专利名称:用于高温操作的流化床气体分配系统的制作方法
技术领域:
本发明一般涉及用于铸件砂芯的脱胶和清除以及金属部件的热处理和清除金属部件上的有机污染物的方法和装置,特别涉及一种使用装有改进流化气体分配器的流化床炉子的改进方法和装置。
背景技术:
在把黑色和有色金属铸造成部件时,铸件由在模子中浇铸熔化黑色或有色金属而成。当铸件中有孔或通道时,根据该孔或通道的形状用铸模砂和粘结料制成砂芯后定位于模子中合适位置上。然后通常围绕砂芯一部分或大部分把熔化金属注入模子和砂芯之间空间中。金属固化后打开模子,取出铸件。在大多数情况下,必需清除形成在铸件中的砂芯。
作为参考材料包括在此的美国专利No.5,423,370描述了一种流化床炉子,它采用根据使用与制作砂芯相同类型的流态型砂的热工艺清除铸件中的砂芯。该专利还说明了使用该流化床炉子对铝铸件进行热处理。
在用铸造之外的其他方法制成黑色和有色金属部件的情况下,流化床在重大商业应用中作为重要处理方法用于部件的热处理和清洗以及实现其他目的。例如参见作为参考材料包括在此的美国专利No.4,512,821、4,524,957和4,547,228。
为达到流化固体床所需温度和满足所进行具体过程的能量以及附加的系统热量损耗,有若干公知方法把能量输入流化床炉子中。输入流化床炉子系统中的能源一般为电或例如天然气或燃油的燃料。
一般用下列方法之一或其组合把能量从能量源传给流化固体床方法1如图1所示,在输入炉子前把流化气相加热到流化固体床操作温度以上的温度。当高温流化气体经流化气体分配风口输入流化床时它提供所需能量输入。这称为“直接加热”。
方法2如图2所示,一般通过埋置在流化固体床中的加热管子或通过容纳流化固体床的容器壁从围绕该壁的加热罩的与流化固体床接触的传热表面传递能量。这种能量输入方法称为“间接加热”。
方法3如图3所示,把气态、液态或固态燃料直接注入流化固体床内部(即流化固体床顶面下方)的同时燃烧该燃料。
一般根据经济因素选择能量源。能量传给流化床的方法的选择一般取决于炉子的几何结构和所涉及工艺应用的特性。这种选择一般由埋置部件要求的气相环境决定。
在所处理产品不可与典型燃料的燃烧产物接触的场合下,能量传给流化床的方法必须限于用方法2间接加热流化床和/或间接加热流化床以提高其温度后使用方法1直接加热流化床。
在这些情况下,无法使用方法3把燃料直接注入流化固体床中,因为流化固体床中的燃烧气体会降低产品品质。
在典型燃料的燃烧产物可接触部件而不造成品质下降并且炉子中的流化固体的操作温度高于燃料的点火温度从而无需关心确保固体流化床中的燃料的完全燃烧的情况下,从经济因素出发一般使用图3所示方法3。在图3中,该装置直接注入燃料和燃烧空气。在如许多重要商业应用中那样把空气用作流化气体的情况下,由于流化空气中有燃烧所需氧气,因此无需直接注入燃烧空气。只须把燃料供应给流化床。
在进行金属部件的热处理的大多数情况下,需要小心控制流化气体的组成。由于这一需要,从这些应用的上述考虑因素出发,一般不使用方法3。
对于铝铸件的砂芯脱胶和铝铸件和其他铝部件的热处理这些非常重要的应用场合,这些工艺的操作温度为约550℃。此温度低于天然气和其他燃料的燃点,从而从安全和/或用于安全实施方法3的保护装置的成本方面考虑,常常不使用方法3。
因此在涉及铝铸件和其他铝部件的处理和金属的热处理的重要商业应用中,一般考虑使用方法1和2。
方法1一般是使用流化气体加热器向流化固体床提供所需能量以便提高流化气体温度的成本较低的方法。用该方法把能量传给流化固体床的最大流率受炉子流化气体分配风口系统在机械上所能承受的最高温度和不造成流化固体过多地由流化气体挟带出炉子的流化速度的限制。
如图1所示,一般使用气体加热器提高流化气体的温度,然后将该高温流化气体输入该床的分配风口。当流化固体的气相中可接受燃烧产物时,流化气体加热器可直接燃烧燃料,或者,当流化气相中不可接受燃烧产物时,可用燃料或电间接加热流化气体加热器。
使用方法1的主要缺点是在需要以高流率把能量输入给气体流化的固体的场合下,流化气体的温度必需显著高于流化固体床的温度。
此高温流化气体使得流化固体在流化气体排放风口附近的温度比床平均温度高得多。如果所处理部件接近或接触风口,此高温在某些情况下会损坏该部件。
举例说,在处理铝金属部件时,一般流化床炉子可在500℃下对流化固体床中的部件进行溶液退火,流化气体温度为约815℃。如果一铝部件与流化气体风口接触或靠近,该部件就会熔化或严重变形。此外,一般会有从所处理部件上脱落的刮屑、碎片落到流化床炉子底部后随着时间的推移累积起来。当这些碎片累积到风口处或接触风口时就会熔化并逐渐包围风口而档住气流。
本发明改进的流化气体分配器在流化气体从风口排出前降低其温度,从而消除风口附近的局部高温区,消除部件在风口附近的熔化或变形问题。
本发明是一种把能量输入流化床的新的改进方法,可用于流化气相中可以或不可接受能源燃烧产物的各种场合并与流化固体床的温度是否高于或低于用作能量源的燃料的燃点温度无关。
本发明通过将方法1和方法2的某些概念结合在新颖的配置中来实现上述优点,为此用间接传热加热流化固体,然后用从该气体分配结构排出的流化气体进行直接加热。此结构特别有利于热处理金属部件、清洗金属部件、清除铸件上的砂芯和闭合模子,而且在流化床炉子的某些流化床反应器结构中也是有利的。
发明内容
本发明包括在用流化气体分配器中流动的高温流化气体把能量供应给高温流化床炉子或反应器时克服典型流化气体分配器的缺点的方法和装置。该改进的气相分配器涉及安装在固体流化床中并把高温流化气体传给等距分布在构成该流化固体的颗粒状流化固体床的底部中一高度上的管子阵列。这些分配风口与该管子阵列底部连接并与构成该阵列的管子邻接。这些风口向下排放高温流化气体,使得流化床现象在风口排放点高度上或其稍下方开始。
该结构确保管子阵列位于流化开始上方的一高度上从而位于流化固体床中。从而由于流化固体的总体上高传热性能造成大量间接热量从分配管道中的流化气体经该阵列的管壁传入流化床。这间接传热造成从风口分配器排放的气相温度低于供应给管子阵列的流化气体的温度。从而使得流化床在分配风口附近的底部的温度更均匀。
此气相分布的发明减小或消除了分配风口附近的会损坏靠近流化床炉子底部的所处理部件的高温区并可充分发挥带有涉及高温流化气体的直接加热能量传送机构的流化床炉子的好处。
该气相分配结构的另一个优点是,风口向下排放减小了固体经风口气相排放孔进入管子阵列中的可能性。
图1是使用高温流化气体把能量传入流化固体床的典型流化床炉子的示意图。
图2是使用间接加热把能量传入该床的典型流化床炉子的示意图。该图示出使用容纳流化床的容器壁传热的加热罩以及间接加热管进行间接加热。加热罩一般用于较小炉子,此时容器壁面积相对流化床容积足以传递所需能量输入。加热管的数量取决于满足该工艺所需传送率所需间接传热面积的数量。图2还示出可选用的流化气体加热器增进一步补充流化固体床的传送率。
图3是把燃料直接注入流化床中以把能量传入床中的典型流化床炉子结构的示意图。在该结构中,燃料一般为例如天然气的气体或例如燃油的液体。该炉子装有包括风口的分配板。
图4是装备有本发明改进的流化床气体分配系统以便在典型砂芯去脱胶中处理部件和热处理铝铸件和其他金属的典型流化床炉子的示意图。
图5是该改进的流化气体分配器的俯视图和侧视图。
图6是改进的流化气体分配器的向下排放风口的侧视剖面图和俯视图。
图7是装备有直接在该流化气体分配器的管子阵列中点火的直接点火正位移燃烧器的改进的流化气体分配器的局部剖视侧视图。
图8是该改进的流化气体分配器在大规模铝铸件砂芯脱胶应用中的实施例的侧视剖面图,其中铸件的传送是在重复循环的基础上进行的。
具体实施例方式
下面参见各附图,在这些附图中,相同部件用同一标号表示,图4示出高温流化床炉子10的用来处理金属部件的典型结构。该炉子装备有流化床气体分配器12。该气体分配器详细示出在图5中,向下排放风口14示出在图6中。
在本发明中,高温流化气体用图4、5和6所示的管于阵列16在炉子10中分布在一水平面中。由于从位于分配管子阵列16下方的风口14排放流化气体,因此固体开始流化的高度位于管子阵列16下方。因此,整个管子阵列16具有将其整体围住的流化固体床18,从管子阵列16到气体流化固体的床的热传送率得益于与气体流化固体接触的传热表面与流化固体本身之间的高传热系数。在涉及铸造砂粒的应用中,传热系数一般为20-100BTU/hr.ft2°F。
参见图4,高温流化气体20从炉容器壁24一侧上的进口22进入管子阵列16并流到与供应管22邻接的该阵列的连接管16。该管子阵列16示出在图5中。参见图5,高温流化气体从进口22进入。该气流一般流入管子阵列的主管26和分管28后从向下排放风口32的孔流出。该气相然后在流化床中一般向上转弯。图6示出向下排放风口32的实施例。
由于从管子阵列16到固体流化床18的高对流热传送率,因此从风口32排出的流化气体的温度从其进口22处的温度降低到大大接近流化床温度的温度。
因此输入流化固体的能量分为在管子阵列16中流动的高温气体经管壁34靠对流间接传递给固体流化床的能量以及剩余能量通过将流化气体直接引入流化固体来传递到流化固体中。
增加管子阵列16的传热面积即可把从风口32排出的流化气体的温度降低到足以防止在风口附近的部件遭损坏的流化床温度。
此外,由于风口32安装成方向向下,因此可方便地在管子阵列顶部上安装格栅或筛网而不干扰从风口32排出的均匀流动图案以防止铸造材料碎片落入风口附近阻塞气流的排放或防止例如铝的部件低熔点金属部件被风口排放气流过高的温度所软化或熔化。
图4和8示出本发明优选实施例,但也可有其他结构实现此设计方法的好处。图4特别示出少量处理,此时负载从一般位于炉子顶部的装载门36装入。
图7示出本发明优选实施例,在该实施例中,部件可接触燃料燃烧气相而不损坏。在这种情况下,经济的优选实施例是如图所示把正位移燃烧器38直接装入该气体分配阵列中。
图8特别示出大量处理,此时用传输机40在该炉子系统中连续传输各部件。
参考图8,示意表示出用本发明方法进行大量生产操作的砂芯清除的连续或半连续热工艺。这是本发明应用的典型例子。也可用其他结构的流化床炉子和/或机械传输机实施该应用。
流化床炉子42装有连续传输机40,该传输机可为链型,也可为其他一般类型的传输机。该传输机传输吊篮或夹具44,吊篮或夹具可保持铸件46并将其单个或成组地在炉子42中均匀地连续或周期性(半连续)移动,移动的线速度调节成使部件46在炉子中停留所需时间。
部件从可自动打开和关闭的门50进入该炉子、通道48。门50关闭后,下一个门52打开,从而吊篮或夹具46可离开通道48进入炉子内部54。门50和52在传输机40把篮子或夹具经炉子连续传输到出口通道56时交替打开和关闭。
部件从门58离开炉子进入出口通道56。
吊篮或夹具44进入出口通道56后,门58关闭,门60打开,从而吊篮或夹具可离开通道56,铸件可传送到下一个处理步骤,或者,如这一过程只涉及砂芯脱胶,则传送到卸载区,在卸载区从吊篮或夹具上取下铸件46。门58和60在传输机40把篮子或夹具连续移出炉子时交替打开和关闭。
炉子42包括流化固体床62,在该优选实施例中流化固体是其组成和大小范围与用来制作在该炉子中清除的砂芯的铸砂相同的铸砂。流化固体的高度选择成传输机40在进口端斜向向下然后是水平段然后在出口端斜向向上,使得装有部件46的吊篮或夹具44以受控速度通过流化固体床。
产生粒状固体流化床的流化空气一般是用鼓风机64鼓入的环境空气,气流经空气加热器66加热后经分配管道68流入形成改进的空气分配系统的管子阵列16,从而把流化空气传送到方向向下的风口32后传入流化床62中,使得空气均匀分布在流化固体中,从而使粒子悬浮,在分配管子阵列底下一高度形成流化固体现象。
加热的流化空气经形成改进的流化空气分配系统的管子阵列16的壁34的对流传热,然后在由于对流传热而温度下降后从向下排放风口32的孔30直接流入流化固体床,此时随着其温度降低到流化固体床的温度把其余能量传给流化固体,从而还提供把流化固体保持和控制在砂芯脱胶所需温度下所需的能量。
因此,使用这种改进的流化空气分配系统,由于经管子阵列16间接对流传热,流化固体在风口附近的温度比不使用本创新性改进时低。由于从风口32排出的流化空气的温度降低,铸件或部件由于靠近风口而损坏的问题以及从铸件上脱落的碎片落到炉子底部被从风口排出的高温流化空气熔化的问题都得以消除。
为实现粘合剂的热分解,铝铸件在炉子42中的温度和停留时间一般为450-550℃和20-90分钟,具体温度和停留时间取决于所处理部件的几何形状和大小。
砂芯中流入流化床中的铸砂经溢流管70排出炉子后经收集、冷却、有时过筛后以备再次使用。
流化气体从流化固体床62经管道72流出炉子后流过废气处理系统2 4,废气处理系统一般包括清除粒子的旋风机和氧化砂芯粘合剂热分解中的挥发有机碳(VOC)化合物的后燃烧器,然后流过抽风机,该抽风机把流化床炉子42保持在一般小于0.5英寸w.c.的稍稍负压下,使得流化气体流出该炉子系统。
当要求在砂芯脱胶后进行溶液退火热处理步骤时,图2所示同一系统可同时用于这两个步骤,只是必需把流化床炉子42加长到足以实现这两个处理步骤所需停留时间。
在模拟本发明方法的试验操作中进行下列涉及汽车发动机铝制部件的应用部件铝铸件/发动机组发动机组每一发动机组195kg砂模和砂芯重量每一发动机组内外45kg发动机组编号/测试2砂芯脱胶条件温度500℃
停留时间90分钟环境流化固体/铸砂热处理条件温度500℃停留时间5小时该时间包括90分钟的砂芯脱胶。这两个操作在同一炉子中相继进行。
淬火在铸砂流化固体床中迅速淬火到200℃。使用水冷却盘管冷却流化固体。
时效在流化床时效炉子中时效,温度为230℃,历时3小时,周围空气冷却到60℃。
热处理结果发动机组的Brinell硬度达到93-109。
应该指出,以上公开的方法优选实施例只是例示性的,本领域典型技术人员可在后附权利要求的范围和精神内作出种种修正。
权利要求
1.一种流化床反应器或炉子中的气相分配器,包括一把流化气体经多个风口排放到一颗粒状固体流化床中的气相管子阵列,这些风口连接和装配在管子阵列下方,使得颗粒状固体在管子阵列下方一垂直高度上流化,从而造成高温流化气体在从风口流入流化床前经管子阵列间接加热流化床。
2.如权利要求1所述的气相分配器,其特征在于,来自管子阵列经管子阵列的流化气体底部中的开口排出。
3.如权利要求2所述的气相分配器,其特征在于,其还包括气相分配器供气管线中的热交换器,该热交换器位于流化气体分配开口一垂直高度上方并浸没在流化固体中,从而高温流化气体在经气体分配器开口流入流化床前间接传热以便将能量传给流化固体。
4.如权利要求1所述的气相分配器,其特征在于,气态燃料与空气燃烧生成高温燃烧气体产物,该气体产物流过该流化床炉子中的管子阵列并经管子阵列把能量传给流化床炉子,从而降低经风口排放到流化床的气体的温度。
5.如权利要求3所述的气相分配器,其特征在于,气态燃料与空气燃烧生成高温燃烧气体产物,该气体产物流过该流化床炉子中的管子阵列并经管子阵列把能量传给流化床炉子,从而降低经这些开口排放到流化床的气体的温度。
6.如权利要求4所述的气相分配器,其特征在于,该燃料为液态燃料。
7.如权利要求5所述的气相分配器,其特征在于,该燃料为液态燃料。
8.如权利要求1所述的气相分配器,其特征在于,风口排气方向在分配管子阵列下方一高度上开始颗粒状固体的流化以确保管子阵列浸没在提供管子阵列到流化固体的高传热系数的流化固体中,从而降低流化气体在从风口排出前的温度。
9.如权利要求2所述的气相分配器,其特征在于,各开口的排气方向在分配管子阵列下方一高度上开始颗粒状固体的流化以确保管子阵列浸没在提供管子阵列到流化固体的高传热系数的流化固体中,从而降低流化气体在从风口排出前的温度。
10.如权利要求9所述的气相分配器,其特征在于,风口以向下方向传送流化气体,从而在停机或流化气体流率低时便于去除任何进入风口的材料。
11.如权利要求3所述的气相分配器,其特征在于,开口以向下方向传送流化气体,从而在停机或流化气体流率低时便于去除任何进入开口的材料。
全文摘要
一种用于铸件砂芯的脱胶和清除以及金属部件的热处理和清除金属部件上的有机污染物的方法和装置,该方法和装置使用具有改进的流化气体分配器(12)的流化床炉子,该改进的流化气体分配器以离开流化床(18)中的部件的向下方向排出流化气体(20)。
文档编号F27B9/24GK1474716SQ01819101
公开日2004年2月11日 申请日期2001年9月13日 优先权日2000年9月18日
发明者H·K·斯塔芬, E·P·特赖纳, G·鲁比诺, H K 斯塔芬, 扰, 特赖纳 申请人:普罗斯迪尼公司