快速响应的氩侧臂塔的循环方法

文档序号:4760296阅读:433来源:国知局
专利名称:快速响应的氩侧臂塔的循环方法
技术领域
本发明涉及一种低温空分方法。更具体而言,本发明涉及一种氩/氧分离所用的侧臂塔的重新启动。
从空气中回收氩的通常方法是利用双塔馏系统,该系统包括一个高压塔和一个低压塔,两者皆与再沸器/冷凝器热相联。通常,侧臂精馏塔附装于低压塔。氧产品从低压塔的塔釜导出,至少一股富氮物流从低压塔顶导出。经低压塔上升的部分蒸汽从中间位置导出并流入侧臂塔。这部分蒸汽相通常含5-20%(摩尔)的氩、痕量氮、及其余为氧,该蒸汽在侧臂塔中精馏以产生基本不含氧的富氩物流。通常这股富氩物流从侧臂塔的塔顶导出,其中氧含量为1ppm-3%(摩尔)的氧。
侧臂塔中的精馏是使液体回流液径位于侧臂塔顶部的、冷凝器流入侧臂塔来实现的。侧臂塔勿需包容在一个容器中,但可分成一个以上的容器,每个容器与下一容器串连,其蒸汽及液流以前一塔顶进入下一塔塔釜。第一容器的底部附装到低压塔,最后容器的顶部包含上所述的冷凝器。通常,侧臂塔的数目决定于对系统总高度的限制需要。塔的数目是基于操作需要和总高的限制。
由于氩和氧的样发性之间的差别较小,制备高纯氩物流需要侧臂精馏塔具有大量的理论级数。同样氩在空气中的浓度低。典型值低于1%(摩尔)的氩。侧臂塔的大尺寸和送入整个装置的空气中的氩的小流量两者使装置在过程中断之后缓慢地回到其稳定状态下的纯度和生产速率。在一个典型尺寸的侧臂塔的启动或重新启动中,通常大约需要30小时才能积累足够的液氩存留量,之后还需10小时使氩达合适的再分布以达到稳态组分分布。这样,总共需要40小时以重新启动侧臂塔。在这段时间内不能得到氩产品。
侧臂塔中氩的存留量的滞留可用生产小时来表示,当试图减少侧臂塔回到稳态条件所需的时间时,这对于现有技术是很重要的。由于塔顶的氧浓度可在1ppm以下,而塔釜的氧浓度在80%(摩尔)-95%(摩尔)之间,所以当塔积累液体留存量时,其富氩程度比正常供给侧臂塔的料流高得多。
德国专利DE 34 36 897和美国专利N0.5,505,051公开了在一个储器中保持侧臂塔的富氩液体留存量的方法。在侧臂塔重新启动之后,通过逐步降低储器的液位,逐步将富氩存留液返回侧臂塔,直到其回到稳态值。
德国专利DE 197 34 482公开了一种实践方法,不仅节省侧臂塔的存留量,而且将其贮存在一个以上的储器中。按照氩浓度将液体分储到几个储器中,不致使在塔中已得到的氩亚分无效。在侧臂塔重新启动之后,贮存的液体根据易挥发的氩的浓度回流到侧臂塔的不同部位。全部液体回流到侧臂塔作用回流液,除非塔中存在适当的蒸汽流量,否则该回流液或者积累在集液槽中或者沾污低压塔塔釜中的氧产品。这一专利说明在侧臂塔中保留氩存留液的重要性以及为减少重新启动氩侧臂塔所需时间而保持稳态浓度分布的重要性。
因此,一方面,本发明是一种在蒸馏系统中用低温蒸馏分离含氧、氮和氩的混合物的方法,其中该系统包括产生富氮物流、富氧物流和富氩物流的蒸馏塔;带集液槽并接受来自蒸馏塔的富氩物流的侧臂塔。方法的特征在于,在中断富氩物流流入侧臂塔时,侧臂塔中的存留液收集在高于集液槽的部位,并在侧臂塔中断期间和重新启动期间经侧臂塔循环。
另一方面,本发明是一种在蒸馏系统中用低温蒸馏分离含氧,氮和氩的混合物的方法,其中系统包括产生富氮物流、富氧物流和富氩物流的蒸馏塔和接受来自蒸馏塔的富氩物流的侧臂塔。该法的特征在于,在中断富氩物流流入侧臂塔时,收集和保留中断期间侧臂塔中的存留液,然后在侧臂塔重新启动之前和启动期间经侧臂塔循环该存留液。


图1表示本发明一个实施方案的流程图,其中采用一个收集器,液体从两个点重新引入塔内。
图2表示本发明另一实施方案的流程图,其中采用一个内储器,液体从两个点重新引入塔内。
图3表示本发明又一实施方案的流程图,其中采用一个外储器,液体从两个点重新引入塔内。
图4表示本发明再一实施方案的流程图,其中采用两个分开的内储器,每一个从单点进塔循环。
图5表示本发明再一实施方案的流程图,其中第二侧臂塔起储器的作用,如由液体循环到第一侧臂塔;以及图6表示本发明又一实施方案的流程图,其中循环发生在第一和第二侧臂塔两个塔内。
本发明提出了用于重新启动氩侧臂塔的有效而易操作的方法,本发明可用于制备含任何含可接受氧浓度的氩,但通常氧含量在ppm量-3%(摩尔)的范围内。在这个方法中,含氧,氮和氩(通常为空气)的进料物流经蒸馏,氩在低温蒸馏系统中回收。该系统包括至少一台蒸馏塔,该塔产生的富氮物流从塔顶流出,氧产品物料从塔釜流出。该塔还产生含氩的中间物流并将其送入侧臂塔。本发明包括在操作中断时保留侧臂塔的富氩存留液,然后在该塔重新启动之前和启动期间将其连续送入该侧臂塔。
在侧臂塔停车期间,可能继续循环存留液。但这样会带来不必要的高额能源费用。相反,最好恰在重新启动该塔之前开始循环存留液。循环开始以后,循环在整个启动过程中一直进行。一般说来,当塔重新达到稳态条件时,重新启动才完成。在侧臂塔重新在稳态下操作时,循环才可停止。在启动过程中,当侧臂塔达到稳态条件时,循环可逐渐减小。此外,当侧臂塔从停车进展到其正常操作条件时,循环的存留液量逐渐减少。
在一种优选的模式中,富氩存留液应该保留在多个储器中,以便保持在侧臂塔中存在的氩浓度分布。同时在这个模式中,每一份保留的存留液应循环到侧臂器的不同区段。循环区段的选择应是基于液体的氩浓度,要使氩浓度较高的液体加到塔的较高位置上。
现在将参照图1所示的实施方案详细叙述本发明。由低温蒸馏过程供给含氩蒸汽流,以物流102表示。这股含氩物流可含3%(摩尔)-25%(摩尔)的氩(但典型含量为5%(摩尔)-15%(摩尔)的氩),该物流作为釜料送入侧臂塔100。送入侧臂塔的含氩物料经蒸馏,以减少上升蒸汽中的氧浓度,并产生塔顶蒸汽105和塔釜液流103。塔釜液流返回到低温蒸馏过程。来自侧臂塔的塔顶蒸汽105至少部分在再沸器/冷凝器104中冷凝,以形成两相物流,该物流然后经过分离器106,以收集用于侧臂塔的回流液物流108以及纯化的氩物流107。虽然未在图1示出,氩产品同样可以液体形式从侧臂塔回收。侧臂塔亦可分成一个以上的容器,其间每个容器由蒸汽相和液体物流相互联结。
根据本发明,过程中断时使蒸汽流102减少,或者完全停止流动,来自收集器111以上的各塔段的存留液被收集器111收集,并经物流112和泵113以液体循环返回到侧臂塔100的一个或多个上部区段中。在这个方案中,循环发生在整个停车期间。图1表示液体用泵113经物流114和115循环返回到上部区段109和110的情况。上部区段可不像图1所示的那样接近,而是可由一个或多个其它塔区段隔开。由于用以支持全部保留液体所需的蒸汽物流102的流量已不复存在(或者不足以支持全部液体),所以以物流114和115返回塔的液体将从塔的内部构件流下,并重新被收集器111收集。按照这种方式液体可经塔的所需一个区段或几个区段循环,而与蒸汽物流102或在正常操作期间提供液体通道的再沸器/冷却器104无关。
积累和循环的液体是收集器111以上的塔内部构件中的液体,这些液体否则将沿塔流下。相对于蒸汽流动以支持液体所必须的典型的塔的内部构件包括塔板、填料和分配器装置。通常蒸馏塔板或结构性填料包括在侧臂塔和蒸馏塔两者中的塔内部构件。收集器111可位于塔顶或塔釜以及任一其它的中间位置。当塔重新启动并且蒸汽物流102的流量增加以致需要一些塔液时,则在循环区段中的液体通道的百分比下降。这可容许某些液体沿塔向下流动并提供洗脱上升汽流所必需的正常液体。当蒸汽物流102重新完全回复到其正常流量时,勿需再循环液体,并且收集器111和泵113解除工作。
图1所述的本发明的实施方案与现有的方法相比,一个优点在于存留液的收集和循环容许重新建立氩浓度分布,而与蒸汽物流102无关。这一优点以容许在任何侧臂进料蒸气冷凝之前用保留的高度富集氩的存留液充满塔的内部构件本身证明了。侧臂塔进料中氩浓度低,因此在塔的上部的冷凝将沾污其后加入的存留液。通过不容许存在的蒸汽冷凝,可在添加留存液时,保持侧臂塔的液体浓度分布。较快地重新建立浓度分布容许塔较快地重新启动。与蒸汽物流102和再沸器/冷却器104无关地操作侧臂塔区段内的液体流量对瞬态负荷变化期间(例如增加或减少进料或生产速率)的塔操作同样具有好处。
图2表示本发明的另一实施方案。对于示于图2的过程,当过程中断引起蒸汽物流102减少或者完全停止流动时,来自储器211以上的多个塔段的存留液被收集和保留在侧臂塔内部的储器211之内。这点与图1所示的实施方案不同,后者在整个中断和停留期间塔的存留液未被保留(而是不断循环)。这里,留存液可将留在储器211内,直到它循环返回到侧臂塔100的一个或多个上部区段。如上所述,循环入两个区段是通过物流112到泵113,然后以物流114和115进入塔的上部区段。
图2所示的实施方案具有一特殊的优点。由于液体保存在塔内,勿需额外设置用于从储器211蒸发的管道,因为它已经构成侧臂塔100的正常结构的一部分。本方案的另一优点在于储器211也可在正常操作期间用来监测塔液位,如将它设计为侧臂塔的集液槽,在这种情况下,构成储器211及其伴随的监测设备的基本投资将大幅度减小,因为侧臂塔的集液槽可用来贮存存留液,直至它按上述方式进行循环。
图3表示本发明又一实施方案,并作为图2的替代过程。在过程中断时,在收集装置以上的塔段的存留液作为物流311收集并保留在侧臂塔100外的储器312中。由于储器312处于塔外,从储器312的顶部由于液体蒸出而产生蒸汽物流313必须被除去并送入塔100。侧臂塔存留液可保留在储器312中,直到它经泵113作为物流114和/或115循环返回到侧臂塔100的一个或多个上部区段。图3的方案的特殊优点在于,它可容易用最低的基建投资改造现存的侧臂塔。
图4表示本发明的又一实施方案。对于图4所示的过程,在过程中断时,来自侧臂塔100的液收集并保留在储器411和421中。当然可采用任意数量的储器。此外,这些储器可置于侧臂塔内,亦可置于塔外。在侧臂塔100重新启动时,每个储器的液体分别循环返回侧臂塔的一个或几个不同的上部的塔区段。图4实施方案的优点在于,多个储器容许分别贮存和循环不同氩浓度的留存液。这容许在使先前花费的分离功的损失最小的情况下重建侧臂塔100的氩浓度分布。这种类型的实施方案特别适用于侧臂塔分成两个或更多的容器且每个容器均有集液槽的情况。在这种情况下,每个集液槽可构成内部储器411和421,因而大幅度降低总基建投资。每个储器的存留液然后可循环区回到相应的重新启动前收集存留液的容器的顶部。图5正好是这样一个实施方案。
图5表示含氩蒸汽物流它作为物流102由低液蒸馏过程提供。这股含氩物流102可含3%(摩尔)-25%(摩尔)的氩,但典型物流含5%(摩尔)-15%(摩尔)的氩,这股物流送入第一侧臂塔500作塔釜进料。进入侧臂塔的含氩进料经蒸馏以减少上升蒸汽中的氧含量,并产生塔顶蒸汽503和塔釜液流502。塔釜液流用泵501经物流103传送到低温蒸馏过程,塔顶蒸汽503送入第二侧臂塔504作塔釜进料。这股含氩进料再经蒸馏,以减少上升蒸汽中的氧含量,并产生塔顶蒸汽物流105和塔釜液体物流505。
塔釜液体物流505用泵506经物流507返送到第一侧臂塔500作塔顶液体进料。来自第二侧臂塔504的蒸汽物流105至少部分在再沸器/冷凝器104中冷凝,以生成两相物流,然后再经分离器106,以物流108收集作为第二侧臂塔504的回流液,以及收集纯氩物流509。物流509进入氩纯化塔510以作为进料物流。
进料物流509在塔510中被精馏和洗涤,产生塔釜物流512和塔顶物流511,前者为纯化的氩,后者含较浓的氮杂质。进料物流513通常是纯化的氧物流,作再沸器514的负载。同时氩产品可从第二个侧臂塔顶部作为分离器106的液体流出,这点未示于图5。
根据本发明,在过程中断时,来自第二侧臂塔504的存留液收集到塔的集液槽中。在侧臂塔500和504重新启动时,在第二侧臂塔504集液槽中所含的液体经物流508循环返回到第二侧臂塔504的集液槽上面的位置。该液体的一部分亦可循环返回到第一侧臂塔500。
图6表示本发明又一实施方案,当过程中断使蒸汽流102减少或者流动完全停止时,来自第一侧臂塔500的存留液保留在塔500的集液槽中,来自第二侧臂塔504的存留液保留在塔504的集液槽中。在侧臂塔500和504重新启动时,保留在第一侧臂塔500集液槽中的液体循环返回到第一侧臂塔500的集液槽上面的位置。同时保留在第二侧臂塔504集液槽中的液体经物流508循环返回到第一侧臂塔504的集液槽上面的位置。
本发明的方法再用下列实施例说明。重新启动氩侧臂塔的操作按几个不同的情景进行动力学模拟。模拟确定塔在全回流情况下重新启动之后在氩侧臂塔顶总产上次得到氧杂质为1ppm的时间。重新达到氩产品的全生产流量的时间要更长些。下表列出了与基准例相比的改进百分率的结果
这些模拟实施例为1.基准例-在中断时不保留任何侧臂存留液,在重新启动时不添加或不循环存留液。
2.现有技术(汽级80)-按德国专利34 36 897,保留从顶部80理论级的存留液,在重新启动时作为蒸汽流添加到塔段的底部。
3.现有技术(液级1)-按德国专利34 36 897和美国专利No.5,505,051保留从顶部80理论级的存留液,在重新启动时作为液流添加到塔段的顶部。
4.图2的发明-保留从顶部80理论级的存留液,在重新启动之前通过该塔段循环该液体。
5.图4的发明-分别保留从顶部80理论级和从底部120理论级的存留液,在重新启动前通过该两塔段分别循环该液体。
例1是常规氩侧臂塔重新启动程序的对比模拟,其中不保留存留液,这种情况下,重新启动时无任何物流可用。
例2和例3代表现有技术,其中保留部分塔板的留存液,然后在重新启动时回添到该部分塔板。保留的存留液以恒定速度返回。留存液或者蒸发并添加到该塔段的底部或者以液体形式返回到顶部。
例如4和例5代表本发明的方法。例4保留的存留液与例2和例3的相同。例4与例3相比其重新启动时间减少14%,因为通过液体循环重新恢复了氩浓度分布。例5保留侧臂塔两个塔段的存留液,并分别循环到相应在的塔段。例5和基准例相比,重新启动时间缩短了63.6%。从这些例子值得指出,保留和循环侧臂塔存留液可以显著减少氩侧臂塔重新启动所需的时间。
虽然本文的叙述参照某些具体实施方案,但本发明不应受所述细节的限制。反之,在权利要求的范围和等效范围内,在不偏离本发明的实质下可对细节作不同的修正。
权利要求
1.一种在蒸馏系统中用低温蒸馏分离含有氧、氮和氩的混合物的方法,其中该系统包括产生富氮物流、富氧物料和富氩物流的蒸馏塔;带集液槽并接受来自该蒸馏塔的富氩物流的侧臂塔,该方法的特征在于,在中断该富氩物流流入该侧臂塔期间该侧臂塔中的存留液收集在高于集液槽的部位,并在该侧臂塔中断期间和重新启动期间通过该侧臂塔循环该存留液。
2.权利要求1的方法,其特征在于,该循环的存留液在该收集点以上的一个位部重新进入该侧臂塔。
3.权利要求1的方法,其特征在于,该循环的存留液在该收集点以上的一个以上的部位重新进入该侧臂塔。
4.权利要求1的方法,其中该含有氧、氮和氩的混合物为空气。
5.权利要求1的方法,其中该蒸馏塔和侧臂塔之一或两者有结构性填料内部构件。
6.权利要求1的方法,其中该蒸馏塔和侧臂之一或两者具有蒸馏塔板内部构件。
7.一种在蒸馏系统中用低温蒸馏分离含有氧、氮和氩的混合物的方法,其中该系统包括产生富氮物流、富氧物流和富氩物流的蒸馏塔,和接受来自该蒸馏塔的富氩物流的侧臂塔,该方法的特征在于,在中断富氩物流流入该侧臂塔期间,收集和保留中断期间侧臂塔中的存留液,然后在该侧臂塔重新启动之前和启动期间经该侧臂塔循环该存留液。
8.权利要求7的方法,其中该含有氧、氮和氩的混合物为空气。
9.权利要求7的方法,其特征在于,该存留液在循环开始之前保留在位于该侧臂塔内的储器内。
10.权利要求7的方法,其特征在于,该存留液在循环开始之前保留在位于该侧臂塔外的储器内。
11.权利要求7的方法,其特征在于,该循环包括被保留的存留液进入该侧臂塔的一个部位。
12.权利要求7的方法,其特征在于,该循环包括被保留的存留液进入该侧臂塔内的一个以上的部位。
13.权利要求7的方法,其特征在于,该存留液被保留在一个以上的储器中,其中每个储器按照氩浓度保留存留液。
14.权利要求13的方法,其特征在于,保留在一个以上的储器中的每一存留液分别循环到侧臂塔的不同部位。
15.权利要求7的方法,其中该蒸馏塔和该侧臂塔之一或两者具有结构性填料内部构件。
16.权利要求7的方法,其中该蒸馏塔和该侧臂塔之一或两者具有蒸馏塔板内部构件。
17.权利要求9的方法,其中该侧臂塔有一舱位于该侧臂塔的底部的集液槽,其中位于该侧臂塔内的该储器即是集液槽。
全文摘要
一种在蒸馏系统中用低温蒸馏分离含有氧、氮和氩的混合物的方法,其中该系统包括产生富氮物流、富氧物料和富氩物流的蒸馏塔;带集液槽并接受来自该蒸馏塔的富氩物流的侧臂塔。在中断该富氩物流流入该侧臂塔期间该侧臂塔中的存留液收集在高于集液槽的部位,并在该侧臂塔中断期间和重新启动期间通过该侧臂塔循环该存留液。
文档编号F25J3/04GK1264026SQ00101920
公开日2000年8月23日 申请日期2000年1月28日 优先权日1999年1月29日
发明者O·J·史密斯, D·M·埃斯皮 申请人:气体产品与化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1