超低温深冷混合液化器的制作方法

文档序号:4782235阅读:462来源:国知局
专利名称:超低温深冷混合液化器的制作方法
技术领域
本发明一般涉及冷冻,更具体地说,涉及产生致冷作用对液化需要超低温的气体诸如氢气进行液化。
某些气体如氖、氢或氦的液化,需要形成非常低温的致冷。例如常压下氖于27.1K液化,氢于20.39K液化,而氦于4.21K下液化。产生这样的低温致冷,费用很大。由于在诸如能量产生、能量传输及电子学领域中氖、氢或氦流体的应用变得日益重要,对这些流体液化系统的任何改进都是非常需要的。
脉冲管致冷,其中通过对气体提供压力脉冲形成致冷,是用于液化诸如氖、氢及氦的流体的,但是这种应用只对较小规模才有效。
因此,本发明的目的在于,提供一种致冷改良系统,对难液化诸如氖、氢或氦的流体产生足以使之液化的致冷。
本发明的另一目的在于,提供一种使难于液化诸如氖、氢或氦的流体进行液化的致冷系统,能够操作达到较高生产能力。
上述和其它目的通过本发明均可达到,本领域技术人员在阅读本发明披露之后都会很明白的,其内容之一为在超低温条件下形成产物流的方法包括(A)、压缩多组分致冷剂流,冷却该压缩后的多组分致冷剂流,产生冷却后的多组分致冷剂流,并膨胀该冷却后的多组分致冷剂流,使该多组分致冷剂流至少部分冷凝;(B)、压缩脉冲管气体,产生热的压缩脉冲管气体,通过与至少被部分冷凝的该多组分致冷剂流进行间接热交换,来冷却该热的压缩脉冲管气体,产生冷却后的压缩脉冲管气体及升温后的多组分致冷剂流,并通过与冷传热介质直接接触,进一步冷却该冷却后的压缩脉冲管气体,产生冷脉冲管气体和升温后的传热介质;(C)、膨胀冷脉冲管气体,产生超低温脉冲管气体,并产生一种气体压力波,压力波压缩并加热脉冲管工作流体,再通过与升温后的多组分致冷液的间接热交换,冷却该加热后的脉冲管工作流,产生进一步升温后的多组分致冷剂流;及(D)、将超低温脉冲管气体送去与产物流进行间接热交换,产生超低温条件的产物流,然后将所得脉冲管气体送至与升温后的传热介质直接接触,产生所述冷传热介质。
本发明的另一方面为生产处于超低温条件的产物流的设备包括(A)、压缩机,多组分致冷剂流热交换器,将来自压缩机的流体输送至该多组分致冷剂流热交换器的设备,膨胀器,及将该多组分致冷剂流热交换器中的流体输送至膨胀器的设备;(B)、包括再生器热交换器和内盛传热介质的再生器主体再生器,用于在再生器内产生脉动流的气体增压设备,及将流体从膨胀器送至再生器热交换器的设备;(C)、包括脉冲管热交换器和脉冲管主体的脉冲管,用于将流体从再生器热交换器输送至脉冲管热交换器的设备,及将流体从脉冲管热交换器输送至多组分致冷剂流热交换器的设备;及(D)、在再生器主体与脉冲管主体间输送气体的通道设备,所述通道设备包括产物流热交换器,对产物流热交换器提供产物流的设备,和在超低温条件下从产物流热交换器中抽出产物流的设备。
这里所用术语“多组分致冷剂流”指的是一种包括两种或更多种物质并能够产生致冷作用的流体。
这里所用术语“可变负荷致冷剂”指的是由两种或多种组分构成的一种混合物,其比例可使这些组分的液相在该混合物的泡点及露点间进行连续升温变化。混合物的泡点指的是在给定压力下只要加热整个处于液相的混合物就形成与液相平衡的蒸汽相的温度。混合物的露点温度指的是在给定压力下只要撤热整个处于汽相的混合物就形成与汽相平衡的液相的温度。因此,在混合物泡点与露点间的温度区就是汽液两相平衡的共存区。在实施本发明中,对于该可变负荷致冷剂的泡点与露点间的温差至少10°K,优选至少20°K,最优选至少50°K。
这里所用术语“超低温条件”指温度在90K或以下的条件。
这里所用术语“间接热交换”指的是,使几种流体在无任何实体接触或彼此互不混合情况下所进行的热交换。
这里所用术语“膨胀”指实行压力降低的过程。
这里所用术语“大气气体”指指的是下述气体之一氮(N2)、氩(Ar)、氪(Kr)、氙(Xe)、氖(Ne)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氘(D2)、氢(H2)、及氦(He)。


图1说明本发明一组优选实施方案的流程示意图,其中多组分致冷剂流的致冷系统是与脉冲管致冷系统组合而成的。
图2为本发明另一优选实施方案的流程示意图,其中一个活性磁再生器致冷系统是与脉冲管致冷系统组合而成的。
一般本发明包括利用非脉冲管系统产生非常低温的致冷系统,优选为一种多组分致冷剂流的致冷系统,或一种活性磁再生器的致冷系统。该非脉冲管系统按定义方式与脉冲管系统组合一体,从而不使由该脉冲管系统所产生的热进入该非脉冲管系统中,使脉冲管系统有效产生超低温致冷,使较大量产物流体进入超低温条件。
现参照附图对本发明加以更详细描述。参考附图1,多组分致冷剂流310经压缩机311压缩至压力一般达60-1000磅/平方英寸(绝)(psia)的范围。用于实施本发明的多组分致冷剂流包括至少一种大气气体,优选为氮、氩及/或氖,和优选至少一种含碳数多至4个的氟化合物,诸如碳氟烃、氢碳氟烃、氢氯化碳氟烃及碳醚,及/或至少一种其碳原子数多至3个的烃。
压缩后的多组分致冷剂流312,在冷却器313中通过与适宜的冷却液体如水的间接热交换,进行冷却,移出压缩热,将所得多组分致冷剂流314输送通过多组分致冷剂流热交换器301,其中用升温多组分致冷剂流与之进行间接热交换,加以冷却,如下进一步所述。将冷却后的多组分致冷剂流315从热交换器301输送至膨胀器316,膨胀器优选为膨胀伐,其中该多组分致冷剂流315被节流膨胀至较低压力,从而降低其温度。由于在膨胀器316中膨胀的结果,该多组分致冷剂流的温度降低,起到至少部分冷凝该多组分致冷剂流的作用,优选起全部冷凝它的作用。再经管线317,将所得多组分致冷剂流输送至位于再生器252热端的再生器热交换器258中。
再生器252包含脉中管气体,脉冲管气体可以是如氦、氢、氖、氦与氖的混合物,或氦与氢的混合物。氦、氦与氢的混合物是优选的。
在再生器252的热端提供脉冲,即压缩力,如以脉冲箭头10示意说明,从而开始第一部分脉冲管序。优选的是用活塞提供脉冲,该活塞以与再生器252构成通讯流来压缩脉冲管气体罐。另一优选对再生器提供脉冲的方法是采用热声学驱动器,对再生器内的气体提供声能。还有另外一种对再生器提供脉冲的方法是采用线形马达/压缩机的排列组合法。脉冲起着压缩脉冲管气体的作用,在再生器252的热端产生热脉冲管气体。热脉冲管气体与热交换器258中至少被部分冷凝的多组分致冷剂流进行间接热交换,而受到冷却,产生升温后的多组分致冷剂流318,并形成冷却后的压缩脉冲管气体,穿过再生器其余部分,即再生器主体。有些脉冲管采用双入口几何形状,其中有些脉中气也被送至该脉冲管的温端。
再生器主体内装有传热介质。在实施本发明中,适宜传热介质包括钢珠、金属丝网、高密度的蜂窝结构、膨胀金属及铅球粒。
传热介质,在被带至第二部分脉冲管序这样的低温后,已处于低温,一般在2K-250K的范围,这一点将在以下作更为完整的叙述。当该冷却后的压缩脉冲管气体输送穿过再生器主体时,通过与冷传热介质进一步直接接触,而受到进一步冷却,产生升温后的传热介质和冷脉冲管气,一般在温度4K-252K的范围。
将冷脉冲管气经管线11输送至脉冲管253冷端。脉冲管253另一端,即热端,有一穿过它冷脉冲管气进入脉冲管内的脉冲管热交换器259。冷脉冲管气进入脉冲管253冷端,进行膨胀,温度降低,从而形成超低温脉冲管气,并也产生了气体压力波,向脉冲管253的温端行进,并压缩脉冲管内的气体,称之为脉冲管工作流体,从而加热脉冲管工作流体。
升温后的多组分致冷剂流经管线318被送至脉冲管253温端的脉冲管热交换器259。在实施本发明中,该脉冲管主体仅装有传输压能的气体,通过冷端脉冲管气体的膨胀加热脉冲管温端脉冲管工作流体。也就是说,脉冲管内未装诸如用于作为活塞组合的移动部件。脉冲管操作无移动部件是本发明的重要优点。该升温后的多组分致冷剂流在脉冲管热交换器259中通过与加热后的脉冲管工作流体的间接热交换,进一步被加温,产生进一步加温的完全呈气态的多组分致冷剂流,并从脉冲管热交换器259经管线319送至多组分致冷剂流热交换器301。在多组分致冷剂流热交换器301内,该多组分致冷剂流通过与以物流314送至热交换器301进行冷却的多组分致冷剂流的间接热交换而被加热,如前所述,而所得的又进一步升温后的多组分致冷剂流从热交换器301经管线310被送至压缩机311,并重新开始多组分致冷剂流的循环。
在脉冲管253温端搭接了一条通储存器254有锐孔257的管线。脉冲管工作流体的压缩波与脉冲管的温端壁接触,反向开始第二部分的脉冲管序。采用锐孔257及储存器254保持该压缩波协调,以不致干扰在脉冲管253冷端膨胀冷脉冲管气所产生的下一个压缩波。
在脉冲管253冷端的超低温脉冲管气返回穿过管线11至再生器252。在此返回的路程中,该超低温脉冲管气通过产物流热交换器255,与管线12带给热交换器255的产物物流进行间接热交换,而被升温。在实施本发明中属于可被冷却、液化及/或过冷的产物流,可以是氢、氘、氦、氖、氮、氩及包括其中一种或多种的混合物。
产物流穿过产物流换热器255,通过与超低温脉冲管气的间接热交换,达到了超低温条件。处于超低温条件并可为气态或液态或淤浆状的所得产物流经产物流热交换器而被抽出,并加以回收。
从产物流热交换器255出来的脉冲管气,经管线11被送至再生器252,在252中脉冲管气体与再生器主体内的传热介质直接接触,产生前述的冷传热介质,从而完成脉冲管第二部分致冷剂序,并使再生器进入以后的第一部分脉冲管致冷序的条件。
图2说明本发明的另一实施方案,其中不使由脉冲管致冷系统产生的热进入一种与脉冲管致冷系统组合一起的活性磁再生器致冷系统。图2中数字的意义与图1中的相同,对于普通部件均不再加详述。
现参看图2,温致冷剂流320被输送经泵321以物流322进入冷却器323,经冷却形成冷却后的致冷剂流324。活性磁再生器包括按磁化进行升温及按去磁进行冷却的床材料。再生器302是去磁的,致冷剂流324穿过再生器302的热交换器部分,在该过程中通过装有去磁床材料的热交换器而被冷却。所得冷却后的致冷剂流325再被升温,并通过脉冲管系统进一步被升温,如前所述,所得升温后的致冷剂流被输送返回至已被磁化的活性磁再生器302,从而使该致冷剂流进一步升温。温致冷剂流经再生器302流出作为物流320,并再开始新循环。
虽然参照一些优选实施方案对本发明已作了详细说明,但对于本领域技术人员都会承认,还有一些本发明的其它实施方案是在本发明权利要求项的精神及范围内的。
权利要求
1.在超低温条件下生产产物流的方法,包括(A)、压缩多组分致冷剂流,冷却该压缩后的多组分致冷剂流,产生冷却后的多组分致冷剂流,并膨胀该冷却后的多组分致冷剂流,使该多组分致冷剂流至少部分冷凝;(B)、压缩脉冲管气体,产生热的压缩脉冲管气体,通过与至少被部分冷凝的该多组分致冷剂流进行的间接热交换,来冷却该热的压缩脉冲管气体,产生冷却后的压缩脉冲管气体及升温后的多组分致冷剂流,并通过与冷传热介质直接接触,进一步冷却该冷却后的压缩脉冲管气体,产生冷脉冲管气体和升温后的传热介质;(C)、膨胀冷脉冲管气体,产生超低温脉冲管气体,并产生一种气体压力波,压力波压缩并加热脉冲管工作流体,再通过与升温后的多组分致冷剂流的间接热交换,冷却该加热后的脉冲管工作流,产生进一步升温后的多组分致冷剂流;及(D)、将超低温脉冲管气体送去与产物流进行间接热交换,产生超低温条件的产物流,然后将所得脉冲管气体送至与升温后的传热介质进行直接接触,产生所述冷传热介质。
2.按照权利要求1的方法,其中该膨胀后的多组分致冷剂流完全被冷凝。
3.按照权利要求1的方法,其中该多组分致冷剂流包括至少一种大气气体。
4.按照权利要求1的方法,其中该膨胀后的多组分致冷剂流是一种可变负荷的致冷剂。
5.生产处于超低温条件的产物流的设备,包括(A)、压缩机、多组分致冷剂流热交换器,将流体经压缩机输送至该多组分致冷剂流热交换器的设备、膨胀器、及将流体由该多组分致冷剂流热交换器输送至膨胀器的设备;(B)、包括再生器热交换器和装有传热介质的再生器主体的再生器,用于在再生器内产生脉动流的增压气体的设备,及将流体经膨胀器送至再生器热交换器的设备;(C)、包括脉冲管热交换器和脉冲管主体的脉冲管,用于将再生器热交换器的流体输送至脉冲管热交换器的设备,及将脉冲管热交换器的流体输送至多组分致冷剂流热交换器的设备;及(D)、在再生器主体与脉冲管主体间输送流体的通道设备,所述通道设备包括产物流热交换器,对产物流热交换器提供产物流的设备,和在超低温条件下从产物流热交换器中抽出产物流的设备。
6.按照权利要求5的设备,其中膨胀器是一种阀门。
7.按照权利要求5的设备,其中用于对再生器内物流产生增压气体的设备包括一种活塞。
8.按照权利要求5的设备,其中用于对再生器内物流产生增压气体的设备包括一种热声驱动器。
9.在超低温条件下生产产物流的方法,包括(A)、冷却致冷剂流,产生冷却后的致冷剂流,(B)、压缩脉冲管气体,产生热的压缩脉冲管气体,通过与冷却后的致冷剂流间接热交换,冷却该热压缩后脉冲管气体,产生冷却后压缩脉冲管气体及升温后的致冷剂流,并通过与冷传热介质直接接触,进一步冷却该冷却后压缩脉冲管气体,产生冷脉冲管气体和升温后的传热介质;(C)、膨胀冷脉冲管气体,产生超低温脉冲管气体,并产生一种气体压力波,压力波压缩及加热脉冲管工作流体,再通过与升温后的致冷剂流的间接热交换,冷却该加热后的脉冲管工作流,产生进一步升温后的致冷剂流;及(D)、将超低温脉冲管气体与产物流进行间接热交换,产生超低温条件的产物流,然后将所得脉冲管气体与升温后的传热介质进行直接接触,产生所述冷传热介质。
10.生产处于超低温条件的产物流的设备,包括(A)、致冷剂流热交换器和将致冷剂流输送至该致冷剂流热交换器的设备;(B)、包括再生器热交换器和装有传热介质的再生器主体的再生器,用于在再生器内产生脉动流的增压气体的设备,及将致冷剂流由致冷剂热交换器送至再生器热交换器的设备;(C)、包括脉冲管热交换器和脉冲管主体的脉冲管,用于将再生器热交换器的致冷剂流输送至脉冲管热交换器的设备,及将脉冲管热交换器的致冷剂流输送至致冷剂流热交换器的设备;及(D)、在再生器主体与脉冲管主体间输送气体的通道设备,所述通道设备包括产物流热交换器,对产物流热交换器提供产物流的设备,和在超低温条件下从产物流热交换器中抽出产物流的设备。
全文摘要
一种有效产生致冷用于使产物流达到超低温条件的系统,其中一台活性磁再生器或一种多组分致冷剂流循环与一种脉冲管系统相组合,用以回收该脉冲管系统所产生的热量。
文档编号F25J1/02GK1299039SQ00134448
公开日2001年6月13日 申请日期2000年12月1日 优先权日1999年12月3日
发明者A·阿查里雅, J·H·罗亚尔, C·F·戈特茨曼, D·P·博纳奎斯特, B·阿尔曼 申请人:普拉塞尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1