专利名称:改进的粉煤燃烧器的制作方法
背景技术:
本发明是根据能源部给予的合同No.DE-A22-92PC92160接受政府支持而研制成功的。政府对本发明享有一定权利。
1.发明领域本发明总的涉及燃料燃烧器,更具体地是涉及一种可限制氮氧化物(NOx)生成的改进的粉煤燃烧器。
2.相关技术描述在诸如粉煤火焰之类的火焰中,当含氮化合物在高温分解过程中从燃料中释放出来时,便形成一些氮的氧化物(NOx)。这些化合物与能够利用的氧结合而形成一氧化氮(NO)和二氧化氮(NO2),例如
图1中所示的。图1表示通常的NOx反应机理。当在有氮和氧存在的火焰区域中持续高温(高于2700°F)时,也可形成NOx。在这种条件下,氮分子分解并与氧重新结合而形成热NOx。
大家知道,通过“分级”或延缓某些燃烧空气与燃料的混合,使释放的氮挥发物结合形成氮分子而不是NOx,从而可使粉煤火焰的NOx排放物含量更低。在通过分级而产生的还原气氛中,所形成的NOx分子也可更容易地被还原成氮分子。通过将一些燃烧空气移出燃烧器然后将其从炉子的另一位置导入,可以在燃烧器外部完成这种分级工艺。
目前市场上有空气动力学的空气分级燃烧器,它根据内部分级的原理工作,即NOx排放量较低的火焰是通过控制位于燃烧器本身的燃烧空气来产生,而不是通过物理地分离添加燃料和空气的位置来产生。内部分级是通过空气动力学地将燃烧空气分配在多个空气区域上来实现。对燃烧空气给予一个涡旋速度并使用不同的燃烧器部件配置来改变燃烧空气流方向,可以加强内部分级。由于改变方向的燃烧空气混入火焰下游,燃料是在离开主燃烧区一定距离的位置实现燃尽的。巴布考克及威尔考克斯公司已开发、试验和生产了一系列使用多个空气区来降低NOx排放物的粉煤燃烧器。图2中示出了一个例子,它以注册商标DRB-XCL的燃烧器在市场上销售。这种空气动力学分级燃烧器已表明在显著降低标准式高涡旋燃烧器的NOx含量方面是成功的,高涡旋燃烧器是在燃烧器出口附近快速混合燃料和空气的。但是,这种低NOx燃烧器设计所产生的较长火焰会通过增大的一氧化碳(CO)排放和较高含量的未燃烧碳而显示较低的燃烧效率。以前的试验表明,通常出口NOx的测量含量和燃烧效率成反变关系。
参见图2,图中示出了一燃煤DRB-XCL燃烧器,它类似于授予LaRue的美国专利No.4,836,772所描述的燃烧器。在该燃烧器10的中央导管内有一锥形扩散器12和折流板34,该中央导管由一燃料和主空气(输送空气)的入口14供给粉煤和空气。内、外壁18、20之间形成一风箱16。风箱16含有燃烧器导管,该导管同轴地被一些含有固定旋转叶片22和可调叶片24外部排列的壁所围绕。同轴地围绕燃烧器喷嘴周围的一空气分离板26可帮助引导从28处输入的辅助空气。燃烧器10具有一火焰稳定器30和一控制辅助空气28量用的滑动挡板。
授予LaRue等人的美国专利No.4,380,202也涉及一种燃烧器,它具有图2所示的一锥形扩散器和其它一些部件。粉煤喷嘴上通常安装有叶轮,用以减小火焰长度,并同时减少排放物。叶轮和诸如旋流器之类的类似装置仅改变燃料流的流动形式。这些方法会增强燃料和空气的混合,从而增加NOx排放。
授予Itse等人的美国专利No.4,479,442揭示了一种用于粉煤的文丘里喷嘴,它具有一发散流分离器和多个旋流叶片。
目前仍然需要一种改进的、可获得更少NOx排放的低NOx燃烧器,因为最低程度的NOx排放可提供可比较的未燃可燃物和一氧化碳(CO)排放量。最好,这种燃烧器可供给粉煤和空气混合流,同时有附加的单独燃烧空气流来控制粉煤火焰的燃烧特性。该燃烧器设计可提供稳定而强烈的火焰,而污染物质排放较低,燃烧效率较高。这种类型的燃烧器结构最好可允许将燃烧器安装在现有的锅炉或炉窑中。
发明概要本发明旨在提供一种可实现低NOx排放但又保持高燃烧效率的燃烧器,为的是解决现有技术的燃烧器所存在的上述以及其它一些问题。这里所使用的高燃烧效率是指将离开炉子的未燃碳和一氧化碳降低到最低水平。本发明将可限制NOx产生的燃烧空气的空气动力学分配与可提供稳定火焰和可接受的燃烧效率的独特燃烧器特征有效地结合,从而超越了以前在降低NOx排放方面的限制。如本文所描述的,这些特征的相互结合可产生一种高效的低NOx燃烧器。本发明将燃烧器附近的主、辅流分开,同时采用一个范围的辅助空气速度,从而促进更高的紊流程度并改进下游混合。空气分配锥与过渡区相结合,可以改变辅助空气的方向,而不会减少由叶片赋予辅助空气的旋流。这就进一步改善火焰的稳定性和下游混合。过渡区在燃烧器附近将辅助空气物理地和空气动力学地与芯部燃料区分隔开,从而防止直接的燃料混入。使用辅助旋流和空气分配锥可局部地使空气偏离火焰芯,同时仍允许在下游混合。
因此,本发明的一个目的在于提供一种改进的低NOx燃烧器,它可使燃烧空气在燃烧器出口附近从主燃烧区转移开,降低煤脱挥发份过程中的局部化学计量比,从而减少初始NOx的形成。
本发明的另一个目的在于提供一种改进的低NOx燃烧器,它可提供稳定的火焰,而污染物质排放较低,燃烧效率较高。
本发明的还有一个目的在于提供一种设计简单、结构牢固、制造经济的燃烧器。
作为本发明之特征的、具有新颖性的各个特点,将在构成本揭示一部分的所附权利要求书中具体地指出。为便于更好地理解本发明、其工作方面的优点和使用它所实现的具体目的,可参看附图和下面的描述内容,其中示出了本发明的较佳实施例。
附图简述附图中图1是表示NOx反应机理的图;图2是一现有DRB-XCL燃烧器的剖视示意图,它经过了本发明的改进;图3是本发明剖视示意图;图4是本发明燃烧器的剖视示意图,表示该燃烧器的火焰特性;图5是本发明一备选实施例剖视示意图。
较佳实施例描述参见附图,所有图中相同的标号表示相同或相似的零件,现首先参见图3,它表示本发明燃烧器的剖视示意图,该燃烧器总的由标号40表示。燃烧器40也可称作DRB-4ZTM燃烧器,它包括一系列由燃烧器导管中的同轴环绕壁形成的区域,这些区域输送燃料例如粉煤和受限制的输送空气(主空气)流以及由燃烧器风箱16提供的附加燃烧空气(辅助空气)流。燃烧器40的中央区域42是一圆形截面的主区域或燃料喷嘴,它通过入口44从一供给源(未图示出)供给主空气和粉煤。围绕中央或主区域的是一环形同轴壁,它形成主-辅过渡区域46,其构制成可导入辅助燃烧空气或将辅助空气转向到其余的外部空气区域。该过渡区域46在主流和辅助流之间可起到缓冲作用,用以改善对燃烧器附近的混合和稳定性的控制。过渡区域46配置成可导入有旋流或没有旋流的空气,或是可提高紊流程度以改善燃烧控制。燃烧器40其余的环形区域包括内部辅助空气区域48和外部辅助空气区域50,它们由输送大部分燃烧空气的同轴环绕壁形成。在结构上,本发明的燃烧器40设计大部分是根据图2所示的DRB-XCL燃烧器的结构。但是,本发明的燃烧器设计包括围绕燃烧器输送粉煤和主空气的中央导管42的环形同轴结构46。而且,燃烧器设计40经过了改进,能在略高于DRB-XCL燃烧器的速度下供给辅助空气。燃烧器速度选择成可提供所需的近、远区域的混合特性,而不会产生较高的压降和燃烧器控制方面不良的敏感性。燃烧器40设计成可以根据燃料种类和燃烧器用途以所需的速度范围提供辅助空气。该速度范围选择成可以产生足够的径向和切向动量,用以使主流和内部辅助流之间产生径向分离。燃烧器40最好设计成可在约等于主空气/燃料流速度1.0到1.5倍的速度下输送辅助空气。在一个试验过的实施例中,辅助空气的标称速度约为5500英尺/分钟(fpm),但对工业上的应用可以在约4500到7500fpm的范围内变化。
环形同轴过渡结构46,其截面积为燃料喷嘴42截面积的0.5到1.5倍,视燃料类型和数量而异,该喷嘴在此被认为具有一个单位特性直径。
在一个试验过的实施例中,DRB-4ZTM燃烧器的过渡区域截面积标称等于燃料喷嘴截面积。但是可以想象,工业燃烧器在这方面可以根据诸如主空气流量、主空气和辅助空气温度以及燃烧器燃烧速度之类的设计特性而有所变化。
本发明的过渡区域的一个主要特点在于,它可改善对辅助空气与火焰根部燃料混合的控制。这一特点可使一部分燃烧空气从该环形空间引导至火焰。
燃烧器40可提高辅助空气在燃烧器喉部52处分配的灵活性。在限定过渡区域的同轴壁的上表面上有一些槽口,可让辅助空气进入该区域。辅助空气流进入过渡区域的比例,由在燃烧器40后部围绕过渡区域外面的一滑套54来控制。对于辅助空气被引导通过过渡区域46的情况,可在过渡区域46内设置一些旋转叶片组件(未图示出)以产生旋流。使用可在主-辅过渡区域中形成散布的高、低混合区域的分段截止板(未图示出),便可在过渡区域的出口实现另一种有益的空气流动形式。可以很容易地在过渡区域中装入附加空气的控制装置,用以进一步调节燃烧空气的分配和混合。
在一种类似于DRB-XCL燃烧器的形式中,在经过内辅助空气区域48和外辅助空气区域50的辅助空气中可产生旋流。在内空气区域48中使用一组可动叶片24,并在外空气区域50中同时使用固定叶片22和可动叶片24,就可产生旋流。这些叶片的结构可提供充分的旋流控制,并可充分控制燃烧空气在燃烧器40各处的分配,以便实现所需的混合特性。各区域48、50中的可动叶片24可以是完全关闭位置(相对于基本垂直于截面图的一条轴线成0°)或完全打开位置(90°),或是任何的中间角度,使燃烧达到最佳。可动叶片在完全打开位置时,就不会引起旋流。使用辅助空气区域与过渡区域相结合,就不必附装火焰稳定装置,因为该装置会干扰辅助旋流的分配。
空气在内、外辅助区域48、50中的分配,可以用各区域中的可动叶片来控制。另外,使用图3所示滑盘56的不同实施形式,还可调节辅助燃烧空气的分股或分配。滑盘56的结构可以堵住空气向内辅助区域48流动,也可自动或手动地调节,改变内、外辅助空气区域之间空气的分股。滑盘56也可制得较大,以便调节到达内、外辅助空气区域48、50的空气,并且可以是手动或自动控制的,用来平衡空气在多燃烧器装置中诸燃烧器之间的流动。设定滑盘56和设定内、外叶片22、24相结合,可用来在燃烧器出口52提供对空气分股和旋流进行较宽范围的控制。
在形成燃料喷嘴的同轴壁的端部、形成过渡区域外周的同轴壁的端部,或使内、外辅助空气区域隔开的套管端部,或是在所有这些位置处,可以加装一些空气分配锥58。这一措施可进一步控制离开燃烧器喉部52的空气方向和分配。分配锥58的作用是进一步控制调节燃烧空气在喷出燃烧器喉部52时的分配。在这里所描述的燃烧器40配置中可以很容易地进行另外的构件改进,从而按照需要提供额外的性能控制。
接下来,参见图4,本发明的燃烧器设计40可通过有效地使大部分燃烧空气在火焰附近从主燃烧区域转移开,以控制煤脱挥发份过程中的局部化学计量比,因而也减少初始NOx的形成,从而产生一种NOx含量低的粉煤火焰。在图4中,A是火焰的贫氧脱挥发份区域。区域B是进行产物回流的区域。C是NOx减少区域。D代表高温火焰层。E是有辅助燃烧空气受控制的混合的区域。F是燃尽区域。主流和辅助流之间的受限制回流区域,其作用是将放出的NOx向贫氧高温分解区域A回送,以还原成氮分子。回流区域B还可用来提高燃烧器附近火焰的稳定性和局部混合,从而提高总的燃烧效率。图4中所示的火焰特性表示出本发明设计的总的优点在于,它比现有低NOx燃烧器设计的排放和燃烧性能有所改善。
本发明的设计的各个优点可归为若干关键的方面。第一个方面是NOx排放性能有所改善。本发明燃烧器40的设计具有若干新型空气动力学特征,包括能够在等于或高于DRB-XCL燃烧器的辅助空气速度下工作。主-辅过渡区域以及重新设计的空气分配部件对于限制NOx的形成和增强燃烧器附近的NOx分配是非常关键的。这些燃烧器特征促进了主流和辅助流在燃烧器附近的分离,使得挥发物在可限制NOx产生的贫氧环境中从燃料释放出来。由于在该区域中维持引燃稳定所需要的氧化剂含量最低,因而在该区域中无法消除NOx的形成。但燃烧器的空气动力学还可在主流和辅助流之间形成局部的回流区域B,该区域可用来使NOx返回到火焰芯部附近的贫氧区域用于还原。
在用该燃烧器在5千英国热量单位/每小时(MBtu/hr)和100MBtu/hr的规模下进行的试验表明,对于三种不同被试验的高挥发东方含沥青煤,该燃烧器的NOx排放量比DRB-WCL燃烧器所获得的最佳原始值降低15重量%到50重量%。DRB-4ZTM燃烧器在燃烧这些煤时所实现的NOx排放,其对燃料特性变化的敏感程度要低于DRB-XCL燃烧器。以前在燃烧试验装置中所作的试验已表明了NOx排放与燃烧效率之间的强反变关系。燃烧空气和燃料迅速而彻底的混合,可产生很高的燃烧效率,结果火焰短且温度高。低NOx燃烧器通过形成较长的、温度较低的火焰来减少NOx排放,但也因混合延缓而使燃烧效率较低。
本发明通过使用较高的辅助空气速度并同时在燃烧器附近使主流和辅助流分开而解决了这一难点。辅助空气速度较高,可促进更高的紊流程度和旋流,因此可改进下游混合。辅助空气在燃烧器附近与芯部燃料区域A物理和空气动力学地相分离。过渡区域46物理地将诸空气流分隔开,从而防止直接夹带,而辅助旋流和空气分配锥的使用起到局部地将空气从火焰芯部转移开的作用,同时仍允许在下游混合。最近的试验表明,燃烧器40可提供较低的NOx排放但又不牺牲燃烧效率。在用三种东方含沥青煤的试验中,本发明的燃烧器表示出,在与DRB-XCL燃烧器相比降低NOx排放的同时,对于其中的两种煤,一氧化碳在出口的含量是有效相等的,对于另一种煤,在最佳设定下烧失量(LOI)则更低。烧失量是燃烧效率差的衡量。如果需要,可很容易地在该燃烧器设计中装入粉煤喷嘴混合装置,以进一步提高性能。这种混合装置的一个例子是一设置在主区域42内的叶轮60,如图5中所示。本发明的燃烧器设计具有一系列特征,使得它的控制比现有燃烧器更佳。过渡区域46提供了一界限分明的火焰固定区域,有稳定火焰的作用,它不会干扰内部辅助空气的分配或旋流。过渡区域46的结构也可能导入一限制量的辅助空气,有效地改进局部的主空气和煤的比例(PA/PC)。这可被用来调节燃烧器温度、在火焰底部引导附加空气以及进一步调节燃烧器附近的混合。通过过渡区域46导入的空气可由一个或一系列部件控制,产生旋流、径向引导空气或在空气中产生紊流。通过燃烧器40辅助区域48、50的空气分配,既可由可动叶片24控制,也可由滑盘56控制,或是同时由它们控制。本发明的燃烧器40通过机械稳定与空气动力学稳定原理相结合,产生稳定的粉煤火焰,从而提供燃烧的稳定性。主-辅过渡区域46可起到火焰稳定区域的作用,提供改善的火焰固定。该过渡区域与辅助空气流相结合而在主流和辅助流之间产生动量低的回流区域,它也有助于火焰的稳定。辅助空气设计可提供旋流的燃烧空气,从而在空气动力学上稳定火焰并控制火焰混合。这些特点,结合本文描述的设计所提供的控制范围,能确保在较宽范围负载和燃烧条件下的火焰稳定性。最后,本发明燃烧器的简单性在于,该设计不需要使用附装的火焰稳定部件,而这些部件可能易受高温循环的不良影响并容易腐蚀。本发明的燃烧器设计可用于新型的和现有的锅炉。该燃烧器也可通过对现有部件进行微小的变化,用来燃烧矿物燃料混合物。例如,可通过主区域输送粉煤,同时通过过渡区域注入少量天然气。在这种结构中,天然气可构成燃烧器热输入的5%-15%。另外,本发明的DRB-4ZTM燃烧器无需在主空气/燃料的部位进行修改,并不需要很高的粉煤细度。
尽管以上是针对粉煤进行具体描述,但本发明也可很好地适用于燃烧燃油或天然气。位于中央导管42中的一雾化器可使燃油以本文所描述的优选方式燃烧。或者,位于中央导管42中的一个大销子,或是过渡区域46中的许多个小销子,都可使天然气以本文所描述的优选方式燃烧。
虽然以上详细示出和描述了本发明的具体实施例,意在说明本发明原理的应用,但可以理解,本发明可以在不脱离这些原理的情况下以其它方式实施。
权利要求
1.一种排放低和未燃尽燃料损失低的燃烧器,包括限定一燃料喷嘴的结构,供主燃料和主空气通过,以便在一主区域中燃烧,该燃料喷嘴具有一出口端,该出口端具有一轴线;限定一环形过渡区域的结构,它同轴地围绕所述燃料喷嘴的限定结构,所述过渡区域结构构制成可提供用于燃烧器附近混合和火焰稳定性的空气;以及限定一内部空气区域和一外部空气区域的结构,所述内部空气区域同轴地围绕所述过渡区域,所述外部空气区域同轴地围绕所述内部空气区域,在所述内部和外部空气区域之间设置一分隔板,所述内部和外部空气区域均具有一出口端和至少一个位于出口附近的旋流叶片。
2.如权利要求1所述的燃烧器,其特征在于,还包括使通过所述过渡结构导入的空气产生旋流、用于增强紊流程度以改善燃烧控制的结构。
3.如权利要求1所述的燃烧器,其特征在于,所述过渡结构将空气转向到所述内部和外部空气区域的出口。
4.如权利要求1所述的燃烧器,其特征在于,还包括设置在所述内部空气区域中用于产生旋流的可调结构。
5.如权利要求4所述的燃烧器,其特征在于,还包括设置在所述外部空气区域中用于产生旋流的固定和可调结构。
6.如权利要求5所述的燃烧器,其特征在于,还包括连接于所述过渡结构一出口端的、控制空气方向的空气分配结构。
7.如权利要求6所述的燃烧器,其特征在于,还包括连接于所述分隔板的出口端的、控制空气方向的空气分配结构。
8.如权利要求1所述的燃烧器,其特征在于,还包括调节辅助燃烧空气的结构,所述调节结构相邻于所述内部和外部空气区域,用于控制流到这两区域的空气流。
9.如权利要求1所述的燃烧器,其特征在于,所述过渡结构具有一围绕其外部的、控制通过所述过渡结构的辅助空气流的滑套。
10.如权利要求1所述的燃烧器,其特征在于,还包括一设置在所述燃料喷嘴结构内的、增强燃烧过程中混合作用的粉煤混合装置。
11.如权利要求1所述的燃烧器,其特征在于,还包括至少一个在所述过渡结构中的旋流叶片。
12.如权利要求1所述的燃烧器,其特征在于,还包括在所述内部和外部空气区域出口端以及所述过渡结构一出口端朝外延伸的锥形体。
13.一种降低粉煤燃烧器的排放和降低未燃尽燃料损失的方法,该燃烧器具有一带一出口端的粉煤和主空气喷嘴以及同轴围绕粉煤和主空气喷嘴的内部和外部空气区域,该方法包括以下步骤提供一围绕粉煤和主空气喷嘴并与其隔开的、设置在喷嘴和内部空气区域之间的环形同轴环,用以形成一围绕由喷嘴所形成的一主区域的过渡区域;通过将燃烧空气从火焰附近的主燃烧区域转移开而产生粉煤火焰;在煤脱挥发份过程中产生一局部化学计量比,用于减少初始氮氧化物形成;以及在主空气流和辅助空气流之间提供一些受限制的回流区域,用于将放出的氮氧化物送回到一贫氧高温分解区域而还原成氮分子。
14.如权利要求13所述的方法,其特征在于,还包括使通过内部和外部空气区域的空气产生旋流。
15.如权利要求14所述的方法,其特征在于,还包括使用设置在燃烧器内的固定和可调叶片提供局部混合,以提高燃烧效率。
16.如权利要求1所述的燃烧器,其特征在于,还包括一在燃料喷嘴中的、使燃油燃烧的雾化器。
17.如权利要求1所述的燃烧器,其特征在于,还包括一在燃料喷嘴中的、使天然气燃烧的销子。
18.如权利要求1所述的燃烧器,其特征在于,还包括至少两个在过渡区域中的、使天然气燃烧的销子。
全文摘要
一种燃烧器(40),它具有一在主区域(42)和辅助区域(48,50)之间起缓冲作用的过渡区域(46)。过渡区域(46)通过在主区域(42)和辅助区域(48,50)之间提供受限制的回流区域,从而改善对燃烧器附近的混合和火焰稳定性的控制。这些受限制的回流区域将放出的NO
文档编号F23C1/12GK1246177SQ97199607
公开日2000年3月1日 申请日期1997年11月12日 优先权日1996年11月12日
发明者J·L·西维, J·V·科斯勒斯基, K·C·考夫曼, L·W·罗杰斯, A·D·拉吕, H·萨尔夫 申请人:麦克德莫技术股份有限公司