一种结合氮膨胀制冷的管道气差压制冷液化装置制造方法
【专利摘要】本实用新型公开了一种结合氮膨胀制冷的管道气差压制冷液化装置,包括第一净化单元,第一净化单元通过天然气进气管道依次连接第一净化单元、第一冷箱、第一天燃气膨胀机,第一天燃气膨胀机通过管道依次连接第一冷箱和天然气增压压缩机,天然气进气管道还依次连接第二净化单元、第二天然气膨胀机、第一冷箱、第二冷箱、第一产品阀和LNG,天然气进气管道还依次连接第二净化单元、第一冷箱、第二冷箱、第二产品阀和LNG,氮气管道依次连接氮增压压缩机、第一空冷器、一段压缩机、第二空冷器、二段压缩机、第三空冷器、第一冷箱、氮膨胀机、第二冷箱、然后通过第二冷箱连接第一冷箱和氮增压压缩机,实现氮气循环。本实用新型的有益效果是能耗低。
【专利说明】一种结合氮膨胀制冷的管道气差压制冷液化装置
【技术领域】
[0001]本实用新型属于天然气液化【技术领域】,涉及一种结合氮膨胀制冷的管道气差压制冷液化装置。
【背景技术】
[0002]随着经济的发展,能源的需求每年增长10%。天然气是一种广泛应用的清洁化石燃料并且能够减少温室气体的排放。天然气在陆地由管道运输最高压力可达到lOMPa,然而高压的天然气通常在城市门站经历不可逆的节流过程以降低压力满足不同应用的需求。同时由于天然气急剧降压、降温,很容易对调压设备及管道设备的安全运行构成威胁。为了避免调压设备及管道设备过冷,常常需要在调压过程中配置热水锅炉,并用部分天然气作为燃料气,对调压设备、管道设备以及主管路的天然气进行加热,这样又浪费掉一部分原料气。因此如何利用管道气体的压力是一个值得关注的问题。
[0003]利用管道气的压差能量,使其中一部分天然气液化,而将另一部分天然气继续往下游输送,可以得到LNG产品,同时也实现了对这部分压力能的利用。但是由于天然气压差能量的限制,所能得到LNG的液化率一般较低。
实用新型内容
[0004]本实用新型的目的在于提供一种结合氮膨胀制冷的管道气差压制冷液化装置,解决了现有有效利用管道气已有压力能,从而低能耗、高液化率的将天然气加工为LNG的工艺技术问题。
[0005]本实用新型所采用的技术方案是包括第一净化单元,第一净化单元通过天然气进气管道依次连接第一净化单元、第一冷箱、第一天燃气膨胀机,第一天燃气膨胀机通过管道依次连接第一冷箱和天然气增压压缩机,天然气进气管道还依次连接第二净化单元、第二天然气膨胀机、第一冷箱、第二冷箱、第一产品阀和LNG,天然气进气管道还依次连接第二净化单元、第一冷箱、第二冷箱、第二产品阀和LNG,氮气管道依次连接氮增压压缩机、第一空冷器、一段压缩机、第二空冷器、二段压缩机、第三空冷器、第一冷箱、氮膨胀机、第二冷箱、然后通过第二冷箱连接第一冷箱和氮增压压缩机,实现氮气循环。
[0006]进一步,所述第二净化单元与所述第二天然气膨胀机和所述第一冷箱之间分别设有一个流量调节阀。
[0007]本实用新型应用上述装置进行天然气处理的工艺,其特征在于:天然气原料气先分成三部分,第一部分进入第一净化单元,进行低纯度的净化处理,之后进入第一冷箱预冷,预冷后的天然气进入第一天然气膨胀机膨胀制冷,膨胀后的天然气返回第一冷箱,提供冷量,从第一冷箱出来的天然气利用天然气增压压缩机提升压力后,返回天然气管路;将剩余的天然气分为第二部分和第三部分,第二部分天然气进入第二净化单元进行高纯度的净化处理,之后第二部分天然气进入第二天然气膨胀机膨胀制冷,之后依次经过第一冷箱、第二冷箱,或直接进入第二冷箱制冷降温,再通过第一产品阀节流至常压或略高于常压;第三部分天然气直接依次进入第一冷箱、第二冷箱降温,之后通过第二产品阀节流至常压后,与第二部分天然气汇合,一并进入LNG贮罐,氮气经过氮增压压缩机、第一空冷器、一段压缩机、第二空冷器、二段压缩机、第三空冷器三级压缩,其中氮增压压缩机,在每一级压缩后都利用空气或水进行冷却,之后进入第一冷箱预冷,并进入氮膨胀机一级或多级膨胀,膨胀制冷后的低温氮气依次进入第二冷箱、第一冷箱提供冷量,之后回到氮增压压缩机进行循环。
[0008]本实用新型的有益效果是能耗低。
【专利附图】
【附图说明】
[0009]图1是本实用新型一种结合氮膨胀制冷的管道气差压制冷液化装置结构示意图。
[0010]图中,1.第一净化单元,2.第一冷箱,3.第一天燃气膨胀机,4.天然气增压压缩机,5.第二净化单元,6.第二天然气膨胀机,7.第二冷箱,8.第一产品阀,9.第二产品阀,10.氮增压压缩机,11.一段压缩机,12.二段压缩机,13.氮膨胀机,14.LNG,15.第一空冷器,16.第二空冷器,17.第三空冷器,18.流量调节阀。
【具体实施方式】
[0011]下面结合附图和【具体实施方式】对本实用新型进行详细说明。
[0012]本实用新型如图1所示包括第一净化单元I,第一净化单元I通过天然气进气管道依次连接第一净化单元1、第一冷箱2、第一天燃气膨胀机3,第一天燃气膨胀机3通过管道依次连接第一冷箱2和天然气增压压缩机4,天然气进气管道还依次连接第二净化单元5、第二天然气膨胀机6、第一冷箱2、第二冷箱7、第一产品阀8和LNG14,天然气进气管道还依次连接第二净化单元5、第一冷箱2、第二冷箱7、第二产品阀9和LNG14,氮气管道依次连接氮增压压缩机10、第一空冷器15、一段压缩机11、第二空冷器16、二段压缩机12、第三空冷器17、第一冷箱2、氮膨胀机13、第二冷箱7、然后通过第二冷箱7连接第一冷箱2和氮增压压缩机10,实现氮气循环。
[0013]原料气先分成三部分,第一部分进入第一净化单元1,进行低纯度的净化处理,之后进入第一冷箱2预冷,预冷后的天然气进入第一天然气膨胀机3膨胀制冷,膨胀后的天然气返回第一冷箱2,提供冷量,最后从第一冷箱2出来的第一部分天然气利用天然气增压压缩机4提升压力后,返回天然气管路。第二部分、第三部分天然气进入第二净化单元5进行高纯度的天然气净化处理,之后第二部分天然气进入第二天然气膨胀机6膨胀制冷,之后依次经过第一冷箱2、第二冷箱7,或直接进入第二冷箱7制冷降温,再通过第一产品阀8节流至常压。第三部分天然气直接依次进入第一冷箱2、第二冷箱7降温,之后通过第二产品阀9节流至常压后,与第二部分天然气汇合,并进入LNG贮罐。氮气经过三级压缩,其中第一级为氮增压压缩机10,第二级为一段压缩机11,第三级为二段压缩机12,在每一级压缩后都在空冷器中利用空气或水进行冷却,三级压缩之后进入第一冷箱2预冷,并进入氮膨胀机13进行一级或多级膨胀,所输出的功,即在一段时间间隔内输出的是功用于驱动氮增压压缩机10。膨胀制冷后的低温氮气依次进入第二冷箱7、第一冷箱2提供冷量,之后回到氮气压缩单元进行循环。
[0014]具体的,主要工艺流程:天然气原料气(压力4?12Mpa)先分成三部分,第一部分(60%?85%)进入第一净化单元I,进行低纯度的净化处理,之后进入第一冷箱2预冷(预冷至20?-40°C ),预冷后的天然气进入第一天然气膨胀机3膨胀制冷(制冷温度为-20?-80°C ),膨胀后的天然气返回第一冷箱2,提供冷量。从第一冷箱2出来的天然气利用天然气增压压缩机4提升压力后,返回天然气管路(0.5?1Mpa)。利用第一部分天然气压力能制取冷能,预冷其余部分的气体。将剩余的天然气分为第二部分和第三部分,第二部分天然气进入第二净化单元5进行高纯度的净化处理,之后第二部分天然气进入第二天然气膨胀机6膨胀制冷(-20?-80°C ),之后依次经过第一冷箱2、第二冷箱7,或直接进入第二冷箱7制冷降温(-100?-155°C ),再通过第一产品阀8节流至常压或略高于常压(10?SOOkPA)。第三部分天然气直接依次进入第一冷箱2、第二冷箱7降温(-100?-155°C ),之后通过第二产品阀9节流至常压后,与第二部分天然气汇合,一并进入LNG14贮罐。第二、三部分天然气进入冷箱冷却降温并液化,之间或之后膨胀或节流至储存压力,成为LNG产品氮气经过氮增压压缩机10、第一空冷器15、一段压缩机11、第二空冷器16、二段压缩机12、第三空冷器17三级压缩,其中氮增压压缩机10 (压力为2?8Mpa),在每一级压缩后都利用空气或水进行冷却,之后进入第一冷箱2预冷(-20?-80°C ),并进入氮膨胀机13 —级或多级膨胀(-102?-160°C ),膨胀制冷后的低温氮气依次进入第二冷箱7、第一冷箱2向天然气提供冷量使之降温并液化,之后回到氮增压压缩机10进行循环。氮气循环可消耗电力产生一部分冷量,与利用原料管道气压力能产生的冷量一起使需要加工为LNG产品的天然气冷却、降温以及液化。
[0015]本实用新型的关键点就是合理调配两部分冷量,使整个液化工艺提高压力能和电能的能量利用效率,提高液化率并降低能耗。第二净化单元5之后还可增设流量调节阀18,在实际LNG装置中用以调节两部分气体的流量分配,这一流量分配与原料气的参数和组分有关,可以通过这两个阀门的流量分配调节,达到最优的冷量匹配,从而确保能量的高效利用。
[0016]本实用新型还具有的特征和优点:
[0017](I)管道气压力制冷与氮膨胀制冷的有效结合,有效提升管道气的液化率,最高可至 50% ;
[0018](2)管道气压力制冷与氮膨胀制冷的有效结合,有效提升天然气液化过程的能量利用效率,单位能耗远低于常规的膨胀机制冷工艺;
[0019](3)需液化的原料气分为两股进入冷箱降温液化,通过两股天然气流量及参数的调节,可以使液化装置有很好的工况适应性,并进一步提升能量效率;
[0020](4)通过氮膨胀制冷工艺的调节,获得很低的制冷温度,从而在产品阀后得到全液相的产品,避免了 BOG气体的产生,从而不需要低温BOG加压及复温过程及设备;
[0021]本技术将管道气的差压制冷与氮膨胀循环相结合,有效的提升了天然气的液化率,同时也保持了很高的能量效率。
【权利要求】
1.一种结合氮膨胀制冷的管道气差压制冷液化装置,其特征在于:包括第一净化单元(I),第一净化单元(I)通过天然气进气管道依次连接第一净化单元(I)、第一冷箱(2)、第一天燃气膨胀机(3),第一天燃气膨胀机(3)通过管道依次连接第一冷箱(2)和天然气增压压缩机(4),天然气进气管道还依次连接第二净化单元(5)、第二天然气膨胀机¢)、第一冷箱(2)、第二冷箱(7)、第一产品阀(8)和LNG(14),天然气进气管道还依次连接第二净化单元(5)、第一冷箱(2)、第二冷箱(7)、第二产品阀(9)和LNG(14),氮气管道依次连接氮增压压缩机(10)、第一空冷器(15)、一段压缩机(11)、第二空冷器(16)、二段压缩机(12)、第三空冷器(17)、第一冷箱(2)、氮膨胀机(13)、第二冷箱(7)、然后通过第二冷箱(7)连接第一冷箱(2)和氮增压压缩机(10),实现氮气循环。
2.按照权利要求1所述一种结合氮膨胀制冷的管道气差压制冷液化装置,其特征在于:所述第二净化单元(5)与所述第二天然气膨胀机(6)和所述第一冷箱(2)之间分别设有一个流量调节阀(18)。
【文档编号】F25J1/02GK204063780SQ201420342446
【公开日】2014年12月31日 申请日期:2014年6月24日 优先权日:2014年6月24日
【发明者】阎凤元, 孙恒, 王鹏, 丁贺, 徐世龙 申请人:中国石油大学(北京)