地下厂房通风空调系统效能的评定方法
【专利摘要】本发明提供一种地下厂房通风空调系统效能的评定方法,在地下厂房外以及通风空调系统的进、排风道口设置温度计、湿度计和风量监测器,并包括以下步骤:测定初始温度和初始湿度计算初始空气焓值;测定出口温度和出口湿度D2计算其出口空气焓值;测定初始风量和出口风量计算通风排热量;获取制冷机组制冷量和总耗功率;判断所述通风空调系统的效能。本发明能全面判断通风空调系统涉及和运行的能耗水平,动态全面地反映通风空调系统适应环境热量变化,为判别不同地下厂房通风空调系统的设置是否合理、运行是否节能提供数值基础,为制定系统设计和运行管理节能指标和评估系统节能水平,制定节能政策,提供理论依据和数学模型。
【专利说明】地下厂房通风空调系统效能的评定方法
【技术领域】
[0001] 本发明涉及一种水电站地下厂房通风空调系统效能的评定方法。
【背景技术】
[0002] 在现有的水电站地下厂房和抽水蓄能电站地下厂房通风空调系统的竣工验收前, 对环境及卫生指标的测定中,仅对水电站的环境指标进行单一的数值测定来判别各个场所 的温湿度参数是否满足设计和相关的劳动卫生标准,例如,仅对单一通风空调设备的运行 参数,如风量、流量、功率等进行测定,来评价单一设备的效率指标。而实际上,水电站地下 厂房通风空调系统是一个综合性的系统,受环境参数、设备运行工况等外部环境的动态影 响,整个系统相互关联,单一数据指标的测定很难全面检测整个通风空调系统的效能。现阶 段缺乏一种简单方便地利用实测数据,能够全面反映系统各项效能参数的评定方法,来统 一评判各个电站的通风空调系统综合效能。
【发明内容】
[0003] 本发明所要解决的技术问题是提供一种地下厂房通风空调系统效能的评定方法, 该方法量化了水电站地下厂房通风空调系统的各项指标,能够为水电系统地下厂房通风空 调系统节能指标的制定建立|旲型。
[0004] 本发明解决技术问题所采用的技术方案是: 地下厂房通风空调系统效能的评定方法,该方法在地下厂房外以及通风空调系统的 进、排风道口设置温度计、湿度计和风量监测器,并包括以下步骤: 1) 测定初始温度?\和初始湿度Di并计算初始空气焓值Ii ; 2) 测定出口温度T2和出口湿度D2并计算其出口空气焓值12 ; 3) 测定初始风量%和出口风量Q2,并结合初始空气焓值L和出口空气焓值12计算通 风排热量; 4) 获取通风空调系统的制冷机组制冷量Μ和通风空调系统的总耗功率W ; 5) 根据通风排热量、制冷机组制冷量Μ和总耗功率W判断所述通风空调系统的效能。
[0005] 在采用上述技术方案的同时,本发明还可以采用或者组合采用以下进一步的技术 方案: 对直接进风的地下厂房来说,所述初始温度和初始湿度是指地下厂房的洞室外的温度 和湿度;对于设置进风道的地下厂房来说,所述初始温度和初始湿度是指经过进风道自然 冷却后的地下厂房外的温度和湿度。
[0006] 对直接进风的地下厂房来说,所述初始风量是指地下厂房的洞室外的风量;对于 设置进风道的地下厂房来说,所述初始风量是指经过进风道后的地下厂房外的风量。
[0007] 对设置进风道的地下厂房来说,所述评定方法还包括计算进风岩体自然冷却量的 步骤,所述计算进风岩体自然冷却量的步骤具体包括以下步骤: 1)测定进风道入口处的温度Τ3和湿度D3并计算入口处的空气焓值13 ; 2) 测定进风道出口处的温度T4和湿度D4并计算入口处的空气焓值I4 ; 3) 测定进风道入口处的风量Q3和进风道出口处的风量Q4,并结合空气焓值13和1 4计 算进风岩体自然冷却量。
[0008] 所述评定方法计入地下厂房的围护结构对空气的自然吸放热量。
[0009] 本发明的有益效果是:本发明的通风空调系统效能的评定方法,解决了水电站地 下厂房通风空调系统效能检测难以全面评判的难题,充分利用了各项实测数据,将通风空 调系统和利用天然冷源区分,将实测数据转换成统一的检测数据,将与通风空调系统的效 能相关的包括温度、湿度、风量和制冷量在内的各项指标进行综合性量化,得到对通风空调 系统的统一量化指标。通过本发明的评定方法取得的效能指标数据,可以全面判断通风空 调系统涉及和运行的能耗水平,能够动态、全面地反映通风空调系统适应环境热量变化,能 够为判别不同地下厂房通风空调系统的设置是否合理、运行是否节能提供数值基础,同时 为制定系统设计和运行管理节能指标和评估系统节能水平,制定节能政策,提供了理论依 据和数学模型,对地下厂房通风空调系统的设计、运行管理具有指导作用。
【专利附图】
【附图说明】
[0010] 图1为本发明的实施例1的流程图。
[0011] 图2为本发明的实施例2的流程图。
【具体实施方式】
[0012] 水电站地下厂房洞室群为开式系统,厂房总排热量包括通风气流带走的热量、制 冷系统提供的制冷量,另外,地下工程设计运行中利用进风洞对室外进风进行了热湿处理, 即利用地下岩体自然冷却的特性带走了进风的热湿负荷,也属于通风空调系统总排热的一 部分,可以按照是否利用岩体的自然冷却量来对两种情况下的效能分别进行检测和判断, 评价通风空调运行的效能指标。
[0013] 实施例1,通风空调系统效能的评定方法1,参照附图1。
[0014] 在本实施例中,水电站的地下厂房设计为直接进风,不设置进风通道,因此不考虑 地下岩体自然冷却量。
[0015] 本发明的评定方法,首先在地下厂房外及通风空调系统的排风道口设置温度计、 湿度计和风量监测器,分别用于测量所处位置的温度、湿度和风量,这三个量是用于判断通 风空调系统效能的实测数据,也是原始数值来源。
[0016] 本实施例的评定方法具体包括以下步骤: S1,测定初始温度?\和初始湿度Di,并计算初始空气焓值Ii。
[0017] 其中,初始温度?\和初始湿度Di是指地下厂房洞室外的温度和湿度,初始空气焓 值Ii即为地下厂房洞室的进风空气焓值,初始空气焓值Ii可由式(1)计算得到。
[0018] Ι1=1· 011\+ (2500+1. 841^)0! (1) S2,测定出口温度Τ2和出口湿度D2并计算其出口空气焓值12。
[0019] 其中,出口温度T2和出口湿度D2是指通风空调系统的排风道口的温度和湿度,出 口空气焓值1 2为通风空调系统排风道口的出风空气焓值,出口空气焓值12可由式(2)计算 得到。
[0020] I2=l. 01T2+ (2500+1. 84T2)D2 (2) S3,测定初始风量%和出口风量Q2,并结合初始空气焓值L和出口空气焓值I2计算通 风排热量F。
[0021] 其中,初始风量Qi是指地下厂房洞室外的进风量,出口风量Q2是指通风空调系统 排风道口的出风量,理想状态下Q 1= Q2,通风排热量匕可以通过式(3)计算得到。
[0022] F^CXQiX (I2-Ii) (3) 其中,C为空气比热。
[0023] S4,获取通风空调系统的制冷机组制冷量Μ和通风空调系统的总耗功率W。制冷机 组的制冷量Μ和总功耗率W是通风空调的实际运行数据,制冷机组的制冷量Μ根据机组的 中央控制系统显示取得,通风空调设备的实际消耗功率根据电气供电线路上的计量仪表取 得。
[0024] S5,根据通风排热量匕、制冷机组制冷量Μ和总耗功率W判断所述通风空调系统的 效能,通风空调系统的效能4可以通过式(4)计算得到。
[0025] Ai= (Fi+M)/! (4) 心是在水电站地下厂房直接进风的情况下得到的通风空调系统的效能数值,在这种情 况下不需要考虑岩体自然冷却量的影响,该数值结合了洞室外温湿度参数和进风量以及排 风道口的空气温湿度参数和出风量,通过对这几个数据的计算和比较能够准确判断通风空 调系统的运行(制冷)效率和能耗量的比值,从而评判通风空调系统的效能,该效能数值Ai 可以单一地对一个通风空调系统进行评判,也可以采集多个水电站地下厂房的通风空调系 统的效能数值,并将这些效能数值综合起来进行整体性判断,从而区分效能优劣,为确定能 效等级奠定数据基础。
[0026] 本实施例的评定方法为直接室外进风,这种情况也可以引申为,在有进风道进风 (即非直接室外进风)的情况下,不考虑进风道的温降因素,采用进风道出口处的空气温度 和湿度作为本实施例中的初始温度?\和初始湿度Di ;也就是说,本实施例中的评定方法也 可以用于评定设置了进风道的地下厂房的通风空调系统的效能,这种效能评定不考虑进风 道的影响,能够以统一的标准评判通风空调系统在地下厂房部分的效能。
[0027] 实施例2,效能的评定方法2,参照附图2。
[0028] 在本实施例中,水电站的地下厂房之外设计有进风道,室外进风经过进风道进入 地下厂房,在进风道内地下岩体的自然冷却性能带走了一部分新风的热湿负荷,这部分自 然冷却量也属于通风空调系统总排热的一部分,因此在对这种地下厂房的通风空调系统的 进行效能检测时,要计入这部分自然冷却量。
[0029] 本实施例的评定方法具体包括以下步骤: S1,测定初始温度?\和初始湿度Di,并计算初始空气焓值L。
[0030] 其中,其中,初始温度?\和初始湿度Di是指经过进风道自然冷却后地下厂房洞室 外的温度和湿度,初始空气焓值Ii可由式(1)计算得到。
[0031] Ι1=1· 011\+ (2500+1. 841^)0! (1) S2,测定出口温度Τ2和出口湿度D2并计算其出口空气焓值12。
[0032] 其中,出口温度T2和出口湿度D2是指通风空调系统的排风道口的温度和湿度,出 口空气焓值1 2为通风空调系统排风道口的出风空气焓值,出口空气焓值12可由式(2)计算 得到。
[0033] I2=l. 01T2+ (2500+1. 84T2)D2 (2) S3,测定初始风量%和出口风量Q2,并结合初始空气焓值L和出口空气焓值Ι2计算通 风排热量F。
[0034] 其中,初始风量Qi是指地下厂房洞室外的进风量,出口风量Q2是指通风空调系统 排风道口的出风量,理想状态下Q 1= Q2,通风排热量匕可以通过式(3)计算得到。
[0035] F^CXQiX (I2-Ii) (3) 其中,C为空气比热。
[0036] S4,测定进风道入口处的温度T3和湿度D3并计算入口处的空气焓值13。
[0037] 在本实施例中,需要在进风道的入口处也设置相应的温度计、湿度计,根据温湿度 计的测量结果得到温度T 3和湿度D3,空气焓值13可由式(5)计算得到。
[0038] I3=l. 01T3+ (2500+1. 84T3)D3 (5) S5,测定进风道出口处的温度T4和湿度D4并计算出口处的空气焓值14。
[0039] 在本实施例中,需要在进风道的出口处也设置相应的温度计、湿度计,根据温湿度 计的测量结果得到温度τ 4和湿度D4,空气焓值14可由式(6)计算得到。
[0040] I4=1.01T4+ (2500+1. 84T4)D4 (6) 理论上,由于进风道的出口处和地下厂房洞室外距离接近,其温度和湿度的值也比较 接近,因此,式(6)中的温度T4和湿度D4也可以分别用初始温度?\和初始湿度Di来替代, 不需要设置温度湿度计重新测量。
[0041] S6,测定进风道入口处的风量Q3和进风道出口处的风量〇4,理想状态下Q3= Q4,并 结合空气焓值13和14计算进风岩体自然冷却量F 2,进风岩体自然冷却量F2可以通过式(7 ) 计算得到。
[0042] F2=CXQ3X (I3-14) (7) 其中,C为空气比热。
[0043] S7,测定通风空调系统的制冷机组制冷量Μ和通风空调系统的总耗功率W。
[0044] S8,根据通风排热量Fi、进风岩体自然冷却量F2、制冷机组制冷量Μ和总耗功率W 判断所述通风空调系统的效能,通风空调系统的效能弋可以通过式(8)计算得到。
[0045] A2= (F^ F2+M)/ff (8) A2是在水电站地下厂房在设计进风道的情况下得到的通风空调系统的效能数值,在这 种情况下需要考虑进风道中岩体自然冷却量的影响,该数值结合了洞室外温湿度参数和进 风量、进风道自然冷却后的空气温湿度参数和风量以及排风道口的空气温湿度参数和出风 量,通过对这几个数值的计算和比较能够准确得到通风空调系统的运行(制冷)效率和能耗 量的比值,从而评判通风空调系统的效能。该效能数值A 2可以单一地对一个通风空调系统 进行评判,也可以采集多个水电站地下厂房的通风空调系统的效能数值,并将这些效能数 值综合起来进行整体性判断,从而区分效能优劣,为确定能效等级奠定数据基础。
[0046] 由于工程不同,进风道受客观条件的限制,长短不同,对进风自然吸放热量不同, 因此进入的空气参数就不同,同时进风道的自然吸放热不消耗功率,会影响效能的评价,因 此将进风道的自然吸放热量单独计量,能更客观的反映通风空调系统的效能指标。进风道 的温降冷量作为空调制冷量的一部分。
【权利要求】
1. 地下厂房通风空调系统效能的评定方法,其特征在于:所述能效评定方法在地下厂 房外以及通风空调系统的排风道口设置温度计、湿度计和风量监测器,并包括以下步骤: 1) 测定初始温度?\和初始湿度Di并计算初始空气焓值Ii ; 2) 测定出口温度T2和出口湿度D2并计算其出口空气焓值12 ; 3) 测定初始风量%和出口风量Q2,并结合初始空气焓值L和出口空气焓值12计算通 风排热量; 4) 获取通风空调系统的制冷机组制冷量Μ和通风空调系统的总耗功率W ; 5) 根据通风排热量、制冷机组制冷量Μ和总耗功率W判断所述通风空调系统的效能。
2. 如权利要求1所述的地下厂房通风空调系统效能的评定方法,其特征在于:对直接 进风的地下厂房来说,所述初始温度和初始湿度是指地下厂房的洞室外的温度和湿度;对 于设置进风道的地下厂房来说,所述初始温度和初始湿度是指经过进风道自然冷却后的地 下厂房外的温度和湿度。
3. 如权利要求1所述的地下厂房通风空调系统效能的评定方法,其特征在于:对直接 进风的地下厂房来说,所述初始风量是指地下厂房的洞室外的风量;对于设置进风道的地 下厂房来说,所述初始风量是指经过进风道后的地下厂房外的风量。
4. 如权利要求1所述的地下厂房通风空调系统效能的评定方法,其特征在于:对设置 进风道的地下厂房来说,所述评定方法还包括计算进风岩体自然冷却量的步骤,所述计算 进风岩体自然冷却量的步骤具体包括以下步骤: 1) 测定进风道入口处的温度Τ3和湿度D3并计算入口处的空气焓值13 ; 2) 测定进风道出口处的温度T4和湿度D4并计算入口处的空气焓值14 ; 3) 测定进风道入口处的风量Q3和进风道出口处的风量Q4,并结合空气焓值13和1 4计 算进风岩体自然冷却量。
【文档编号】F24F11/00GK104089379SQ201410354726
【公开日】2014年10月8日 申请日期:2014年7月24日 优先权日:2014年7月24日
【发明者】林志勇, 徐蒯东, 颜加明 申请人:中国电建集团华东勘测设计研究院有限公司