深冷分离一氧化碳和氢气的装置的制作方法

文档序号:4779125阅读:3296来源:国知局
专利名称:深冷分离一氧化碳和氢气的装置的制作方法
技术领域
本实用新型涉及分离一氧化碳(CO)和氢气(H2)的装置,尤其是一种深冷分离一氧化碳和氢气的装置。
背景技术
CO和H2是重要的基础化工原料,广泛用于羰基合成等化工过程,例如甲醇羰基化制醋酸、醋酐、甲酸、草酸和二甲基甲酰胺等,以及光气合成、生产聚碳酸酯、聚氨酯、合成金属羰基化合物等。目前0)和吐分离主要有深冷法、吸收法和变压吸附法等。深冷法是利用气体组分沸点的差异,通过低温精馏来实现气体混合物的分离。为了防止各种杂质组分在低温下固化从而堵塞换热器和管道,因此用深冷法分离CO和H2就需要原料气在进入冷箱前进行预处理,脱除组分中含有的在低温下会凝固的组分。变压吸附法是根据产品气体的组成要求,选择合适的吸附剂和工艺过程,利用吸附剂对某些组份吸附能力强而对其它组份吸附能力弱的特性(吸附选择性),通过不断重复高压吸附和低压解吸的过程,使气体混合物分离制得所需产品。吸收法是一种溶液吸收分离法,它是利用络合物吸收溶剂选择吸收C0,再经加热解吸获得CO产品气,此法对原料气净化要求十分严格。CO和吐混合气处理规模较小时,采用变压吸附法较有优势,当CO和吐混合气处理规模较大时采用变压吸附法会造成设备投资和运行成本偏高。而吸收法一则运行成本高, 再则存在环保问题,目前较少采用。因此在CO和压处理规模较大时通常采用深冷分离法。 中国专利(公开号CN 1860338A)记载了一种分离含有0)、!12和队的工艺方法。该方法存在的缺陷是其分离CO和吐的流程比较复杂,而且能耗较高。

实用新型内容本实用新型的目的在于提供一种深冷分离一氧化碳和氢气的装置,当CO和H2混合气处理量较大时,采用本装置能够简化工艺流程,降低运行成本和设备投资成本。为实现上述目的,本实用新型可采取下述技术方案本实用新型一种深冷分离一氧化碳和氢气的装置,包括用于脱除杂质气体的预处理单元和深冷分离冷箱,所述深冷分离冷箱包括换热器、气液分离罐和一氧化碳提纯单元, 一氧化碳和氢气混合气输入管道Gl与所述预处理单元的入口连通,预处理单元的脱除杂质的混合气体出口通过管道G2经所述换热器与所述气液分离罐的中部入口连通,气液分离罐的上端出口通过管道经换热器与氢气收集系统连通,气液分离罐的下端出口通过管道 G5经节流减压阀Jl与一氧化碳提纯单元的中部入口连通,所述一氧化碳提纯单元为精馏塔,该精馏塔包括设置于塔顶的冷凝器和设置于塔底的再沸器,其顶端出口通过管道GlO 经换热器与外部相应的收集系统连通,其底端出口通过管道G2依次经节流减压阀J2、换热器与一氧化碳收集系统连通。作为优选,所述冷凝器为分凝分馏式冷凝器,所述再沸器为内部热虹吸式再沸器。作为优选,还包括用于为所述分凝分馏式冷凝器提供所需冷量和为所述内部热虹
3吸式再沸器提供所需热量的氮气制冷循环系统。作为优选,所述精馏塔底端出口还连有管道G3,所述管道G3依次经换热器、一氧化碳膨胀机、再返回换热器,最后与所述一氧化碳收集系统连通。与现有技术相比本实用新型的有益效果是由于采用上述技术方案,所述一氧化碳提纯单元为精馏塔,该精馏塔包括设置于塔顶的冷凝器和设置于塔底的再沸器,其顶端出口通过管道GlO经换热器与外部相应的收集系统连通,其底端出口通过管道G2依次经节流减压阀J2、换热器与一氧化碳收集系统连通,这种结构,可以在精馏塔的底部得到纯度为 96-99. 9%的CO产品,塔顶得到富H2产品。本实用新型进一步的有益效果是所述冷凝器为分凝分馏式冷凝器,所述再沸器为内部热虹吸式再沸器,精馏塔塔顶冷凝器和塔底再沸器分别采用分凝分馏式冷凝器和内部热虹吸式再沸器,塔顶冷凝器提高了分离效果,降低了冷箱设备的布置难度,为大规格的装置提供方便,热虹吸式蒸发器将换热器放在精馏塔的外面,降低能耗,提高换热器效率, 同时也降低了冷箱设备的布置难度,为装置的大规格进展提供了方便。

图1是本实用新型的连接结构示意图。
具体实施方式
如图1所示,本实用新型一种深冷分离一氧化碳和氢气的装置,包括用于脱除杂质气体的预处理单元1和深冷分离冷箱2,所述深冷分离冷箱2包括板翅换热器Bl 12、板翅换热器B2 13、气液分离罐3、用于一氧化碳提纯的精馏塔6,所述精馏塔6包括设置于塔顶的分凝分馏式冷凝器9和设置于塔底的内部热虹吸式再沸器10,含N2 0. 67% (体积)、氩气0. 02% (体积)及微量&S、0)2的CO和吐混合气通过管道Gl 101进入所述预处理单元1 中,在预处理单元1中采用低温甲醇洗和分子筛吸附的工艺,甲醇洗脱除掉酸性气体H2S和 CO2,分子筛脱除掉甲醇,并进一步脱除微量的CO2,经预处理单元1脱除杂质的满足深冷分离要求的一氧化碳和氢气混合气体通过管道G2 102经板翅换热器Bl 12和板翅换热器B2 13两级冷却,冷却至-182°C左右,进入气液分离罐3的中部入口,在气液分离罐3内分为气液两股物流,罐顶氢气出罐顶后,通过管道G4 103逆流回板翅换热器B2 13复热,再经板翅换热器Bl 12复热,出深冷分离冷箱2,然后进入氢气收集系统4,根据需要可作为产品氢气或者通过PSA等工艺进一步提纯;气液分离罐3的下端出口的液态物流通过管道G5 105经节流减压阀Jl 5减压后进入精馏塔6的中部入口,在精馏塔内将H2、N2从塔顶分离出去, 经板翅换热器Bl 12和板翅换热器B2 13两次复热,进入氢气收集系统4,塔底得到纯度为 99. 9%的CO产品;塔底操作压力0. 5 MPaG,纯度为99. 9%的CO从精馏塔6底端出口分为两路,一路通过管道G2 201依次经节流减压阀J2 7 (节流至0. 15MPaG)、经板翅换热器B2 13和板翅换热器Bl 12两级复热、进入一氧化碳收集系统8,节流减压阀J2 7后的压力和流量由板翅换热器B2 13冷端所需的冷量及温度决定,另一路通过管道G3 301,依次经板翅换热器B2 13 (蒸发复热)、板翅换热器Bl 12 (再次蒸发复热至0°C左右)、一氧化碳膨胀机11 (膨胀至0. 17MPaG)、再返回板翅换热器B2 13复热、最后进入所述一氧化碳收集系统 8 ;精馏塔6塔顶的所述分凝分馏式冷凝器9所需的冷量和塔底的所述内部热虹吸式再沸器10所需的热量,均由氮气制冷循环系统提供,氮气依次经过氮气压缩机14、氮气换热器15、 板翅换热器Bl 12 (冷却至_152°C)、内部热虹吸式再沸器10、节流减压阀J3 16 (减压至 0.25MPa)、分凝分馏式冷凝器9、板翅换热器B2 13 (复热)、返经板翅换热器Bl 12 (再次复热)、最后回流至所述氮气压缩机14,构成氮气制冷循环回路。 上述实施例是本实用新型的优选实施方式。对于本CO和H2深冷分离装置可以做出多种等同的组合或变化,均属于本实用新型的保护范围。
权利要求1.一种深冷分离一氧化碳和氢气的装置,包括用于脱除杂质气体的预处理单元(1)和深冷分离冷箱(2),所述深冷分离冷箱(2)包括换热器、气液分离罐(3)和一氧化碳提纯单元,一氧化碳和氢气混合气输入管道Gl (101)与所述预处理单元(1)的入口连通,预处理单元(1)的脱除杂质的混合气体出口通过管道G2 (102)经所述换热器与所述气液分离罐(3) 的中部入口连通,气液分离罐(3)的上端出口通过管道经换热器与氢气收集系统(4)连通, 气液分离罐(3)的下端出口通过管道G5 (105)经节流减压阀Jl (5)与一氧化碳提纯单元的中部入口连通,其特征在于所述一氧化碳提纯单元为精馏塔(6),该精馏塔(6)包括设置于塔顶的冷凝器和设置于塔底的再沸器,其顶端出口通过管道GlO (110)经换热器与外部相应的收集系统连通,其底端出口通过管道G2 (201)依次经节流减压阀J2 (7)、换热器与一氧化碳收集系统(8)连通。
2.根据权利要求1所述的深冷分离一氧化碳和氢气的装置,其特征在于所述冷凝器为分凝分馏式冷凝器(9),所述再沸器为内部热虹吸式再沸器(10)。
3.根据权利要求2所述的深冷分离一氧化碳和氢气的装置,其特征在于还包括用于为所述分凝分馏式冷凝器(9)提供所需冷量和为所述内部热虹吸式再沸器(10)提供所需热量的氮气制冷循环系统。
4.根据权利要求3所述的深冷分离一氧化碳和氢气的装置,其特征在于所述精馏塔 (6 )底端出口还连有管道G3 (301),所述管道G3 (301)依次经换热器、一氧化碳膨胀机(11)、 再返回换热器,最后与所述一氧化碳收集系统(8)连通。
专利摘要本实用新型公开了一种深冷分离一氧化碳和氢气的装置,包括预处理单元和深冷分离冷箱,深冷分离冷箱包括换热器、气液分离罐和一氧化碳提纯单元,一氧化碳和氢气混合气经预处理单元脱除杂质,经换热器进入气液分离罐的中部入口,气液分离罐的上端出口经换热器与氢气收集系统连通,气液分离罐的下端出口经节流减压阀J1与一氧化碳提纯单元的中部入口连通,一氧化碳提纯单元为精馏塔,精馏塔包括设于塔顶的冷凝器和设于塔底的再沸器,其顶端出口经换热器与外部相应的收集系统连通,其底端出口经节流减压阀J2、换热器与一氧化碳收集系统连通。当CO和H2混合气处理量较大时,采用本实用新型能够简化工艺流程,降低运行成本和设备投资成本。
文档编号F25J3/02GK202133230SQ20112021248
公开日2012年2月1日 申请日期2011年6月22日 优先权日2011年6月22日
发明者苟文广, 陈环琴 申请人:杭州中泰深冷技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1