/板/LDPE(10)/复合薄膜粘结层(5)/PA(阻挡层)(6)/复合薄膜粘结层(5)/LDPE(25)阻挡层涂敷重量分别是6和10克/米2PA6UBE工业中标准PA-6 1024B等级Selar PA3508非晶态聚酰胺当在阻气层中单独使用时,PA6的氧气渗透值是约与在0%RH时的Selar聚酰胺一样高,但在较高相对湿度下较高。作为单独的阻气层,Selar PA或PA6对ESL包装经济上不重要。
测试方法“Mocon oxtran”,1000平试样方法,试验气体100%氧,T=23℃,t=24h,RH:50%,1atm,n(样品数)=5表1
结论尼龙-MXD6/PA6的混合物具有比非晶态PA好的阻氧性。具有尼龙粘土混合物-PA6的尼龙-MXD6混合物具有比相应的具有标准PA6等级的尼龙-MXD6混合物好的阻氧性。尽管对于具有100%尼龙-MXD6阻气层的层压制品来说,已经获得阻气值,这种层压制品实际上不可使用,因为阻气层将破裂并分层,并允许氧气渗入其制成的包装容器中。具有重量百分比为80%尼龙-MXD6的尼龙-MXD6混合物具有比对应的重量百分比为60%的混合物高的阻氧性。尽管在这些实际的例子中,已经发现通过其它试验可知在由层压制品制成的包装中,在混合物中重量百分比为约70%-80%时可获得在阻气性和力学性能之间的最佳平衡。在大于重量百分比为90%的尼龙-MXD6时,阻挡层变得更脆和不可弯曲,这样更易于破裂和分层。
例子2尼龙-MXD6聚酰胺混合物的混合物质量在尼龙-MXD6/PA6-混合物混合时的不同的熔化温度的影响为了获得两相不混溶的混合物,即在DSC测量时具有两个熔点或熔化间隔的混合物,聚合物应在低熔化温度,较短的混合时间和混合时使用低剪切的条件下混合。实际上,不同的聚合物颗粒干燥混合,然后在一个挤压机内熔化混合,与此同时将聚合物供送到挤压模中。两相混合物提供比单相混合物好的阻氧性。
在具有相同的挤压设备和模具时的小规模试验中进行下列观察。在挤压单层膜(200±10%微米)时进行氧渗透试验。
方法Mocon oxtran,1000平试样法,试验气体100%氧,T=23℃,t=24h,RH:50%,1 atm,n(样品数)=5表2
结论与具有高熔化混合物温度的膜相比,在较低的混合物熔化温度下制成的膜具有大于100%的更好的阻氧性,这表示在较高温度下的混合提供更易混合型混合物。
例子3阻挡性的比较3层与5层结构比较测量大规模共挤涂布制成的材料的完整的包装材料结构5层结构(g/m2)LDPE(16)/板/LDPE(15)/复合薄膜粘结层(5)/PA-混合物(7)/复合薄膜粘结层(5)/LDPE(20)3层结构(g/m2)LDPE(16)/板/PA-混合物(7)/复合薄膜粘结层(5)/LDPE(20)聚酰胺混合物7g/m2,75%MXD6+25%PA6-NCH
方法Mocon oxtran,1000平试样法,试验气体21%氧,T=23度,t=24h,RH:80%,1 atm,n(样品数)=2表3
结论3层结构比5层结构具有40%更好的阻氧性。
例子4在外聚乙烯层的克数之间的重量比的效果在10周冷藏后在两个单独的试验中测量到鼓胀,每个试验包括充满橙汁的10个包装物,在包装容器壁之间的宽度的mm数超过76mm。在表中给出的值是超过或落在具有LDPE(16)/板/LDPE(15)/复合薄膜粘结层(5)/PA-混合物(7)/复合薄膜粘结层(5)/LDPE(20)结构(g/m2)的参考包装的值之下。
具有75∶25尼龙-MXD6混合物与PA6 NCH的阻气层的类似结构具有几乎与EVOH参考样品(在其它试验中测量的)相同的鼓胀性。
在根据ASTM D4729-D4169D 随机变化试验之后测量泄漏频率,层叠的随机变化实施15分钟n(包装数)=160层压试验(g/m2)LDPE(16)/75:25MXD6:PA6NCH(6)/复合薄膜粘结层(3)//LDPE(X)表4A泄漏
结论当在纸板内侧上的聚合物量(阻挡层+粘结层+LDPE)高时,发生极少的泄漏。
表4B鼓胀
结论当外侧上的聚合物量低且内侧上的量高时,鼓胀减少。
为了在与参考的五层层压制品具有相同或较低的水平下保持三层层压制品的鼓胀水平,在最内侧的LDPE量必须至少为25g/m2,最好至少为30g/m2。LDPE层的外侧应小于20g/m2,最好约为16g/m2。在16g/m2之下,外侧装饰层的适印性可削弱。
鼓胀结果表明通过在恒定的外侧层涂敷厚的内侧层,产生很少的鼓胀。然而,不希望的是,当内侧量保持较高,而外侧量保持较低时,与五层参考样品相比三层结构表现出很低的鼓胀,这是不期望的和令人惊奇的,因为在五层纸板层压制品内侧上的阻挡液体聚烯烃的量较高,即共45g/m2,(在五层层压制品内的总内侧聚合物为50g/m2)。
权利要求
1.一种层压包装材料(10),它包括纸或纸板的芯层(11)和聚酰胺的阻气层(12),该聚酰胺阻气层包括间二甲苯二胺和己二酸(尼龙-MXD6)的缩聚物,该缩聚物通过共挤涂布来涂敷在芯层(11)以及至少一层热密封塑料层(13)的一侧上,其特征在于,阻气层(12)是聚酰胺混合物,该聚酰胺混合物包括尼龙-MXD6和第二结晶或半结晶聚酰胺。
2.如权利要求1所述的层压的包装材料(10),其特征在于,聚酰胺混合物是两相不混溶混合物,通过DSC测量表明它具有两个熔化间隔。
3.如权利要求1所述的层压的包装材料(10),其特征在于,在聚酰胺混合物中包含的尼龙-MXD6的比例以重量百分比计为60-90%,最好为70-80%。
4.如权利要求1-3中任一项所述的层压的包装材料(10),其特征在于,所述第二结晶或半结晶聚酰胺是聚酰胺6(PA-6)。
5.如权利要求1-4中任一项所述的层压的包装材料(10),其特征在于,所述第二结晶或半结晶聚酰胺是尼龙粘土混合物(NCH)。
6.如前述权利要求中任一项所述的层压的包装材料(10),其特征在于,用来阻气的聚酰胺的阻气层(12)通过共挤直接涂敷到纸或纸板的芯层(11)上,而不需要任何中间层压件或粘合层。
7.如前述权利要求中任一项所述的层压的包装材料(10),其特征在于,阻气层(12)涂敷量接近4-12g/m2,最好接近5-8g/m2。
8.如前述权利要求中任一项所述的层压的包装材料(10),其特征在于,面朝离开芯层(11)的阻气层(12)的另一侧通过粘合聚合物的中间层(14)粘合到聚乙烯层(13)上。
9.如权利要求8所述的层压的包装材料(10),其特征在于,所述粘合聚合物层(14)由用顺丁烯二酸酐接枝过的聚乙烯组成。
10.如权利要求1-9中任一项所述的层压的包装材料(10),其特征在于,面朝离开阻气层(12)的芯层(11)的另一侧也涂敷有聚乙烯的外层(15)。
11.如权利要求1-10中任一项所述的层压的包装材料(10),其特征在于,所述聚烯烃层(13、15)基本上由LDPE或LDPE与m-PE的混合物构成,聚乙烯层(15)涂敷的量为15-20g/m2,且在最内层(13)的聚合物的量为至少25g/m2,最好30g/m2。
12.如权利要求1-10中任一项所述的层压的包装材料(10),其特征在于,它包括第一阻气层(12)和涂敷在芯层(11)的一侧上的第二阻气层(12’),两个阻挡层基本上由尼龙-MXD6和第二结晶或半结晶聚酰胺的聚酰胺混合物构成。
13.如权利要求12所述的层压的包装材料(10c),其特征在于,它具有聚乙烯的最内产品接触层(18),该最内产品接触层以约7-9g/m2的量涂敷。
14.如前述任一项权利要求所述的层压包装材料的制造方法,其步骤包括共挤压(22)包含阻气层(12)的多层膜(24),预处理(21)芯层衬底(11)的表面,以便激活它,利用臭氧预处理(25)多层膜的接触表面,随后通过施加压力(26)使预处理表面相互粘合。
15.如权利要求14所述的方法,其特征在于芯层衬底(11)是通过电晕处理或火焰处理激活(21)的表面,多层膜(24;24”)的芯层接触层侧(12)利用臭氧(25)处理。
16.一种用于储藏对液体、氧气敏感的食物的结构稳定并具有延长的保存期限的包装容器(30),其特征在于,通过用权利要求1-13中任一项所述的层压包装材料(10)的板形或网形坯料经折叠成形和密封来制造该包装容器。
全文摘要
一种层压包装材料(10),它包括纸或纸板的芯层(11)和聚酰胺混合物的阻气层(12),该聚酰胺混合物的阻气层包括间二甲苯二胺和己二酸(尼龙-MXD6)的缩聚物和第二结晶或半结晶聚酰胺,该缩聚物通过共挤涂布来涂敷在芯层(11)的一侧上,以及一种制造层压包装材料的方法和用层压包装材料制成的包装容器(30)。
文档编号B29K77/00GK1304360SQ9980692
公开日2001年7月18日 申请日期1999年3月30日 优先权日1998年4月1日
发明者N·托夫特, I·波斯托尔卡 申请人:利乐拉瓦尔集团及财务有限公司