专利名称:制冷剂压缩机和采用该压缩机的冷冻制冷装置的制作方法
技术领域:
本发明涉及以二氟甲烷(ヅフルォ口メタン)为制冷剂的制冷剂压缩机及采用该压缩机的冷冻制冷装置。
现有的冷冻制冷装置中的制冷剂通常采用的是氯二氟甲烷(R22,沸点-40.8℃)。但是,R22对臭氧的破坏性大,当放出到大气中的R22到达地球上空的臭氧层时,可破坏该臭氧层,从而成为氟里昂(フ口ン)的限制对象。
该臭氧层的破坏,是制冷剂中的氯基(Cl)引起的。因此,用不含氯基的制冷剂、例如R407C(R32、R125、R134a)、R410A(R32、R125)、二氟甲烷(HFC-32、R32、沸点-52℃)等替代制冷剂。
但是,R407、R410A的地球温暖化效果(GWP)高,而二氟甲烷的地球温暖化效果(GWP)比较小且效率高(COP约提高10%),所以R22认为是较好的替代制冷剂。
但是,当用二氟甲烷的旋转式压缩机压缩时,因为压缩后的二氟甲烷的温度与已往的制冷剂(R22)相比为高温,所以可使旋转式压缩机中采用的润滑油和二氟甲烷本身的化学稳定性降低,从而导致冷冻制冷装置本身的性能和可靠性降低的问题。
本发明是鉴于上述问题而作出的,其目的在于提供一种旋转式压缩机和采用该旋转式压缩机的、具有制冷回路的冷冻制冷装置。上述旋转式压缩机,即使采用二氟甲烷作为制冷剂,也不会破坏旋转式压缩机内的润滑油和二氟甲烷的化学稳定性,其具有高性能和高可靠性。
本发明的制冷剂压缩机,包括把若干旋转压缩要素收容在单一的密闭容器内,该旋转压缩要素分别具有在气缸内部旋转的转子和通过与该转子相接而在上述气缸内形成压缩空间的叶片,构成可将上述密闭容器外吸入的制冷剂依次被上述若干个压缩素压缩后,排出上述密闭容器外的制冷剂回路;上述制冷剂是采用二氟甲烷,并且,在连接于上述压缩要素间的制冷剂回路中,具有用于冷却上述制冷剂的中间冷却器。采用二氟甲烷作为制冷剂,在旋转压缩要素间的制冷剂回路中设置中间冷却器,该中间冷却器用于冷却经过若干级压缩后的二氟甲烷。
这样,通过被吸入到后级的旋转式压缩机内的二氟甲烷温度的降低,最终,使被压缩的二氟甲烷的温度降低,从而不破坏润滑油和二氟甲烷的化学稳定性。
本发明的冷冻制冷装置,用制冷剂配管把构成该制冷剂回路的制冷剂压缩机、冷凝器、膨张阀和冷却器连接成环状,采用二氟甲烷作为制冷剂,在冷冻制冷回路中设置了冷却二氟甲烷的过冷却器。
这样,通过被吸入到旋转式压缩机内的二氟甲烷温度的降低,使压缩后的二氟甲烷的温度降低,从而不破坏润滑油和二氟甲烷的化学稳定性。
本发明的冷冻制冷装置,在连接于上述旋转要素之间的制冷剂回路中,设有具有冷却上述制冷剂的中间冷却器的冷却压缩机、冷凝器、膨张阀和冷却器,用制冷剂配管把该压缩机、冷凝器、膨张阀和冷却器连接成环状,采用二氟甲烷作为制冷剂,在旋转压缩要素间的制冷剂回路中设置中间冷却器,该中间冷却器可冷却经过若干级压缩后的二氟甲烷,并且,在冷冻制冷流路中,设置冷却二氟甲烷的过冷却器。
这样,通过被吸入到旋转式压缩机内的二氟甲烷温度的更加降低,使压缩后的二氟甲烷的温度也更加降低,从而不破坏润滑油和二氟甲烷的化学稳定性。
下面,参照
本发明一实施例。
图1是在本发明一实施例冷冻制冷装置内的两个气缸式旋转式压缩机的纵断面图。
图2是在本发明一实施例冷冻制冷装置中的冷冻制冷回路图。
图3是在本发明一实施例冷冻制冷装置内的冷冻制冷回路中的莫里尔热力学计算图。
图1是本发明冷冻制冷装置中的旋转式压缩机的纵断面图。
图中,1是旋转式压缩机,具有构成旋转压缩要素的两个气缸。该压缩机1具有电动要素(电动机)3和旋转压缩要素5。电动要素3位于密闭容器2内的上部,该密闭容器2是将铁板深冲加工成金属筒,并将该金属筒的开口堵塞而构成的。旋转压缩要素5设在该电动要素3的下方,且被电动要素3的旋转轴4驱动旋转。
上述密闭容器2的下部作为润滑油存储槽,密闭容器2由容器体(金属筒)2A和密闭该容器体2A开口的密闭盖2B构成。容器体2A可收容上述电动要素3和旋转压缩要素5。在密闭盖2B上,安装着向电动要素3供给电力用的密封终端端子(配线未表示)6。
电动要素3由转子7和定子8构成。转子7是在由若干片电磁钢板叠置成的叠层体10的内部,收容图未表示的永久磁铁而构成的。定子8为环状,是将定子绕组11插入由若干片电磁钢板叠置成的叠层体12的槽内面构成的,并配置在转子7的周围。9是平衡配重。
该构造称为直流马达,但也可以采用具有筐型转子的、称为感应电动机的马达。
用于汽车等的空调,也可以构成为以汽车发动机等作为驱动源的开放型旋转式压缩机。
旋转压要素5,由板(中间分隔板)13;安装在该板13上下的上下气缸14、15;借助旋转轴4的上下偏心部16、17的旋转将该上下气缸14、15内部旋转的上下转子18、19;与该上下转子18、19相接并将上下气缸14、15内分为高压室和低压室的上下叶片20、21;闭塞上下气缸14、15的上下开口且容许上述旋转轴4旋转的主框22、轴承板23构成。
上述部件是按照主框22、上气缸14、板13、下气缸15、轴承板23顺序配置,并由螺栓24连接。
在上述旋转轴4上,设有向上述旋转压缩要素5的各滑动部供给润滑油的给油孔25。在旋转轴4的外周面上,形成与该给油孔25连通的、将润滑油导向上下转子18、19内侧的给油沟槽26。在上述上下叶片20、21上,设有经常推压上述上下转子18、19的弹簧27。
润滑油可采用矿物油、烷基苯油、醚油、酯油等现有的润滑油。
在上下气缸14、15上设有导入制冷剂用的上下导入管(图未表示),还分别设有排出制冷剂用的上下出口管30、31。而且在这些上下导入管和上下出口管30、31上,分别连接着制冷剂配管32、33、34。
50是支承密闭容器2用的台座,36是消音器。
该构造的旋转式压缩机1,通过电动要素3通电后的旋转,使压缩要素5的上转子18、下转子19旋转。借助上转子18的旋转,制冷剂通过吸入侧制冷剂配管33、上导入管最终被吸入到上气缸14内,该制冷剂被压缩后,压缩制冷剂从上出口管30排到制冷剂配管34。
该制冷剂配管34通过中间冷却器34与消音器36相连,被上气缸14压缩后的制冷剂,在消音器36内与后述冷却后的制冷剂混合后,借助下转子19的旋转,使通过下导入管的制冷剂被吸入到下气缸15,该制冷剂被压缩后,压缩制冷剂从下出口管31排到制冷剂配管32。
中间冷却器34是使制冷剂与空气进行热交换的热交换器,只要是能使制冷剂温度下降的构造即可。
下面,参照图2、以及图3所示的莫里尔热力学计算图,对采用上述构造旋转式压缩机1的制冷剂回路进行说明。
设在旋转式压缩机1的下气缸15上的下出口管31和冷凝器37,通过排出侧制冷剂配管32连接,该冷凝器37和冷却器38,通过膨张阀39由制冷剂配管40连接。该冷却器38和旋转式压缩机1的上气缸14的上导入管,由吸入侧制冷剂配管33连接。
在连接上述冷凝器37和膨张阀39的制冷剂配管40上,设有通过旁通膨张阀41与过冷却器42连接的旁通管43。
来自过冷却器42的过冷却器制冷剂配管44,和从旋转式压缩机1的上气缸14的上出口管30,通过中间冷却器35得到的连接制冷剂配管34,在消音器36内结合后,与下气缸15的图未表示的下导入管29连接。
过冷却器42由双重管构成,来自旁通管43的制冷剂在内侧流动,制冷剂配管40的制冷剂在外侧流动。也可以相反地,使制冷剂配管40的制冷剂在内侧流动,使旁通管43的制冷剂在外侧流动。
只要是能使旁通管43的制冷剂与制冷剂配管40的制冷剂进行热传导式接触的构造即可。
上述旁通管43分支后的制冷剂配管40,可与过冷却器42连接,在过冷却器42,经过了制冷剂配管40的制冷剂和被旁通膨张阀41减压并由该过冷却器42蒸发后的制冷剂,可热传导式地接触,经过了制冷剂配管40的制冷剂被冷却后,成为了过冷却状态。然后,该被冷却了的制冷剂被供给上述的膨张阀39。
因此,被两个气缸的旋转式压缩机1压缩后成为高温高压的二氟甲烷气体制冷剂,被冷凝器37冷却,再被过冷却器42冷却到过冷状态后,被膨张阀39减压。然后,流入冷却器38并蒸发散热的二甲烷气体制冷剂,再从吸入侧制冷剂配管33返回旋转式压缩机1。
被冷凝器37冷凝后的制冷剂的一部分,分流到旁通管43,被旁通膨张阀41减压后,被过冷却器42蒸发,从制冷剂配管40内的制冷剂中吸热。在过冷却器42吸热而生成的气体状制冷剂,与被上气缸14压缩成为高温高压的气体状制冷剂混合,且降低高温高压气体制冷剂的温度后,被下气缸15吸入。由过冷却器42吸热后的制冷剂,比上气缸14排出的高温高压制冷剂温度低。
图3是本发明冷冻制冷装置的冷冻制冷回路中的莫里尔热力学计算图。
图3中的A点表示被下气缸15吸入的制冷剂的状态(由过冷却器42蒸发的制冷剂和从压缩机1的上气缸14排出的制冷剂二者合流的制冷剂),B点表示从下气缸15排出的制冷剂的状态。
B点是,在同压下,比没有中间冷却器35、并且没有过冷却器的制冷剂状态的(用B′所示的制冷剂状态)低温情况。
C点表示被冷凝器37冷凝(液化)后、到达旁通膨张阀41入口的制冷剂的状态。D表示被该旁通膨张阀41减压后的制冷剂的状态。该D所示的制冷剂,是通过过冷却器42蒸发而气化,从而形成A所示状态的制冷剂。经过了制冷剂配管40的制冷剂,借助由旁通膨张阀41减压的制冷剂的蒸发,被冷却到E所示状态。
被过冷却后成为E所示状态的制冷剂,被膨张阀39减压,形成F所示状态的制冷剂。然后,由冷却器38蒸发,形成如G点所示那样吸热而且高温的制冷剂。
H表示被上气缸14压缩后生成的高温高压的制冷剂状态,该制冷剂与通过上述过冷却器42的蒸发而使压力降低,温度上升的制冷剂(但如前所述,比上气缸14排出后的高温高压制冷剂温度低)混合,从而形成如A所示状态那样,温度降低了的制冷剂并被下气缸15吸入。
如上所述,即使经过若干级压缩,也可降低旋转式压缩机1的排出气体温度。因此,在旋转式压缩机1上不需要设置特别的机构,来压缩二氟甲烷,并且也不会破坏二氟甲烷制冷剂本身和润滑油的化学稳定性。
上述的冷冻制冷装置,在不变更其主要部分的前提下可作各种变形,可以是家庭用空调、工作用空调(小型空调)、汽车用空调、家庭用电冰箱、工作用电冰箱、工作用冰柜、工作用冷冻冷藏柜、橱窗、自动售货机等其它实施形态。
本发明不限定于上述实施例,在权利要求的范围内,在不偏离主旨的前提下,可作各种变形。
本发明的制冷剂压缩机由于具有中间冷却器,使从旋转式压缩机排出的制冷剂即二氟甲烷的温度降低,且不会破坏润滑油和二氟甲烷的化学稳定性,所以可提高冷冻制冷装置的性能和可靠性。
本发明的冷冻制冷装置由于具有过冷却器,使从旋转式压缩机排出的制冷剂即二氟甲烷的温度降低,且不会破坏润滑油和二氟甲烷的化学稳定性,所以可提高制冷装置的性能和可靠性。
本发明的冷冻制冷装置由于具有中间冷却器和过冷却器,可使从旋转式压缩机排出的制冷剂即二氟甲烷的温度更加降低,且不会破坏润滑油和二氟甲烷的化学稳定性,所以可更加提高冷冻制冷装置的性能和可靠性。
权利要求
1.制冷剂压缩机,其特征在于,把若干旋转压缩要素收容在单一的密闭容器内,该旋转压缩要素分别具有在气缸内部旋转的转子和通过与该转子相接而在上述气缸内形成压缩空间的叶片,构成可将上述密闭容器外吸入的制冷剂依次被上述若干个压缩素压缩后,排出上述密闭容器外的制冷剂回路;上述制冷剂是采用二氟甲烷,并且,在连接于上述压缩要素间的制冷剂回路中,具有用于冷却上述制冷剂的中间冷却器。
2.冷冻制冷装置,其特征在于,把若干旋转压缩要素收容在单一密闭容器内,该若干旋转要素分别具有在气缸内旋转的转子和与通过该转子相接而在上述气缸内部形成压缩空间的叶片,以及构成可将上述密闭容器外吸入的制冷剂依次被上述若干个压缩素压缩后,排出密闭容器外的制冷剂回路;而且用制冷剂配管把构成该制冷剂回路的制冷剂压缩机、冷凝器、膨张阀和冷却器连接成环状;上述制冷剂是采用二氟甲烷,且该制冷却压缩机在上述冷冻制冷回路中,具有过冷却器,该过冷却器可将被上述制冷剂压缩机压缩后所排出的制冷剂温度降低。
3.冷冻制冷装置,其特征在于,把若干旋转压缩要素收容在单一的密闭容器内,该旋转压缩要素分别具有在气缸内旋转的转子和通过与该转子相接而在气缸内部形成压缩空间的叶片,以及构成可将上述密闭容器外吸入的制冷剂依次被上述若干压缩要素压缩后,排到密闭容器外的制冷剂回路;而且在连接于上述旋转要素之间的制冷剂回路中,设有具有冷却上述制冷剂的中间冷却器的冷却压缩机、冷凝器、膨张阀和冷却器,用制冷剂配管把该压缩机、冷凝器、膨张阀和冷却器连接成环状;上述制冷剂是采用二氟甲烷,并且,该制冷剂压缩机在冷冻制冷回路中具有过冷却器,该过冷却器可将被上述制冷剂压缩机压缩后所排出的制冷剂的温度降低。
全文摘要
本发明提供即使采用二氟甲烷作为制冷剂,也不破坏润滑油和二氟甲烷的化学稳定性、可提高性能和可靠性的旋转式压缩机及冷冻制冷装置。若干个旋转压缩要素收容在单一的密闭容器2内,从密闭容器2外吸入的制冷剂依次经过若干压缩要素压缩后,排出密闭容器2外,从而构成制冷剂回路,采用二氟甲烷作为制冷剂,在连接于旋转压缩要素间的制冷剂回路中,设置用于冷却制冷剂的中间冷却器35。
文档编号F25B31/02GK1279386SQ0010923
公开日2001年1月10日 申请日期2000年6月19日 优先权日1999年7月6日
发明者小松原健夫, 江原俊行 申请人:三洋电机株式会社