专利名称:使用低纯度氧生产氨并且分离氩的方法
技术领域:
本发明涉及一种生产氨和回收氩的方法,更确切地说是涉及一种使用一种气体来生产氨和回收氩的方法,这种气体通过使用低纯度氧进行部分氧化而生成的。
过去,在部分氧化反应中使用以便生成氨合成气体的氧通常来自高纯度氧的生产设备。在本领域中的许多部分氧化系统中使用的氧的纯度范围要高于99%的氧的含量。在许多应用中,包括生产氨和回收氩的应用中,将含氧气体提纯成高纯度氧的花费是巨大的,因此在使用高纯度氧的部分氧化的商业应用中必须承担高花费。
通常使用氢和一种高沸点化合物作为合成气体来生成有用的化合物。例如,使用具有用3∶1的克分子浓度比例的氢和氮的组合物的合成气体来生产氨。
氨合成气体通常通过两种方式来生产蒸汽还原法或部分氧化法。第一种方法采用对天然气或另一种低碳数的碳氢化合物进行初始的蒸汽还原,然后再用一种通常为空气的含氧气体进行二次还原,在这个步骤中产生了所需要的一定量的氮,但也产生了不需要的一定量的氩。当这种气体在氨生产设备中作为合成气使用时,氩和未反应的天然气(即甲烷)累积在再循环的合成气环流中,而通常须要用吹扫气流将氩和未反应天然气去除。应经常对吹扫气流进行处理来排除氩和甲烷,并且反向大部分的氢和氮,否则氢和氮将损失在返回到氨生产设备的吹扫气流中。在某些情况下,排除的氩是作为一种产品流来回收的。
第二种用于产生氨合成气的方法是通过用氧(而不是空气)进行部分氧化后再用氮去除杂质来完成的。经常使用一个氮清洗单元,并且也提供其中所需的氮。由于过去在部分氧化步骤中使用高纯度的氧,因此仅有少量的氩和天然气需要从合成气环流中去除。这样仅需要少量的吹扫气流,因此可不对其作进一步的处理。
低温处理是一种用于从合成气流中回收组合物的方法。低温处理包括从剩余的气流中分离富氢蒸气馏份的第一部分冷凝步骤。通过该步骤所产生的氢的提纯是有限的,这是由于所需的用于完成对高温沸腾合成气体组分进行冷凝的低温会导致冷凝的馏分冻结。也可将富氢蒸气直接用于合成气体处理的循环中。然而,如果需要高纯度的氢,则必须使用额外的处理方法。压力回转吸收是这种方种的例子之一。
在本领域中,已经公开了各种氨生产设备的吹扫气的处理、即对从氨合成反应器中排出的气体的处理。见美国专利4,687,498、4,689,062,4,752,311、4,750,925、4,805,414和5,100,447。另见L.A.Wenzel编辑该卷的《低温处理和设备》中第8~13页上的Hwang等人的“从氨生产设备的气体中低温回收氢”,以及第109~114页上的Krishnamurthy的“用于对从氨生产设备的吹扫气中回收氢和氩的对抗技术的评价”。相信这些参考文献都没有涉及原始分成气、即合成反应器上游的氢和氮与燃料和氩的混合物,同时涉及合成气、有机燃料和氩产品的生产。
因此,本发明的目的是提供一种使用低纯度氧来生产氨合成气和回收氩的方法。
本发明的另一个目的是使用一种低温分离方法,即使用一种独特的塔式装置来生产合成气体和回收氩。
本发明包括一种用于与一个低纯度氧分离单元一起来生产氨合成气和加氩的方法,它包括几个步骤。将至少包含氧、氮和氩的原料气体送入分离单元中,以便将原料气体至少分离成低纯度氧气和氮。包含低百分比浓度氩的低纯度氧气是用于部分地氧化含碳的供给原料,由此产生一种富氢、含氩的气体,该气体也可含有一氧化碳和甲烷等其它混合物。将氢送入一个包括一个清洗塔和至少一个低温分馏塔的清洗单元中。在清洗塔中用至少一部分氮对富氢、含氩气体进行清洗,以便产生一种基本上不含有其它杂质的富氢-氮混合物和一种含氩的剩余液体。富氢-氮的混合物与另一部分的氮气结合以便产生氨合成气。将剩余液体送入至少一个分馏塔中,然后从分馏塔中回收氩气。
在优选的实施例中,低纯度氧的50%~90%的氧,最好为90%~95%。更高的氧的纯度通常使整个系统需要更高的资金花费和能源消耗。低纯度氧还可以用于对天然气、烃油或煤进行部分氧化以便生产富氮、含氩气体,其含氢量约为80%~98%。清洗器包括至少一个相分离器和至少一个分馏塔。
这里所用的术语“分馏塔”是指分馏塔或分馏区的蒸馏,即在接触塔或接触区中使液相和气相物质逆流接触以便有效地分离流体混合物,例如在一排垂直间隔装在塔内的托盘或平板上或交替地在填充在塔内的填料元件上对气相或液相物质进行接触。对蒸馏塔的进一步讨论,见纽约MCGGraw-Hill图书公司的由R.H.Perry和C.H.Chilton编著的第五版《化学工程师手册》中第十三部分“蒸馏”,在第13~30页上的B.D.Smith等人的“连续的蒸馏处理”。
这里使用的术语“间接热交换”,是指不经过任何物理接触或流体的相互混合而在两种流体流之间进行热交换。
这里使用的术语“相分离器”,是指一种将混合相的材料分成至少两相而不改变材料成分的设备。
在本发明中所使用的“清洗塔”,是指一种使用一定的气态物质具有亲合力的吸附材料的塔,使得一种气体、即富氢气体通过该清洗塔时,将以气态形式生产出更纯净的氢。在使用该吸附塔时,蒸气相对于向下的流体向上流动,由此获得了分离的如氢等挥发成份,同时某些杂质逐渐地在从向上流动的蒸气中消耗掉。
通过下面对优选实施例和附图的描述,将使本领域中的技术人员理解本发明的其它的目的、特性和优点,其中
图1为本发明一个实施例的示意流程图,其中将含氧气体送到一个分离单元中,将从该分离单元中产生低纯度氧用于对含碳的原料进行部分氧化,生产出的富氢、含氩气体送入与氩回收结合在一起的氮清洗室;图2是本发明方法的一个优选实施例的示意流程图,将两氮气源的氮从低纯度氧的生产设备送入到氮清洗单元中,以便至少生产氨和分离氩气体。
本发明的方法,目的在于结合低纯度氧的生产设备至少生产氨合成气和回收氩。第一步骤是分离含氧气体,即空气,在低纯度氧的生产设备中产生对天然气、烃油或煤进行各种部分氧化的低纯度氧。另外还从氧生产设备中分离出至少两相的氮,用于在氮清洗单元中的处理。富氢、含氩气体经过氮清洗单元后,至少生产出氨合成气相并且回收氩。
在图1所示的方法中,将来自分离单元的低纯度氧用于对含碳原料部分氧化,生产出富氢、含氩气体,然后将该气体送入氮清洗单元中进行处理,从清洗单元中既分离出氨合成气又回收氩。
参见图1,将通常为空气的含氧气体101送入到低纯度氧生产设备102中,以便生产出氧110,并通过氧气流112送到的煤气化单元114中。氧气流110的另一部分被分成氧气流111,可供其它需要氧的地方使用。相应地,可用天然气、液体烃类、石油焦等替换煤作为原料,来完成在单元114中的部分氧化作用。将煤113送入到煤的气化单元114中。离开气化系统114的原始合成气包含了水、一氧化碳、氢、二氧化碳和少量其它象硫化氢、氩和甲烷的成份。原始合成气115送入到一氧化碳转换单元116中,并将一氧化碳和水蒸气转换成氢和二氧化碳。从转换器116出来的气体117冷却后进入包括单元118(用于硫化氢和大量二氧化碳的去除)的酸性气体系统,出来的气体119再送入单元121(去除二氧化碳到适合低温处理的程度)。较好的酸性气体系统应该能够将合成气的二氧化碳减小到小于0.1摩尔%(基于包括胺、热碳酸钾和甲烷的系统)。离开酸性气体的去除大量二氧化碳部分后的气体经过一个预净化器,以便去除水和二氧化碳到适合以低温(~0.1ppm)处理合成器120的程度。合成气120进入氮清洗单元105,其中将从氧生产设备中获得的氮用于清洗来自合成气的氩、一氧化碳和甲烷,同时提供在氨合成环路中所需要的用来调节氢—氮比的额外的氮。对废清洗液体进行蒸馏以便回收氩产品125。对由氧生产设备102中获得的液体氮104提供冷却。将来自氧生产设备102的氮103送入氮清洗单元105。在其它气体中,将燃料气体108从氮清洗单元105中分离出来,并且可以选择性地送入能源设备109中。将从氮清洗单元105中出来的合成气106送入氨生产设备中107用于进一步处理。
图2表示了本发明的用于分离氮合成气和回收氩的方法的一个例子。
参见图2,典型的预净化的给进气体201的压力在700~1000磅/时2之间。在热交换器202、203和204中,通过间接热交换方式,用加热产品流将该气流从环境温度降至其露点温度。对由空气分离设备提供并压缩到与给进气流大至相同压力的气态的氮气流205进行冷却和液化,最好与给进气流在相同的热交换器中进行。
将含有小液体馏分的富氢进料206送到清洗塔207的底部。而将至少是主要馏分的液化氮流208作为流体209送到清洗塔的顶部。液体向下流经在清洗塔中的塔盘和填料,与向上的蒸气流发生逆向接触,使得将在给进气流中的一氧化碳、氩和甲烷混合物吸收到下行的清洗液体中。在塔内的平衡条件应使得在与通过塔向上流动的富氢蒸气接触时有大量的氮被汽化,其结果使得将含有低ppm浓度氩的基本为一氧化碳和无甲烷的混合的氢和氮蒸气流210从塔的顶部排走。然而,H2∶N2的克分子浓度比很好地保持在氨生产所需的比值之上。通过热交换器204、203和202将混合气体加热到环境温度。然后将生成物流211与足够的附加量的来自空气分离设备的压缩气态氮、即气流212相混合,以便产生所需的3∶1H2∶N2氨混合气组分,再将结合的气流213输出到氨生产设备。
将用过的包含了氮、一氧化碳、氩和甲烷以及低百分比浓度的溶解的氢的清洗液体214从清洗塔207的底部排出。流214经过阀215降低其压力,通常约为100磅/时2,使得小部分馏分汽化。通过相分离器217,将含有大部分先前溶解的氢的生成物蒸气216从剩余的液流中分离出来。将剩余的液体218加热并且最好在进料热交换器的冷段204中完全汽化,然后作为流219提供到热连接双塔系统的高压塔220中。
该流通过塔220中的塔盘或填料上升,与在塔220的顶部的冷凝器热交换器221中产生的液体逆流接触。在塔中蒸馏的生成物使得在流219中易挥发的剩余的氢、氮和一氧化碳与不易挥发的氩和甲烷之间产生部分分离。其结果,在塔的顶部的流体基本上不包含氩和甲烷,蒸气流222在与双层塔的高压和低压元件相连接的再蒸发冷凝器的热交换装置221中被部分冷凝。然后将生成物流223在相分离器224中分离成富集氢的蒸气馏分225和混合有氮和一氧化碳的液体流226。排出蒸汽225并与下面所述的轻气体混合物合并。液体流226被分成两个馏分。馏分之一227作为回流送到高压塔220,用热交换器229中的冷蒸气流以间接热交换方式对另外的液体部分228进行低温冷却,然后经过阀230并作为回流送到双塔系统的低压塔231。将回流与冷凝的氮流208的一个馏分243一起有效地提供到塔231是有益的,然后再将流体208的剩余部分作为清洗流209送到清洗塔210。
将程度较低的富集氩和甲烷的液体232从高压塔220的底部排出,用一个或多个冷产品流、例如在热交换器204中通过间接热传递方式对其进行低温冷却处理,然后经过阀233,作为进料送到低压塔231的中间部分。将在第一分离器217中用过的清洗液中排出的富氢蒸气流216,作为附加进料提供给低压塔231也是有益的。通过前面提到的由高压塔220提供的回流229来完成在塔231的上部和下部的蒸馏作用,并且从再蒸发冷凝器的热交换器221中蒸发出。这样还完成了将氢、氮和一氧化碳与不易挥发的氩和甲烷之间的分离。较轻的气体作为流234从塔的顶部排出,并与富氢蒸气225结合而构成流235。在低温冷却交换器229中对流235进行加热,然后在进料热交换器204、203和202中进一步加热到环境温度,最后作为流体236从总系统中排出。
将主要包含氢、氮和无一氧化碳的氩和甲烷混合物的液体流237从低压塔231的底部排出,并且作为进料提供给氩一甲烷分离塔238的中间部分。塔238的运转是通过由冷凝高压氮流的馏分240来向再沸器239输入热量,并由外部提供的液体氮流242的气化来从冷凝器241中排走热量而实现的,其中外部提供的液体氮流242满足整个低温分离系统的冷却需求。在氩—甲烷塔中对送到塔内的液体进行蒸馏,以便产生一种作为液体产品244从塔238的顶部排出的基本纯净的氩馏分,和一种从塔238的底部排出的富甲烷液体馏分245。然后在进料热交换器203和202中将流体245气化并加热到环境温度,再作为流体246从总系统中排出。
现在,通过使用本发明的方法,可以有效地使用低纯度的氧气来至少回收合成气和氩。本方法所使用的低纯度氧的生产设备(90~95%O2)约需要85%的高纯度氧生产设备所需要的能源,以产生气化系统所需的氧。在气化系统中,煤和氧之间的反应产生了相对小量的氧和相对大量的一氧化碳。一氧化碳再与蒸汽反应,产生了更多的氢和二氧化碳。这种反应通常称作水煤气转移。然后通过洗气或其它装置将二氧化碳从气体中排出。其它含碳材料执行相似的反应。其不同点在于在开始的部分氧化步骤中产生相对大量的氢和相对少量的一氧化碳。在氮氢混合物进入氨合成环路之前应回收氩,并且对基于氩回收量的氮的清洗提供了经济的方法。通常,在氮清洗单元中氩氮的分离要比在空气分离单元中的氩—氧—氮的分离容易一些。
与从氮清洗单元中回收氩相关的最困难的分离是一氧化碳的氩之间的分离。虽然用热泵来完成这种分离不很实用,但通过使用双塔布置,可以用相对于非氩回收情况的小涨幅的能量消耗来完成。来自清洗塔的底部液体经过闪蒸并低抗住压力约为100磅/寸2的进料而完全气化。这样将足够高压的全部蒸气进料提供给双塔系统的高压塔,用于产生高压和低压塔所需的回流,从而不用辅助驱动就能实现一氧化碳和氩的分离。
另外,在清洗塔内,对进入到富氢合成气中的高压液体氮进行部分闪蒸,产生非常显著的热泵效应,这是固有的且正常的氮清洗方法的清洗特性。通过以高于常规的温度来运行清洗塔的顶部能够增加这种效应而不会招致任何明显的损失,并且在这点上产生了高于正常百分比的对于合成气流所需的氮。然后利用本发明方法提高精炼氩的回收率,回收率可高于95%。
如表1所示,本发明所使用的低纯度氧的生产设备耗能少且花费资金低,同时产生基本相同比率的氧和氩的回收。
表1现有技术与本发明的比较现有技术 本发明所含氧的比率(t/d)2,6402,640氧的纯度(mol%) 99.5 95能量(MW) 55.1 49.3氩(t/d) 90 90德尔塔(delta)基本投资(%)基础 基础的85-95%仅仅为了方便的目的在一个或更多的附图中表示了本发明的特殊特性,而根据本发明可将每个特性与其它特性相结合。例如,虽然图1所示的酸性气体系统使用的二氧化碳的含量少于0.1摩尔%,但相应的系统可以将二氧化碳的含量降到约5摩乐%,然后再通过一个压力回转吸附系统将二氧化碳的含量减少到适当的程度,以便在大于0.1ppm的低温清洗单元中进行处理。相应的实施例能够被本领域的技术人员认识到并包括在权利要求所保护的范围内。
权利要求
1.一种用于结合低纯度氧分离单元来生产氨合成气并且回收氩的方法,所述方法包括(a)向所述分离单元提供至少包含氧,氮和氩的原料气体,以便将所述进料气体至少分成低纯度的氧气和氮;(b)将所述氮送入清洗单元中,该清洗单元包括一个清洗塔和至少一个低温分馏塔;(c)在所述清洗塔中,用至少一部分所述的氮清洗富氢、含氩气体,以便产生一个富氢—氮的混合物和一个含氩的剩余液体;(d)使所述富氢—氮混合物与所述氮的另一部分相结合,以便产生氨合成气;(e)将所述剩余液体送入至少一个所述蒸馏塔中;并且(f)从所述蒸馏塔中回收氩。
2.如权利要求1的方法,其中所述低纯度的氧含有约50%~99%的氧。
3.如权利要求2的方法,其中所述低纯度的氧含有约90%~95%的氧。
4.如权利要求1的方法,其中所述低纯度的氧用于对天然气、烃油或煤的部分氧化,以便产生富氢、含氩气体。
5.如权利要求1的方法,其中所述富氢、含氩气体含有约80%~98%的氢。
6.如权利要求1的方法,其中所述清洗单元包括至少一个相分离器和至少一个分馏塔。
7.如权利要求1的方法,其中每次所述富氢、含氩气体和氮在送入所述清洗塔之前都要通过间接热交换方式来进行冷却。
8.如权利要求1的方法,还至少包括回收一些低沸点气体和一些甲烷。
9.如权利要求1的方法,其中在所述清洗塔中的一些向上流动的蒸气中至少包含氢和氮蒸气。
10.如权利要求1的方法,其中所述氮的一部分以间接热交换方式进行冷却,并作为液作回流用于至少一个分馏塔。
11.如权利要求1的方法,其中所述剩余液体在送入至少一个所述蒸馏塔以前被分成液相和气相。
12.如权利要求1的方法,其中将从至少一个所述蒸馏塔中分离出的富集氩—甲烷混合物送经另一个蒸馏塔,以便至少回收氩。
13.如权利要求12的方法,其中所述氮气的一部分用于对另一个蒸馏塔的再沸腾。
14.如权利要求1的方法,其中使用一个热连接双层塔布置来将低沸点气体从所述富集氩—甲烷混合物中分离出来。
15.一种用于在清洗单元中生产氨合成气并且回收氩的方法,所述方法包括(a)将氮送入所述清洗单元中,所述清洗单元包括一个清洗塔和至少一个低温分馏塔;(b)在所述清洗塔中用所述氮清洗富氢、含氩气体,以便产生富氢—氮混合物和含氩的剩余液体;(c)使所述富氢—氮混合物与所述氮气的另一部分相结合,以便产生氨合成气;(d)将所述剩余液体送入至少一个所述蒸馏塔中;并且(e)从所述蒸馏塔中回收氩。
16.如权利要求15的方法,其中每次所述富氢、含氩气体和氮在送入所述清洗塔之前都要通过间接热交换方式来进行冷却。
17.如权利要求15的方法,其中所述剩余液体在送入至少一个所述蒸馏塔之前被分成液相和气相。
18.如权利要求15的方法,其中将从至少一个所述蒸馏塔中分离出的富集氩—甲烷混合物送经另一个蒸馏塔,以便至少回收氩。
19.如权利要求15的方法,其中所述氮气的一部分用于对另一个蒸馏塔的再沸腾。
20.如权利要求15的方法,其中使用一个热连接双层塔布置来将低沸点气体从所述富集氩—甲烷的混合物中分离出来。
全文摘要
一种用于结合低纯度氧分离单元来生产氨合成气并且回收氩的方法。
文档编号F25J3/04GK1198405SQ9711859
公开日1998年11月11日 申请日期1997年8月5日 优先权日1997年5月2日
发明者R·F·内维克, T·F·菲谢尔 申请人:普拉塞尔技术有限公司