在具有反式螺杆螺纹的筒式热交换器中进行热表面后交联的方法【专利摘要】本发明涉及一种热表面后交联吸水性聚合物颗粒的方法,其中用水溶液涂覆聚合物颗粒,使涂覆的聚合物颗粒解聚,和通过具有反式螺杆螺旋的筒式热交换器热表面后交联解聚的聚合物颗粒。【专利说明】在具有反式螺杆螺纹的筒式热交换器中进行热表面后交联的方法[0001]本发明涉及一种用于热表面后交联吸水性聚合物颗粒的方法,其中用水溶液涂覆聚合物颗粒,使涂覆的聚合物颗粒解聚,和通过具有反式螺杆螺旋的筒式热交换器热表面后交联解聚的聚合物颗粒。[0002]吸水性聚合物颗粒用于制备尿布、棉塞、卫生巾和其他卫生用品,还可用作商品园艺中的保水剂。吸水性聚合物颗粒也被称为超吸收剂。[0003]吸水性聚合物颗粒的制备记载于专著"ModernSuperabsorbentPolymerTechnology",F.L.Buchholz和A.T.Graham,Wiley-VCH,1998,第71-103页。[0004]吸收性聚合物颗粒的性质可以例如通过所用交联剂的量来调节。随着交联剂量的增加,离心保留容量(CRC)降低并且在21.0g/cm2压力下的吸收(AUL0.3psi)经过一个最大值。[0005]为改善应用性能,例如尿布中溶胀凝胶床的渗透性(SFC)和49.2g/cm2压力下的吸收(AUL0.7psi),吸水性聚合物颗粒通常进行表面后交联。这提高了颗粒表面的交联度,使49.2g/cm2压力下的吸收(AUL0.7psi)和离心保留容量(CRC)至少部分不相关。这种表面后交联可在水性凝胶相中进行。然而,优选地,用表面后交联剂表面涂布经干燥、研磨并筛分过的聚合物颗粒(基础聚合物),使进行热表面后交联。适用于此目的的交联剂是可与吸水性聚合物颗粒的至少两个羧酸酯基团形成共价键的化合物。[0006]EP1757645A1和EP1757646A1公开了在转管(rotarytube)中进行吸水性聚合物颗粒的表面后交联。[0007]DE102007024080A1教导了在旋转反应器中例如用水进行吸水性聚合物颗粒的后处理。[0008]本发明的一个目的是提供一种制备吸水性聚合物颗粒的改进方法,更特别是改进的表面后处理方法。[0009]该目的通过用于热表面后交联吸水性聚合物颗粒的方法而实现,所述吸水性聚合物通过聚合一种单体水溶液或悬浮液而制备,所述单体水溶液或悬浮液包括:[0010]a)至少一种带有酸基团且可被至少部分中和的烯键式不饱和单体,[0011]b)至少一种交联剂,[0012]c)至少一种引发剂,[0013]d)任选地一种或多种可与a)中所述单体共聚的烯键式不饱和单体,和[0014]e)任选地一种或多种水溶性聚合物,[0015]该方法包括用水溶液涂覆聚合物颗粒,使涂覆的聚合物颗粒解聚和通过具有反式螺杆螺旋的筒式热交换器热表面后交联解聚的聚合物颗粒。[0016]有利地,涂覆和解聚在卧式混合器中进行,或涂覆在立式混合器中进行,解聚在卧式混合器中进行。[0017]在本发明的一个优选实施方案中,涂覆的聚合物颗粒在解聚期间被干燥和加热。[0018]筒式热交换器的填充水平优选为30至100%,更优选40至95%,最优选65至90%,每种情况下基于螺杆螺旋的高度计。[0019]吸水性聚合物颗粒在筒式热交换器中的温度优选为120至220°C,更优选150至210°C,最优选170至200°C,和/或吸水性聚合物颗粒在筒式热交换器中的停留时间优选为10至120分钟,更优选20至90分钟,最优选30至60分钟。[0020]筒式热交换器通常是用电加热或蒸汽加热,优选间接加热。"间接加热"是指通过转筒壁进行加热。[0021]本发明还提供适用于实施本发明方法的设备。更特别地,所述设备为用于热表面后交联吸水性聚合物颗粒的设备,其包括可加热的卧式混合器和具有反式螺杆螺旋的筒式热交换器,以及一种用于热表面后交联吸水性聚合物颗粒的设备,其包括立式混合器、可加热的卧式混合器和具有反式螺杆螺旋的筒式热交换器。[0022]可加热的卧式混合器和筒式热交换器,或立式混合器、可加热的卧式混合器和筒式热交换器,优选直接承接连接。[0023]在本发明的一个优选实施方案中,可冷却的卧式混合器直接连接到筒式热交换器的下游。[0024]"直接承接连接"和"直接连接到下游"是指通过非常短的路线从一个设备排放至下一个设备,没有中间的存储。[0025]本发明是基于以下发现:热表面后交联的产出受停留时间的强烈影响。尤其是对于通过单体溶液的液滴化而制备的吸水性聚合物颗粒,溶胀凝胶床的渗透性(SFC)通过了显著的最大值。[0026]在具有反式螺杆螺旋的筒式热交换器中的热表面后交联能够在窄的停留时间分布下进行持续热表面后交联;在正确装载的各个螺旋线之间几乎没有发生逆向混合。因此可以使具有过低和过高比例停留时间因而品质上不足的吸水性聚合物颗粒的比例最小化。[0027]吸水性聚合物颗粒的制备和发明详细描述如下:[0028]吸水性聚合物颗粒通过聚合一种单体溶液或悬浮液而制得,并且通常不溶于水。[0029]单体a)优选为水溶性的,即在23°C下在水中的溶解度通常是至少lg/100g水、优选至少5g/100g水、更优选至少25g/100g水且最优选至少35g/100g水。[0030]合适的单体a)是例如烯键式不饱和羧酸,例如丙烯酸、甲基丙烯酸和衣康酸。特别优选的单体是丙烯酸和甲基丙烯酸。极特别优选的是丙烯酸。[0031]其他合适的单体a)是例如烯键式不饱和磺酸,例如苯乙烯磺酸和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)。[0032]还可以使用多种单体a),例如丙烯酸和2-丙烯酰胺基-2-甲基丙磺酸的混合物。[0033]杂质可对聚合具有极大影响。因此,所用的原料应具有最高纯度。因此,特别纯化单体a)通常是有利的。合适的纯化方法记载于例如W02002/055469A1、W02003/078378A1和W02004/035514A1。合适的单体a)是,例如根据W02004/035514A1纯化的丙烯酸,其具有99.8460重量%的丙烯酸、0.0950重量%的乙酸、0.0332重量%的水、0.0203重量%的丙酸、〇.0001重量%的糠醛、〇.0001重量%的马来酸酐、〇.0003重量%的二丙烯酸和0.0050重量%的氢醌单甲醚。[0034]丙烯酸和/或其盐在单体a)的总量中的比例优选为至少50摩尔%,更优选至少90摩尔%,最优选至少95摩尔%。[0035]单体a)通常包括阻聚剂(优选氢醌单醚)作为贮存稳定剂。[0036]单体溶液优选包括最高达250重量ppm、优选至多130重量ppm、更优选至多70重量ppm、且优选至少10重量ppm、更优选至少30重量ppm且尤其是约50重量ppm的氢醌单醚,各自基于未中和的单体i)计。例如,可以使用具有合适含量的氢醌单醚的带有酸基的烯键式不饱和单体制备单体溶液。[0037]优选的氢醌单醚是氢醌单甲醚(MEHQ)和/或α-生育酚(维生素E)。[0038]合适的交联剂b)为具有至少两个适于交联的基团的化合物。这样的基团是例如可通过自由基聚合至聚合物链中的烯键式不饱和基团,和可与单体a)的酸基形成共价键的官能团。此外,可与单体a)的至少两个酸基形成配位键的多价金属盐也适用作交联剂b)。[0039]交联剂b)优选为具有至少两个可通过自由基聚合到聚合物网络中的可聚合基团的化合物。合适的交联剂ii)是例如记载于EP0530438A1的乙二醇二甲基丙烯酸酯、二乙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、甲基丙烯酸烯丙酯、三羟甲基丙烷三丙烯酸酯、三烯丙基胺、四烯丙基氯化铵、四烯丙氧基乙烷;记载于EP0547847A1、EP0559476A1、EP0632068AUWO93/21237AUWO2003/104299AUWO2003/104300AUWO2003/104301A1和DE10331450A1的二丙烯酸酯和三丙烯酸酯;记载于DE10331456A1和DE10355401A1的混合的丙烯酸酯,其除了丙烯酸酯基团外还包括其他烯键式不饱和基团;或记载于例如DE19543368A1、DE19646484A1、TO90/15830A1和TO2002/32962A2的交联剂混合物。[0040]优选的交联剂b)是季戊四醇三烯丙基醚、四烯丙氧基乙烷、亚甲基双甲基丙烯酰胺、15重乙氧基化三羟甲基丙烷三丙烯酸酯、聚乙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯和三烯丙基胺。[0041]极特别优选的交联剂b)是聚乙氧基化和/或聚丙氧基化甘油用丙烯酸或甲基丙烯酸酯化得到的二-或三丙烯酸酯,如在W02003/104301A1中所述。3至10重乙氧基化甘油的二-和/或三丙烯酸酯是特别有利的。极特别优选的是1至5重乙氧基化和/或丙氧基化甘油的二-或三丙烯酸酯。最优选的是3至5重乙氧基化和/或丙氧基化甘油的三丙烯酸酯,特别是3重乙氧基化甘油的三丙烯酸酯。[0042]交联剂b)的用量优选为0.05重量%至1.5重量%,更优选为0.1重量%至1重量%,最优选为〇.2重量%至0.6重量%,各自基于单体a)计。[0043]所用的引发剂c)可以是所有在聚合条件下产生自由基的化合物,例如,热引发齐IJ、氧化还原引发剂、光引发剂。合适的氧化还原引发剂是过二硫酸钠/抗坏血酸、过氧化氢/抗坏血酸、过二硫酸钠/亚硫酸氢钠和过氧化氢/亚硫酸氢钠。优选使用热引发剂和氧化还原引发剂的混合物,例如过二硫酸钠/过氧化氢/抗坏血酸。然而,使用的还原组分优选2-羟基-2-亚磺酰基乙酸的钠盐、2-羟基-2-磺酰基乙酸的二钠盐和亚硫酸氢钠的混合物。这类混合物可作为Brtiggolite?FF6和Brtiggolite?FF7(BriiggemannChemicals;Heilbronn;Germany)得到。还可以单独使用2-轻基-2-磺酰基乙酸的二钠盐作为还原组分。[0044]可与带有酸基团的烯键式不饱和单体a)共聚的烯键式不饱和单体d)是,例如,丙烯酰胺、甲基丙烯酰胺、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、甲基丙烯酸二甲氨基乙酯、丙烯酸二甲基氨基乙酯、丙烯酸二甲基氨基丙酯、丙烯酸二乙基氨基丙酯、甲基丙烯酸二甲基氨基乙酯、甲基丙烯酸二乙基氨基乙酯。[0045]所用的水溶性聚合物e)可以是聚乙烯醇、聚乙烯吡咯烷酮、淀粉、淀粉衍生物、改性纤维素,例如甲基纤维素或羟乙基纤维素、明胶、聚乙二醇或聚丙烯酸,优选淀粉、淀粉衍生物和改性纤维素。[0046]通常使用水性单体溶液。单体溶液中的水含量优选为40重量%至75重量%,更优选为45重量%至70重量%,最优选为50重量%至65重量%。也可以使用单体悬浮液,即含有过量的单体a)例如丙烯酸钠的单体溶液。若水含量增加,在随后的干燥过程中所需的能量增加,若水含量下降,就不足以去除聚合热量。[0047]为达到最佳性能,优选的阻聚剂需要溶解氧。因此,该单体溶液可在聚合前通过惰性化--即通入惰性气体,优选氮气或二氧化碳--去除溶解氧。单体溶液中的氧含量在聚合前优选降低至小于1重量ppm,更优选降低至小于0·5重量ppm,最优选降低至小于0·1重量ppm。[0048]合适的反应器是,例如,捏合反应器或带式反应器。如W02001/38402A1所述,在捏合机中,在水性单体溶液或悬浮液的聚合中形成的聚合物凝胶通过例如反式旋转混合器轴被连续粉碎。在带上的聚合记载于,例如DE3825366A1和US6,241,928中。带式反应器中的聚合形成了一种聚合物凝胶,其需要在另一个方法步骤,例如在挤出机或捏合机中被粉碎。[0049]为了改善干燥性能,得到的粉碎的聚合物凝胶可以再次通过捏合机挤出。[0050]然而,也可以使水性单体溶液液滴化并在一种加热的载气流中聚合所得到的液滴。此处可将聚合和干燥方法步骤结合起来,例如在W02008/040715A2和W02008/052971A1和W02011/026876A1中所述。[0051]所得聚合物凝胶的酸基团通常被部分中和。中和优选在单体阶段进行。这通常通过混入水溶液,或优选也为固体形式的中和剂中来完成。中和度优选为25摩尔%至95摩尔%,更优选为30摩尔%至80摩尔%,最优选为40摩尔%至75摩尔%,为此可使用常规的中和剂,优选碱金属氢氧化物、碱金属氧化物、碱金属碳酸盐或碱金属碳酸氢盐及其混合物。也可以使用铵盐代替碱金属盐。特别优选的碱金属是钠和钾,但极特别优选的是氢氧化钠、碳酸钠或碳酸氢钠及其混合物。[0052]然而,也可以在聚合后,在聚合中形成聚合物凝胶的阶段进行中和。也可以在聚合之前通过直接向单体溶液中添加部分中和剂中和最高达40摩尔%、优选10摩尔%至30摩尔%且更优选为15摩尔%至25摩尔%的酸基团,并仅在聚合后,在聚合物凝胶阶段设定所需的最终中和度。当聚合物凝胶在聚合后被至少部分中和时,聚合物凝胶优选机械粉碎,例如通过挤出机,在此情况下,中和剂可以被喷入、淋入或倒入且随后仔细混合。为此,得到的凝胶物质可以被反复挤出以均匀化。[0053]随后聚合物凝胶优选使用带式干燥器干燥,直至水含量为优选0.5重量%至15重量%,更优选1重量%至10重量%,最优选2重量%至8重量%,水含量由EDANA推荐的试验方法No.WSP230.2-05"MoistureContent"测定。在水含量过高的情况下,干燥的聚合物凝胶具有很低的玻璃化转变温度Tg,且进一步处理会很困难。在水含量过低的情况下,干燥的聚合物凝胶太脆,且在随后的粉碎步骤中,得到不想要的大量粒径过小的聚合物颗粒("细粉")。干燥前的凝胶的固体含量优选为25重量%至90重量%,更优选为35重量%至70重量%,最优选为40重量%至60重量%。然而,任选地,也可任选地使用流化床干燥器或桨式干燥器用于干燥目的。[0054]此后,干燥的聚合物凝胶被研磨和分级,且用于研磨的装置通常可以是单级或多级轧制研磨机(优选二级或三级轧制研磨机)、销棒研磨机、锤式研磨机或振动研磨机。[0055]作为产品级分移除的聚合物颗粒的平均粒径优选为至少200μπι,更优选为250μm至600μm,极特别是300μm至500μm。产品级分的平均粒径可以由EDANA推荐的测试方法No.WSP220.2_05〃ParticleSizeDistribution〃测定,其中筛分级分的质量比例以累积的形式作图且平均粒径通过图形确定。此平均粒径是得到累积50重量%的筛目值。[0056]具有大于150μπι粒径的颗粒比例优选为至少90重量%,更优选为至少95重量%,最优选为至少98重量%。[0057]具有过小粒径的聚合物颗粒降低渗透性(SFC)。因此,过小的聚合物颗粒("细粉")的比例应该很小。[0058]因此,过小的聚合物颗粒通常被除去并再循环到该方法中。优选在聚合之前、期间或之后即干燥聚合物凝胶之前立即进行。在再循环之前或期间,过小的聚合物颗粒可用水和/或水性表面活性剂润湿。[0059]也可以在后续的方法步骤中除去过小的聚合物颗粒,例如在表面后交联后或另一个涂覆步骤之后。在这种情况下,再循环的过小的聚合物颗粒以另一种方式被表面后交联或涂覆,例如用气相二氧化硅。[0060]当捏合反应器被用于聚合时,过小的聚合物颗粒优选在聚合的后三分之一阶段中加入。[0061]当过小的聚合物颗粒在非常早的阶段中被加入,例如实际加入单体溶液中,这降低了所得的吸水性聚合物颗粒的离心保留容量(CRC)。然而,这可以通过例如调整所使用的交联剂b)的用量而补偿。[0062]当过小的聚合物颗粒在非常晚的阶段中被加入--例如直到在连接在聚合反应器下游的装置,例如一个挤出机中--时,过小的聚合物颗粒难以纳入到所得的聚合物凝胶中。然而,不充分地纳入的过小的聚合物颗粒在研磨过程中再次从干燥的聚合物凝胶中分离,并且因此在分级过程中再次被除去,增加了待再循环的过小的聚合物颗粒的量。[0063]具有最大粒径为850μm的颗粒比例优选为至少90重量%,更优选为至少95重量%,最优选为至少98重量%。[0064]具有粒径最大600μπι的颗粒比例优选为至少90重量%,更优选为至少95重量%,最优选为至少98重量%。[0065]具有过大粒径的聚合物颗粒降低了溶胀率。因此,过大的聚合物颗粒的比例同样应该很小。[0066]因此,过大的聚合物颗粒通常被除去且再循环到干燥聚合物凝胶的研磨中。[0067]为了进一步改善性能,聚合物颗粒被表面后交联。合适的化合物是,例如,在ΕΡ0083022Α2、ΕΡ0543303Α1和ΕΡ0937736Α2中记载的多官能胺、多官能酰胺胺、多官能环氧化物,在DE3314019A1、DE3523617Α1和ΕΡ0450922Α2中记载的二-或多官能醇,或在DE10204938A1和US6,239,230中记载的β-羟烷基酰胺。[0068]其他记载的作为合适表面后交联剂的是DE4020780C1中的环状碳酸酯、DE19807502Α1中的2-噁唑烷酮及其衍生物如2-羟乙基-2-噁唑烷酮、DE19807992C1中的双-和多-2-噁唑烷酮、DE19854573Α1中的2-氧代四氢-1,3-噁嗪及其衍生物、DE19854574Α1中的Ν-酰基-2-噁唑烷酮类、DE10204937Α1中的环状脲、DE10334584Α1中的双环酰胺缩醛、ΕΡ1199327Α2中的氧杂环丁烷和环状脲和W02003/031482Α1中的吗啉-2,3-二酮及其衍生物。[0069]优选的表面后交联剂是碳酸亚乙酯、乙二醇二缩水甘油醚、聚酰胺与表氯醇的反应产物以及丙二醇和1,4-丁二醇的混合物。[0070]极特别优选的表面后交联剂是2-羟乙基-2-噁唑烷酮、2-噁唑烷酮和1,3-丙二醇。[0071]此外,也可以使用在DE3713601Α1中所述的包含额外的可聚合烯键式不饱和基团的表面后交联剂。[0072]表面后交联剂的用量优选为0.001重量%至2重量%,更优选为0.02重量%至1重量%,最优选为〇.05重量%至0.2重量%,各自基于聚合物颗粒计。[0073]在本发明的一个优选实施方案中,除了表面后交联剂以外,在表面后交联之前、期间或之后可将多价阳离子施用到颗粒表面。[0074]在本发明的方法中可用的多价阳离子是,例如,二价阳离子例如锌、镁、钙、铁和锶的阳离子;三价阳离子例如铝、铁、铬、稀土和锰的阳离子;四价阳离子例如钛和锆的阳离子。可能的抗衡离子是氢氧根、氯离子、溴离子、硫酸根、硫酸氢根、碳酸根、碳酸氢根、硝酸根、磷酸根、磷酸一氢根、磷酸二氢根和羧酸根,例如乙酸根、柠檬酸根和乳酸根。还可以使用不同抗衡离子的盐,例如碱性铝盐,如单乙酸铝或单乳酸铝。优选硫酸铝、单乙酸铝和乳酸铝。除了金属盐以外,也可以使用多胺作为多价阳离子。[0075]所用的多价阳离子的用量为,例如,0.001重量%至1.5重量%,优选为0.005重量%至1重量%且更优选为0.02重量%至0.8重量%,各自基于聚合物颗粒计。[0076]表面后交联通常是以这样一种方式进行,即用表面后交联剂的水溶液涂覆干燥的聚合物颗粒,例如通过将该溶液喷洒到干燥的聚合物颗粒上。然后,被涂覆表面后交联剂的聚合物颗粒解聚和热表面后交联。[0077]表面后交联剂的溶液的涂布优选在带有移动的混合工具的混合器中进行,例如螺杆混合器、盘式混合器和桨式混合器。合适的混合器是,例如,水平Pflugschar?犁铧混合器(Gebr.L0digeMaschinenbauGmbH;Paderborn;Ge;rmany),Vriec〇-Nauta连续混合器(HosokawaMicronBV;Doetinchem;theNetherlands),ProcessallMixmill混合器(ProcessallIncorporated;Cincinnati;USA)和SchugiFlexomix?(HosokawaMicronBV;Doetinchem;theNetherlands)。然而,也可以在流化床中喷洒表面后交联剂溶液。[0078]解聚也可以优选在带有移动的混合工具的混合器中进行,例如螺杆混合器、盘式混合器和桨式混合器。非常合适的混合器是例如水平Pflugschar?犁铧混合器(Gebr.LiidigeMaschinenbauGmbH;Paderborn;Ge;rmany),Vriec〇-Nauta连续混合器(HosokawaMicronBV;Doetinchem;theNetherlands),和ProcessallMixmill混合器(ProcessallIncorporated;Cincinnati;USA)〇[0079]当涂覆水溶液时,吸水性聚合物颗粒会趋向形成块状物(聚集)。在垂直混合器中,在涂覆时,吸水性聚合物颗粒有较低的形成块状物趋势。因此,涂覆适宜在垂直混合器中进行。另外,形成的附聚物又可以通过适当的机械压力破碎。由于此,卧式混合器是更合适的,由于其有较高的停留时间。因此,也可以在卧式混合器中实施涂覆和解聚。卧式混合器和垂直混合器之间的区别是搅拌轴的位置,即卧式混合器具有水平安装的搅拌轴,并且垂直混合器具有垂直安装的搅拌轴。[0080]表面后交联剂以水溶液的形式使用。表面后交联剂渗透到聚合物颗粒的深度可以通过非水溶液的含量和溶剂的总量来调节。[0081]当只使用水作为溶剂时,有利地添加表面活性剂。这改善了润湿性且降低了形成块状物的趋势。然而,优选使用溶剂的混合物,例如异丙醇/水、1,3-丙二醇/水和丙二醇/水,其中质量混合比优选20:80至40:60。[0082]有利地,吸水性聚合物颗粒还在热表面后交联之前被干燥和/或加热。干燥和/或加热优选实际上在解聚期间在接触式干燥器如桨式干燥器和圆盘式干燥器中进行。合适的干燥器是例如HosokawaBepex?卧式奖式干燥器(HosokawaMicronGmbH;Leingarten;Germany)、HosokawaBepex?圆盘式干燥器(HosokawaMicronGmbH;Leingarten;Germany)、H〇l〇-Flite?干燥器(MetsoMineralsIndustriesInc.;Danville;USA)和Nara奖式干燥器(NARAMachineryEurope;Frechen;Germany)〇[0083]用水溶液的涂覆增加吸水性聚合物颗粒的水含量。相对高的水含量将阻碍在相对高温度下的热表面后交联。因此,干燥吸水性聚合物颗粒和在热表面后交联之前加热到反应温度是有利的。[0084]在热表面后交联之前涂覆和解聚的聚合物颗粒的水含量优选小于5重量%,更优选小于2重量%,最优选小于1重量%。[0085]在解聚后,为了热表面后交联,任选地将干燥和/或加热的聚合物颗粒转移至具有反式螺杆螺旋的筒式热交换器中。[0086]具有反式螺杆螺旋的筒式热交换器是可加热、横卧和可转动的圆筒,其中用于驱动产物传输的反式螺杆螺旋和圆筒的内壁是一体的。例如,圆筒可以直接通过圆筒壁加热。通常,使用电加热或水蒸气加热。使用沿着圆筒的纵轴的多个独立的加热区,可在圆筒中设定多个壁温。[0087]这里通常不使用通过安装燃烧炉或引入热的烟道气在筒式热交换器的内部直接加热产品。[0088]其中需要在圆筒中产品的非常均匀的径向温度分布,除了反式螺杆螺旋之外,还可以在圆筒内壁的外缘安装径向混合单元(例如吸入式桨或单元)。这促进了单独区域内的产品的径向混合,所述单独区域由反式螺杆螺旋而形成,尤其当具有大圆筒直径和高填充水平或螺杆螺旋高度时使用。[0089]图1示出间接加热的筒式热交换器。[0090]图2示出筒式热交换器的横断面。[0091]图中的参考数字具有以下含义:[0092]A产品入口[0093]B产品出口[0094]1静态夹套(staticjacket)(隔热)[0095]2旋转圆筒[0096]3反式螺杆螺旋[0097]4加热区1(电加热或蒸汽加热)[0098]5加热区2(电加热或蒸汽加热)[0099]6加热区3(电加热或蒸汽加热)[0100]a产品[0101]b筒的内径[0102]c螺杆螺旋的高度[0103]筒的长度优选为3至30m,更优选5至25m,最优选7至20m。筒的内径优选0·3至l〇m,更优选0·4至5m,最优选1至3m。[0104]螺杆螺旋的高度优选0.05至lm,更优选0.1至0.8m,最优选0.2至0.6m。螺杆螺旋的前沿(lead)优选0.05至0.5m,更优选0.1至0.4m,最优选0.15至0.3m,螺杆螺旋的高度是筒内壁和螺杆螺旋在旋转轴方向的最高点之间的距离。螺杆螺旋的前沿是在完全旋转情况下纵向螺杆螺旋的偏距(offset)。[0105]筒的圆周速度优选0·02至0·5m/s,更优选0·03至0·3m/s,最优选0·04至0·15m/So[0106]具有反式螺杆螺旋的筒式热交换器的最大填充水平是刚好没有产品越过螺杆螺旋的高度进入到下一个螺旋的路线的填充水平。图2示出最大填充水平。该填充水平对应于100%的填充水平。[0107]具有反式螺杆螺旋的筒式热交换器的纵轴相对于水平面的倾角(pitch)为+10至-10°,更优选+5至-5°,最优选+1至-Γ,正号是指在传动方向上的上倾角,负号是指在传动方向上的下倾角。[0108]在本发明的一个优选实施方案中,吸水性聚合物颗粒在热表面后交联后冷却。这种冷却优选在接触式冷却器中实施,例如桨式冷却器和盘式冷却器。合适的冷却器是例如HosokawaBepex?水平奖式冷却器(HosokawaMicronGmbH;Leingarten;Germany)、HosokawaBepex?盘式冷去P器(HosokawaMicronGmbH;Leingarten;Germany)、H〇I〇-Flite?冷却器(MetsoMineralsIndustriesInc.;Dacille;USA)和Nara奖式冷去P器(NARAMachineryEurope;Frechen;Germany)〇[0109]在冷却器中,吸水性聚合物颗粒被冷却至20至150°C,优选30至120°C,更优选40至KKTC,最优选50至80°C。[0110]然后,表面后交联的聚合物颗粒再次被分级,过小的和/或过大的聚合物颗粒被移出并再循环至该方法中。[0111]为了进一步改善特性,表面后交联的聚合物颗粒可以被涂覆或再润湿。[0112]再润湿优选在30至80°C,更优选35至70°C,最优选40至60°C的温度实施。在过低的温度下,吸水性聚合物颗粒趋向于形成块状物,并且在较高的温度下,水已经以显著的程度蒸发。用于再润湿的水的量优选1至10重量%,更优选2至8重量%,最优选3至5重量%。再润湿增加了聚合物颗粒的机械稳定性并减少它们产生静电的趋势。再润湿有利地在热表面后交联后在冷却器中实施。[0113]用于改善自由溶胀率和溶胀凝胶床的渗透性(SFC)的合适涂料是例如无机惰性物质,例如不溶于水的金属盐、有机聚合物、阳离子聚合物和二价或多价金属阳离子。用于粉尘粘固的合适涂料是例如多元醇。用于抵消聚合物颗粒不想要的结块趋势的合适涂料是例如氧化锌、碳酸锌、气相氧化娃,例如Aerosil?.2〇〇,和表面活性剂,例如Span?20。[0114]通过本发明的方法制备的吸水性聚合物颗粒的水分含量优选0至15重量%,更优选0.2至10重量%,最优选0.5至8重量%,水分含量由EDANA推荐的试验方法No.WSP230.2-05"MassLossUponHeating,'测定。[0115]通过本发明的方法制备的吸水性聚合物颗粒的颗粒尺寸为300至600μm的颗粒的比例优选至少30重量%,更优选至少50重量%,最优选至少70重量%。[0116]通过本发明的方法的制备吸水性聚合物颗粒的离心保留容量(CRC)通常至少为15g/g,优选至少20g/g,更优选至少22g/g,特别优选至少24g/g,最优选至少26g/g。吸水性聚合物颗粒的离心保留容量(CRC)通常小于60g/g。离心保留容量(CRC)用EDANA推荐的试验方法No.WSP241.2_05"FluidRetentionCapacityinSaline,AfterCentrifugation"测定。[0117]通过本发明的方法制备的吸水性聚合物颗粒在49.2g/cm2的压力下的吸收优选至少为15g/g,优选至少20g/g,更优选至少22g/g,特别优选至少24g/g,最优选至少26g/g。吸水性聚合物颗粒在49.2g/cm2的压力下的吸收通常小于35g/g。在49.2g/cm2的压力下的吸收通过类似于EDANA推荐的试验方法No.WSP242.2-05"AbsorptionUnderPressure,GravimetricDetermination"测定,不同之处在于设定的压力为49.2g/cm2,而不是21.Og/cm2。[0118]方法:[0119]下文描述的称为"WSP"的标准测试方法记载于由theWorldwideStrategicPartnersEDANA(AvenueEugenePlasky,157,1030Brussels,Belgium,www.edana.org)和INDA(1141508CrescentGreen,Cary,NC27518,U.S.A.,www.inda.org)共同出版的"StandardTestMethodsfortheNonwovensIndustry",2005版中。该出版物可从EDANA和INDA获得。[0120]除非另有说明,测试是在环境温度23±2°C和相对空气湿度50±10%下进行。吸水性聚合物颗粒在测量前充分混合。[0121]残留单体[0122]吸水性聚合物颗粒的残留单体含量通过EDANA推荐的测试方法WSPNo.210.2-02"ResidualMonomers"测定。[0123]离心保留容量[0124]离心保留容量(CRC)通过EDANA推荐的测试方法No.WSP241.2-05"FluidRetentionCapacityinSaline,AfterCentrifugation,'测定。[0125]在49.2g/cma压力下的吸收(负载下的吸收)[0126]在49.2g/cm2压力下的吸收(AUL0.7psi)类似地通过EDANA推荐的测试方法No.WSP242.2_05"AbsorptionunderPressure,GravimetricDetermination,'测定,不同之处在于设定的压力为49.2g/cm2(AUL0.7psi),而不是21.0g/cm2(AUL0.3psi)。[0127]可提取物[0128]吸水性聚合物颗粒的可提取物的含量通过EDANA推荐的测试方法No.WSP270.2-05"Extractable"测定。[0129]渗诱率(盐水导流率)[0130]如EP0640330A1所述,在0.3psi(2070Pa)的压力下溶胀凝胶层的渗透率(SFC)测定为吸水性聚合物颗粒的溶胀凝胶层的凝胶层渗透率,将记载于上述专利申请的第19页和图8中的装置改进从而不使用玻璃料(40),且活塞(39)由与气缸(37)相同的聚合物材料组成并且此时包括21个均匀分布在整个接触面的相同尺寸的孔。测量的过程和评估与EP0640330A1相比保持不变。自动检测流量。[0131]盐水导流率(SFC)计算如下:[0132]SFC[cm3s/g]=(Fg(t=0)xL0)/(dxAxffP)[0133]其中Fg(t=0)为NaCl溶液的流量,以g/s计,其使用流量测定的Fg(t)数据的线性回归分析通过外推至t=0获得,L0为凝胶层的厚度,以cm计,d为NaCl溶液的密度,以g/cm3计,A为凝胶层的面积,以cm2计,及WP为凝胶层上方的液体静压力,以dyn/cm2计。实施例[0134]实施例1[0135]根据W02011/026876A1的图1,在带有一体化流化床(27)和外部流化床(29)的顺流式喷雾干燥器中制备基础聚合物。喷雾干燥器(5)的圆周部分的高度为22m,直径为3.4m。内部流化床(IFB)的直径为3.0m,堰(weir)高度为0.4m。外部流化床(EFB)的长度为3.0m,宽度为0·65m,堰高度为0·5m。[0136]通过气体分配器(3)向喷雾干燥器的顶部提供干燥的气体。干燥的气体通过纤维过滤器(fabricfilter)(9)和洗涤柱(12)(循环气)部分循环。所用的干燥气体为氧含量为1至5体积%的氮气。在聚合开始之前,用氧含量低至为低于5体积%的氮气吹扫设备。喷雾干燥器(5)的圆周部分中的气体速度是16170kg/h。喷雾干燥器内部的压力是低于常压4晕巴。[0137]如W02011/026876A1的图3中所述,喷雾干燥器的出口温度在圆周部分下端的三个位置进行测量。这三个单独的测量值用于计算平均出口温度。加热循环气体并开始计量加入单体溶液。从这时起,平均出口温度通过用热交换器(20)来调调节气体入口的温度而被控制在116°C。[0138]产品被收集到内部流化床(27)中最高达堰的高度。通过管路(25),干燥气体被供应至温度为132°C的内部流化床(27)。内部流化床(27)中的气体速度为10000kg/h。[0139]喷雾干燥器的废气通过纤维过滤器(9)被送入洗涤柱(12)。洗涤柱(12)中的液位通过抽空过量的水而保持恒定。洗涤柱(12)中的液体通过热交换器(13)来冷却并逆流传输通过喷嘴(11),这样使洗涤柱(12)中的温度控制在45°C。为了清洗废气中的丙烯酸,洗涤柱(12)中的液体通过加入氢氧化钠溶液来碱化。[0140]洗涤柱中的废气被分成管路(1)和(25)。通过热交换器(20)和(22)控制温度。通过气体分配器(3)将加热干燥的气体供应至喷雾干燥器。气体分配器由一排板组成,并且根据气体速度具有5至10毫巴的压降。[0141]通过回转式给料器(28)将产品从内部流化床(27)转移到外部流化床(29)。通过管路(40),将干燥的气体供应至温度为60°C的外部流化床(29)。干燥的气体是空气。外部流化床(29)中的气体速度是2500kg/h。[0142]通过回转式给料器(32)将产品从外部流化床(29)转移至筛子(33)上。通过筛子(33),移除粒径大于300μm的颗粒。[0143]为了制备单体溶液,首先将丙烯酸与三乙氧基化甘油三丙烯酸酯(交联剂)混合,然后与37.3重量%的水性丙烯酸钠混合。通过泵循环通过热交换器,单体溶液的温度保持在l〇°C。在泵循环系统中,筛孔尺寸为150μm的过滤器置于泵之上。通过静态混合器(41)和(42)的上游管路(43)和(44)将引发剂加入至单体溶液中。通过管路(43)供应温度为20°C的过氧二硫酸钠,通过管路(44)供应温度为5°C的Briiggolite?FF7?riiggemannChemicals;Heilbronn;Germany)。各引发剂被循环泵入,并在各个液滴化单元中通过控制阀计量。在静态混合器(42)上配置带有100μm的筛孔的过滤器。为了在喷雾干燥器的顶端计量加入单体溶液,如W02011/026876A1中的图4所述,使用三个液滴化单元。[0144]如W02011/026876A1中的图5所述,液滴化单元由外管(51)和液滴化盒(53)组成。液滴化盒(53)通过内管(52)连接。内管(52)在末端具有PTFE密封(54),并且可以拉出以便在运行期间用于维修目的。[0145]W02011/026876A1中的图6描述了液滴化盒的内部结构。液滴化盒(61)的温度通过在通道(59)中的冷却水而控制在25°C。液滴化盒有256个孔。入口孔的直径为2.5mm,出口孔的直径为170μm。孔排成6行,每行中的孔之间的距离是12.38mm,两行之间的距离是14_。液滴化盒(61)具有没有死角的流动通道(60),用于使预混合的单体溶液和两个液滴化盘(57)之间的引发剂溶液均匀分布。孔在两个液滴化盘(57)之间均分,每个液滴化盘(57)具有128个孔,这意味着两个液滴化盘(57)均具有三行孔。两个液滴化盘(57)以3°角排列。每个液滴化盘(57)由不锈钢(材料No.1.4571)制成,长度为530mm,宽度为76mm,厚度为15mm。[0146]喷雾干燥器的进料包括10.25重量%的丙烯酸、32.75重量%的丙烯酸钠、0.035重量%的三乙氧基化甘油三丙烯酸酯(纯度约为85重量%)、0.00285重量%的Brtiggolite?FF7(BriiggemannChemicals;Heilbronn;Germany)、0·266重量%的过氧二硫酸钠和水。BHiggolite?FF7以5重量%水溶液的形式使用,过氧二硫酸钠以15重量%的水溶液形式使用。中和度是71%。每个孔的进料为1.6kg/h。[0147]所得基础聚合物的容积密度为74.4g/100ml,平均颗粒直径为392μm,颗粒直径分布的宽度为0.48。平均球度为0.91,离心保留容量(CRC)为21.4g/g,在49.2g/〇112仏见0.7?81)压力下的吸收为17.98/^,残留单体含量为2.75重量%。[0148]实施例2[0149]为了热表面后交联,来自实施例1的1300g基础聚合物在带有加热夹套(Gebr.LodigeMaschinenbauGmbH;Paderborn;Germany)的Pflugschar?Lii5犁铧混合器中、在约23°C的温度下、在250rpm的轴速下通过含有以下溶液(各自基于基础聚合物计)的两相喷雾喷嘴进行涂覆:[0150]0·10重量%的2-羟乙基-2-噁唑烷酮[0151]0·10重量%的1,3-丙二醇[0152]1.00重量%的1,2-丙二醇[0153]1.00重量%的水[0154]3.00重量%的三乙酸铝水溶液(22重量%)[0155]在喷雾施用后,产品温度增加到185°C,反应混合物保持在该温度下,轴速度为每分钟60转,共计150分钟。样品在不同的时间后取出。在分析之前,将所有的样品筛分至150至850μm的颗粒尺寸。[0156]表1:停留时间的影响[0157]【权利要求】1.一种热表面后交联吸水性聚合物颗粒的方法,所述吸水性聚合物通过聚合单体水溶液或悬浮液制备,所述单体水溶液或悬浮液包括:a)至少一种带有酸基团且可被至少部分中和的烯键式不饱和单体,b)至少一种交联剂,c)至少一种引发剂,d)任选地一种或多种可与a)中所述单体共聚的烯键式不饱和单体,和e)任选地一种或多种水溶性聚合物,该方法包括用水溶液涂覆聚合物颗粒,使涂覆的聚合物颗粒解聚和通过具有反式螺杆螺旋的筒式热交换器热表面后交联所述解聚的聚合物颗粒。2.权利要求1的方法,其中涂覆和解聚在卧式混合器中进行。3.权利要求1的方法,其中涂覆在立式混合器中进行,解聚在卧式混合器中进行。4.权利要求1-3任一项的方法,其中涂覆的聚合物颗粒在解聚期间被干燥。5.权利要求1-4任一项的方法,其中涂覆的聚合物颗粒在解聚期间被加热。6.权利要求1-5任一项的方法,其中筒式热交换器的填充水平为65至90%。7.权利要求1-6任一项的方法,其中吸水性聚合物颗粒在筒式热交换器中的温度为170至200°C和/或吸水性聚合物颗粒在筒式热交换器中的停留时间为30至60分钟。8.权利要求1-7任一项的方法,其中筒式热交换器是用电加热或蒸汽加热。9.权利要求1-8任一项的方法,其中单体a)为被部分中和至至少95mol%程度的丙烯酸。10.权利要求1-9任一项的方法,其中吸水性聚合物的离心保留容量至少为26g/g。11.一种用于热表面后交联吸水性聚合物颗粒的设备,包括可加热的卧式混合器和具有反式螺杆螺旋的筒式热交换器。12.权利要求11的设备,其中卧式混合器和筒式热交换器是直接承接连接的。13.-种用于热表面后交联吸水性聚合物颗粒的设备,包括立式混合器、可加热的卧式混合器和具有反式螺杆螺旋的筒式热交换器。14.权利要求13的设备,其中立式混合器、卧式混合器和筒式热交换器是直接承接连接的。15.权利要求11-14任一项的设备,其中可冷却的卧式混合器直接连接到筒式热交换器的下游。【文档编号】F28F5/02GK104204039SQ201380018544【公开日】2014年12月10日申请日期:2013年3月20日优先权日:2012年3月30日【发明者】H·巴塞尔,G·格鲁尼沃尔德,N·赫佛特,M·穆尔,B·莱因哈特申请人:巴斯夫欧洲公司