吸附器以及吸附式制冷机的制作方法

文档序号:10475676阅读:426来源:国知局
吸附器以及吸附式制冷机的制作方法
【专利摘要】吸附器包括:热介质管(121),热介质在该热介质管的内部流通;吸附层(122),其具有吸附剂(124),该吸附剂(124)通过被热介质冷却而吸附热介质管(121)外部的气相状态的制冷剂,进一步,通过被加热而使所吸附的制冷剂脱离;以及传热部件(123),其在热介质管(121)与吸附剂(124)之间进行热传递。在传热部件(123)与吸附剂(124)形成为一体的吸附器中,在将填充到吸附层(122)内的吸附剂(124)的填充密度ρ除以吸附剂(123)的粒子的真密度ρabs而得到的值设为吸附剂填充比例Φ时,吸附剂填充比例Φ是70%以下。
【专利说明】吸附器从及吸附式制冷机
[0001]关联申请的相互参照
[0002 ]本申请W通过参照将其公开内容编入本申请的、2013年12月18日提出申请的日本 特许申请2013-261004为基础。
技术领域
[0003] 本公开设及具有进行流体的吸附.脱离的吸附剂的吸附器W及具有该吸附器的 吸附式制冷机。
【背景技术】
[0004] W往,作为吸附式制冷机所用的吸附器,公开了在流动有热介质的热介质管的外 周设有吸附剂与传热部件混合而成的吸附层的吸附器(例如,参照专利文献1)。
[0005] 现有技术文献
[0006] 专利文献
[0007] 专利文献1:日本特开平4-148194号公报
[000引在上述专利文献1所记载那样的吸附器中,吸附能力Q用W下的公式1表示。
[0009] (公式 1)
[0010] Q=G ? AH ? AC ? n/T
[001。 其中,G是吸附剂量,A H是吸附剂所吸附.从吸附剂脱离的制冷剂的制冷剂潜热, A C是吸附容量,n是吸附效率,T是切换时间。此外,切换时间T是指对使吸附剂吸附制冷剂 的吸附动作与使所吸附的制冷剂从吸附剂脱离的脱离动作进行切换的切换时间。
[0012] 如从该公式1可明确那样,若吸附剂量G变多,则吸附能力Q得W提高。然而,在吸附 层中的吸附剂的比例较多的情况下,吸附剂的热阻较大,因此,吸附效率n降低得比吸附剂 量G的增加量多,其结果,存在吸附能力Q降低运样的问题。

【发明内容】

[0013] 本公开鉴于上述内容,目的在于提供一种能够使吸附能力提高的吸附器W及吸附 式制冷机。
[0014] 根据本公开的一技术方案,吸附器包括:热介质管,热介质在该热介质管的内部流 通;吸附层,其具有吸附剂,该吸附剂通过被热介质冷却而吸附热介质管外部的气相状态的 制冷剂,并且该吸附剂通过被加热而使所吸附的制冷剂脱离;W及传热部件,其在热介质管 与吸附剂之间进行热传递。在传热部件与吸附剂形成为一体的吸附器中,在将填充到吸附 层内的吸附剂的填充密度P除W吸附剂的粒子的真密度Pabs而得到的值设为吸附剂填充比 例O时,吸附剂填充比例O是70 % W下。
[0015] 运样的话,通过将吸附剂填充比例O设为70% W下,能够提高吸附效率,因此,能 够使吸附能力提高。
[0016] 此外,在本公开中,"传热部件与吸附剂形成为一体"是指,吸附剂相对于传热部件 =维地配置。例如,在热介质管由圆管构成,并且板状的传热部件在热介质管的外表面设有 多个的情况下,"传热部件与吸附剂形成为一体"是指,吸附剂不仅相对于传热部件沿着传 热部件的长度方向(热介质管的径向)、而且沿着热介质管的长度方向巧由向)W及热介质管 的周向=维地配置。
【附图说明】
[0017] 图1是第1实施方式中的吸附式制冷机的整体构成图,表示第1动作状态。
[0018] 图2是表示第1实施方式中的第1吸附器的放大图。
[0019] 图3是第1实施方式中的吸附式制冷机的整体构成图,表示第2动作状态。
[0020] 图4是表示切换时间与吸附能力之间的关系的特性图。
[0021] 图5是表示切换时间与吸附效率之间的关系的特性图。
[0022] 图6是表示变更了传热部件的构成材料的情况下的吸附能力的变化的特性图。
[0023] 图7是表示第2实施方式中的第1吸附器的主视图。
[0024] 图8是图7的M-Vni剖视图。
[0025] 图9是图8的K-K剖视图。
【具体实施方式】
[0026] W下,基于附图对本公开的实施方式进行说明。此外,在W下的各实施方式相互 中,对于彼此相互相同或等同的部分在图中标注相同的符号。
[0027] (第1实施方式)
[0028] 基于图1~图6对本公开的第1实施方式进行说明。如图1所示,吸附式制冷机具有 第1吸附器11、第2吸附器12运两个吸附器、冷凝器13、W及蒸发器14。
[0029] 第1热介质(在本实施方式中是水)在第1吸附器11的内部、第2吸附器12的内部流 通。在第1吸附器11的表面、第2吸附器12的表面保持有使制冷剂吸附?脱离的吸附剂。
[0030] 作为在第1吸附器11的内部、第2吸附器12的内部流通的第1热介质,能够切换为由 热源15加热后的高溫热介质和由室外机16冷却后的低溫热介质。室外机16是使热介质和室 外空气热交换而冷却第1热介质的散热用热交换器。
[0031] 在低溫热介质在第1吸附器11的内部、第2吸附器12的内部流通的情况下,吸附剂 吸附蒸气制冷剂。在高溫热介质在第1吸附器11的内部、第2吸附器12的内部流通的情况下, 吸附剂使制冷剂脱离。作为吸附剂,能够使用沸石、硅胶等。
[0032] 冷凝器13使由室外机16冷却后的第1热介质与由第1吸附器11、第2吸附器12中的 任一者脱离了的蒸气制冷剂(在本实施方式中是水蒸气)热交换而使蒸气制冷剂冷凝。
[0033] 蒸发器14使由冷凝器13冷凝后的从冷凝器13流入的液态制冷剂(在本实施方式中 是水)与来自室内机17的第2热介质(在本实施方式中是水)热交换而使液态制冷剂蒸发。由 蒸发器14蒸发而成的蒸气制冷剂吸附于第1吸附器11、第2吸附器12中的任一者。室内机17 是使由蒸发器14吸热后的第2热介质与室内空气热交换而冷却室内空气的冷却用热交换 器。
[0034] 第1吸附器11、第2吸附器12、冷凝器13、W及蒸发器14之间的蒸气制冷剂的流通可 由蒸气阀18控制。
[0035] 在图I中,累19、20是使第I热介质循环的累,累21是使第2热介质循环的累。切换阀 22、23是切换第1热介质的循环路径的阀。
[0036] 接着,对本实施方式的第1吸附器11、第2吸附器12的结构进行说明。此外,第1吸附 器11和第2吸附器12是同样的结构,因此,W下对第1吸附器11进行说明,对第2吸附器12省 略说明。
[0037] 如图2所示,第1吸附器11具有供热介质流动的热介质管121。热介质管121由导热 性优异的金属(在本实施方式中,是铜或铜合金)构成。在热介质管121的外侧设有吸附层 122。
[0038] 具体而言,在热介质管121的外表面金属接合有由导热性优异的金属(本实施方式 中,是铜或铜合金)构成的传热部件123。本实施方式的传热部件123形成为板状,并且多片 传热部件123 W规定的间距P等间隔地排列。多片传热部件123的配置方向与热介质管121内 的热介质的流动方向平行。
[0039] 在相邻的传热部件123之间填充有吸附剂124。由此,传热部件123与吸附剂124形 成为一体。吸附剂124通过被热介质冷却而吸附热介质管121外部的气相状态的制冷剂(水 蒸气),而且,通过被加热,使所吸附的制冷剂(水蒸气)脱离。吸附剂124形成为微小且大量 的粒子状,由例如硅胶、沸石构成。利用运样的传热部件123W及吸附剂124构成了吸附层 122。
[0040] 接着,对上述构成的动作进行说明。吸附式制冷机构成为,对第1吸附器11、第2吸 附器12中的进行使吸附剂124吸附制冷剂的吸附工序(吸附动作)的吸附器W及进行使所吸 附的制冷剂从吸附剂124脱离的脱离工序(脱离动作)的吸附器进行切换。
[0041] 具体而言,首先,使切换阀22、23如图1所示那样动作,使高溫的第1热介质在热源 15与第1吸附器11之间循环,并且使低溫的第1热介质在室外机16与第2吸附器12W及冷凝 器13之间循环。
[0042] 由此,第1吸附器11成为使吸附着的制冷剂脱离的脱离动作,第2吸附器12成为吸 附蒸气制冷剂的吸附动作,因此,在第1吸附器11中进行吸附剂的再生,利用在第2吸附器12 中产生的制冷能力将向室内吹出的空气冷却。
[0043] 并且,在该状态(第1动作状态)下经过了规定时间时,使切换阀22、23如图3所示那 样动作,使高溫的第1热媒在热源15与第2吸附器12之间循环,并且使低溫的第1热介质在室 外机16与第1吸附器11W及冷凝器13之间循环。
[0044] 由此,第1吸附器11进行吸附动作,第2吸附器12进行脱离动作,因此,利用在第1吸 附器11中产生的制冷能力将空调风冷却,在第2吸附器12中进行吸附剂的再生。
[0045] 并且,在该状态(第2动作状态)下经过了规定时间时,使切换阀22、23动作而再次 设为图1的状态(第1动作状态)。运样,每隔规定时间使图1的第1动作状态和图3的第2动作 状态交替地反复,使吸附式制冷机连续地运转。
[0046] 此外,规定时间是基于在壳体24内存在的液态制冷剂的剩余量、第1吸附器、第2吸 附器12的吸附剂的吸附能力等适当选定的。W下,将该规定时间称为切换时间T。此外,在本 实施方式中,在各吸附器11、12中,使吸附剂124吸附制冷剂的时间即吸附工序时间与使所 吸附的制冷剂从吸附剂124脱离的时间即脱离动作时间相等。
[0047] 不过,第1吸附器11的吸附能力Q、第2吸附器12的吸附能力Q如上述所记载那样,用 W下的公式I表示。
[004引(公式1)
[0049] Q=G ? AH ? AC ? n/T
[0050] 此时,吸附容量A C与吸附效率Tl的乘积如W下的公式2那样W吸附剂溫度化d和制 冷剂溫度Tv的函数表示。
[0051 ][公式 2]
[0化2]
[0053] 其中,Tad是吸附剂溫度,Tv是制冷剂溫度。
[0054] 在此,吸附剂溫度Tad是利用从热介质到吸附剂124的热阻传热计算确定的。在采 用硅胶、沸石等通常的吸附剂作为吸附剂124的情况下,吸附剂124的导热系数是0.01~ O.lW/mK级。相对于此,由铜、侣等构成的传热部件123的导热系数是几百W/mK级,因此,相对 于传热部件123而言,吸附剂124的热阻非常大。
[0055] 因而,与吸附剂124、传热部件123的材质相比,吸附剂124的填充比例O对吸附剂 溫度带来的影响较大,吸附能力n由吸附剂124的填充比例O限制。
[0056] 并且,吸附剂124的填充比例O用W下的公式3表示。
[0057] [公式 3]
[005引 AC ? TlKfXhcUTd)
[0059] 其中,P是填充到吸附层122内的吸附剂124的填充密度,Pabs是吸附剂124的粒子 的真密度。吸附剂124的填充密度P用W下的公式4表示。
[0060] (公式 4)
[0061] p=m/V
[0062] 其中,m是填充到吸附层122内的吸附剂124的重量,V是吸附层122整体的体积。
[0063] 在此,在使用沸石作为吸附剂124且由铜构成传热部件123的吸附器11、12中,将变 更了吸附剂124的填充比例O的情况下的吸附能力的变化表示在图4中,将变更了吸附剂 124的填充比例O的情况下的吸附效率的变化表示在图5中。此外,如下述的表1所示,通过 变更传热部件123的板厚TW及间距P,能够变更吸附剂124的填充比例。
[0064] [表1]
[00 化]
LUUOOJ 化外,W附刑的巧允t[例①的上限田巧飘部1干的制造做限巧足,仕巧巧巧 常的机械加工制造传热部件123的情况下,吸附剂124的填充比例O的上限是90%。
[0067] 从图4 W及图5明显可见,吸附剂124的填充比例O越小,吸附能力越高,另外,吸附 效率也越高。
[0068] 如图4所示,吸附剂124的填充比例O越小、吸附能力越高运样的倾向在切换时间T 是20秒~240秒的范围更明显地呈现。具体而言,通过将吸附剂124的填充比例O设为70% W下,能够确保相对于W往的吸附器(吸附剂124的填充比例〇是90%)的吸附能力的最大 值(参照图4中的空屯、圆点)两倍W上的吸附能力。而且,通过将吸附剂124的填充比例〇设 为60% W下,能够确保相对于W往的吸附器的吸附能力的最大值3倍W上的吸附能力。
[0069] 不过,在上述的吸附器11、12中,将变更了传热部件123的构成材料的情况下的吸 附能力的变化表示在图6中。在图6中,表示了将吸附剂124的填充比例O设为60%的情况 下,将传热部件的123的构成材料设为铜时的吸附能力的变化、W及将传热部件123的构成 材料设为侣时的吸附能力的变化。
[0070] 从图6明显可见,无论是将传热部件的123的构成材料设为铜还是设为侣,吸附能 力相对于切换时间T都几乎没有变化。因而,即使变更传热部件的123的构成材料,吸附剂 124的填充比例O越小、吸附能力越高运样的倾向也没有变化。
[0071] 如W上说明那样,通过将吸附剂填充比例O设为70% W下,与吸附剂填充比例O 为90%左右的W往的吸附器相比,能够确保两倍W上的吸附能力,因此,能够提高吸附能 力。而且,通过将吸附剂填充比例O设为60% W下,与所述W往的吸附器相比,能够确保3倍 W上的吸附能力,因此,能够更加提高吸附能力。如图4那样,例如,也可W将吸附剂填充比 例巫设定在15~70%的范围内。在该情况下,一边能够抑制频繁的切换,一边提高吸附能 力。
[0072] 此时,若使吸附剂填充比例O降低,则吸附剂量G变少,因此,认为:在上述的公式1 中,吸附能力Q降低与吸附剂量G减少的量相对应的量。然而,吸附效率n上升得比吸附剂量G 的减少量多,因此,作为结果,提高了吸附能力Q。
[0073] 旨P、在本实施方式中,即使使吸附剂填充比例O降低、即、即使使吸附剂量减少,也 能够使吸附能力提高。因此,能够使吸附能力提高的同时,谋求吸附器11、12的小型化。通过 使吸附器11、12小型化,吸附器11、12的热容量变小,因此,能够发挥吸附式制冷机的制冷循 环整体上较高的性能系数(COP)。
[0074] (第2实施方式)
[0075] 接着,基于图7~图9对本公开的第2实施方式进行说明。本第2实施方式与上述第1 实施方式相比较,第1吸附器11W及第2吸附器12的结构不同。此外,在本实施方式中,第1吸 附器11和第2吸附器12也是同样的结构,因此,W下对第1吸附器11进行说明,对第2吸附器 12省略说明。
[0076] 如图7、图8W及图9所示,本实施方式的第1吸附器11构成为在金属制的框体30内 一体化成形有吸附忍20。吸附忍20具有热介质管121。在热介质管121的周边部设有具有细 孔的传热部件123W及吸附剂124。即、吸附忍20包括:热介质管121、具有细孔的传热部件 123、W及填充到该细孔的吸附剂124。
[0077] 传热部件123是对导热性优异的金属粉进行加热、不使其溶融就通过烧结进行结 合而成的烧结体。金属粉使用铜或铜合金,例如该金属粉是形成为粉末状、粒子状、鱗片状、 W及纤维状中的任一者(本实施方式中,是纤维状)的金属粉即可。
[0078] 在上述烧结时,由于在金属粉之间存在的空隙,所谓的=维网眼状的气孔形成于 烧结体。该=维网眼状的气孔相当于上述细孔。细孔是构成为能够供粒径微小的吸附剂124 填充的微细的孔。金属粉、即传热部件123通过烧结而金属性地结合(接合)于热介质管121。 传热部件123W其整体向一方向伸长的方式形成于多个圆筒状的热介质管121的周边部,作 为整体形状呈圆筒状。
[0079] 而且,在本实施方式中,如图8所示,在热介质管121之间配置有供制冷剂流通的制 冷剂通路125。该制冷剂通路125与上述S维网眼状的细孔不同,W向一方向例如笔直地延 伸的方式形成。具体而言,制冷剂通路125W沿着热介质管121的延伸方向、即圆筒状的热介 质管121的轴向延伸的方式形成。
[0080] 如图7 W及图9所示,框体30具有框体主体131、片材132、133、W及箱134、135。
[0081] 框体主体131形成为圆筒状,形成为能够在内部收容圆筒状的吸附忍20的传热部 件123。另外,框体主体131的上端侧开口部和下端侧开口部形成为能够利用片材132、133密 封。在框体主体131的上部设有能够将制冷剂(水蒸气)导至吸附忍20的吸附层(吸附剂填充 层)的制冷剂流入配管136W及制冷剂流出配管137。
[0082] 通过如此对框体主体131和片材132、133进行密封,能够将内部保持为真空。由此, 在由框体主体131和片材132、133形成的内部密闭空间内除了作为被吸附介质的制冷剂W 夕h不存在其他气体。
[0083] 在吸附时,制冷剂从蒸发器侧经由制冷剂流入配管136分配到制冷剂通路125。分 配到制冷剂通路125的制冷剂向吸附层的内部浸透。另外,在脱离时,制冷剂从吸附层被排 出,排出的制冷剂经由各制冷剂通路125通过制冷剂流出配管137被导向冷凝器侧。
[0084] 另外,在片材132、133上形成有热介质管121能够贯通的贯通孔132a、133a。该贯通 孔132a、133a和热介质管121利用由针焊等进行的接合而被气密地固定。
[0085] 箱134、135设有能够引导热介质的热介质流入配管138W及热介质流出配管139。 热介质流入下部箱134的热介质流入配管138,通过热介质管121自上部箱135的热介质流出 配管139流出。运样的下部箱134W及上部箱135是用于将热交换介质向多个热介质管121供 给分配的箱。
[0086] 如本实施方式那样,在利用金属粉构成传热部件123的吸附器11、12中也能够获得 与上述第1实施方式同样的效果。
[0087] (其他实施方式)
[0088] 本公开并不限定于上述的实施方式,在不脱离本公开的主旨的范围内能够如W下 那样进行各种变形。
[0089] (1)在上述实施方式中,对利用铜或铜合金构成热介质管121W及传热部件123的 例子进行了说明,但并不限于此,例如也可W利用不诱钢、侣等其他金属分别构成。
[0090] (2)在上述实施方式中,对在各吸附器11、12中吸附动作时间和脱离动作时间相等 的例子进行了说明,但并不限定于此。
[0091] 在使吸附式制冷机进行连续的冷气运转(利用由吸附器11、12产生的制冷能力将 空调风冷却的运转)W及作为热累动作的情况下,通常,吸附动作时间和脱离动作时间相 等。然而,在吸附动作时间与脱离动作时间不同的情况下,也可W应用本公开。此外,在该情 况下,吸附性能被吸附动作时间限制,因此,也可W将吸附动作时间视作切换时间T。
[0092] (3)在上述第2实施方式中,对利用金属粉构成了传热部件123的例子进行了说明, 但并不限于此,也可W利用从金属粉、金属纤维、金属网W及发泡金属的组中选择的至少一 种构成传热部件123。
[0093] (4)在上述第2实施方式中,对将热介质管121W及框体30的径向截面设为圆筒形 状的例子进行了说明,但并不限于此,也可W将热介质管W及框体的径向截面设为楠圆形 状、矩形形状等任一形状。
【主权项】
1. 一种吸附器,其特征在于,包括: 热介质管(121),热介质在该热介质管(121)的内部流通; 吸附层(122),该吸附层(122)具有吸附剂(124),该吸附剂(124)通过被所述热介质冷 却而吸附所述热介质管(121)外部的气相状态的制冷剂,并且该吸附剂(124)通过被加热而 使所吸附的所述制冷剂脱离;以及 传热部件(123),该传热部件(123)在所述热介质管(121)与所述吸附剂(124)之间进行 热传递, 所述传热部件(123)与所述吸附剂(124)形成为一体, 在将填充到所述吸附层(122)内的所述吸附剂(124)的填充密度(P)除以所述吸附剂 (123)的粒子的真密度(pabs)而得到的值设为吸附剂填充比例(Φ)时,所述吸附剂填充比 例(Φ)是70%以下。2. 根据权利要求1所述的吸附器,其特征在于, 所述传热部件(123)和所述热介质管(121)被金属接合。3. 根据权利要求1或2所述的吸附器,其特征在于, 所述传热部件(123)由从金属粉、金属纤维、金属网、以及发泡金属的组中选择的至少 一种构成。4. 根据权利要求1或2所述的吸附器,其特征在于, 所述传热部件(123)由以规定的等间隔排列的多个板部件构成, 所述多个板部件配置在与所述热介质管(121)内热介质的流动方向平行的方向。5. 根据权利要求1~3中任一项所述的吸附器,其特征在于, 所述吸附材料(124)被填充到所述传热部件(123)的细孔, 所述传热部件(123)以及吸附剂(124)与所述热介质管(121)的外周面设置为一体。6. -种吸附式制冷机,其特征在于, 该吸附式制冷机包括: 权利要求1~5中任一项所述的多个吸附器(11、12);以及 切换装置(22、23),该切换装置(22、23)通过对所述多个吸附器(11、12)中的、进行吸附 动作的吸附器以及进行脱离动作的吸附器进行切换,从而切换多个运转模式,所述吸附动 作使所述吸附剂(124)吸附所述制冷剂,所述脱离动作使所述被吸附的所述制冷剂从所述 吸附剂(124)脱离, 切换装置(22、23)将所述吸附动作和所述脱离动作的切换时间(τ)设定在20秒以上、 240秒以下的范围内。
【文档编号】F25B17/08GK105829811SQ201480069385
【公开日】2016年8月3日
【申请日】2014年12月17日
【发明人】竹内伸介, 柳田昭, 冈本义之, 永岛久夫
【申请人】株式会社电装
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1