用于工业循环冷却水系统的超声杀菌除藻方法

文档序号:4843635阅读:333来源:国知局

专利名称::用于工业循环冷却水系统的超声杀菌除藻方法
技术领域
:本发明提供了一种用于工业循环冷却水系统的超声杀菌除藻方法,尤其涉及一种是将混频超声用于工业循环冷却水系统净化的一种方法,混频超声包括了所有低频超声和高频超声的组合。
背景技术
:辐照(irradiation),或称辐射技术是指利用电磁射线、加速电子照射物料从而杀死其中生物细胞、微生物的一种杀菌、灭藻技术(亦称杀生技术)。用于杀生的辐照可以分为两类一类是电离辐照,如Y射线、加速电子;另一类是非电离辐照,如紫外线、红外线、微波和超声波。超声辐照可对微生物细胞物质产生损伤,并能破坏细胞质膜,引起酶系统紊乱,造成生理生化反映的延缓或停止,新陈代谢的紊乱或者中断,从而导致细胞死亡,辐照时水分变化所产生的间接效应也是导致微生物细胞受损并死亡的重要原因。在超声波处理过程中,当声波接触到液体介质中产生纵波,从而产生交替压缩和膨胀的区域,这些压力改变的区域引起空穴现象的发生和在介质中形成气泡,这些气泡在膨胀过程中有更大的表面积,这增加气体的扩散,引起气泡的膨胀,超声波能量不能维持气泡的气相,因此,发生快速的压缩及分子激烈碰撞,产生冲击波,这些冲击波产生非常高的温度和压力,可达到5500°C和50000KPa,内爆产生的压力改变是超声波杀菌的主要原因。目前国内研究超声杀菌主要用于食品灭菌方面,为了保证食品的安全性及贮藏性,杀菌是食品生产中一个重要的环节,在传统的食品灭菌方面主要采用热杀菌,但低温加热不能将食品中的微生物全部杀死(特别是耐热的芽孢杆菌),而高温加热又会不同程度地破坏食品的营养成分和天然特点,特别是对热敏性成分的破坏,同时还会消耗较多的能源,成本投入高。因此,为了更大限度地保持食品天然的色、香、味和一些生理活性成分,满足现代人的生活要求,目前国际上对一些新型非热杀菌技术的研究越来越多,如远红外照射技术,振动磁场技术,高压脉冲电场技术等,超声场因其独特的性质及规律在杀菌研究中更加引起了人们的广泛关注,但目前仅处于实验室研究阶段,还未进入工业化应用阶段。超声杀菌技术目前主要应用在食品灭菌领域果蔬汁饮料、牛乳、酱油、酒类、蛋黄酱、饮用水等液体食品的杀菌。已研究的在食品领域的杀菌主要集中在对李斯特单胞菌(Listeriamonocytogens)、沙门氏菌、大肠杆菌,金黄色葡萄球菌、枯草芽杆菌和其他一些微生物。研究发现室温下超声波处理(20kHz和117iim)李斯特单胞菌4.3min,细菌死亡率达到90%。沙门氏菌是总所周知的食源性致病菌,在过去几十年里经常爆发,通常涉及鸡蛋、家禽、水果和蔬菜,Sams和Feria通过实验研究发现超声波对不同介质上的沙门氏菌杀菌效果不同,超声波灭菌跟超声波的频率、强度及辐照时间、微生物种类、菌液浓度、菌液容量、媒质均有很大的关系。超声波杀菌的特点是速度较快,对人和物品无伤害,对延长食品保质期、保持食品安全性有重要意义,但也存在消毒不彻底,影响因素较多的问题,并且一般只适用于液体或浸泡在液体中的物品。由于超声波这一特殊要求,人们发现可以将超声波杀菌引用到工业循环冷却水系统领域。在许多工业(石油、化工、电厂、冶金、核能等)均需使用大量的工业循环冷却水,但在循环水中极易生长微生物(菌、藻、虫等)并附着在管道、换热器等有关设备内,腐蚀、堵塞设备,降低传热效率,增加操作费用及设备费用。目前循环冷却水杀生的基本方法就是不断添加杀生剂。此法虽能起到杀生效果,但仍有一定的腐蚀设备、污染环境、增加操作成本等问题。近年来,人们开始对超声杀菌进行研究,表明超声杀生技术是一种无污染、环保节能的杀菌、灭藻方法,还可起到节能、减排的作用。起初是BelgiancompanyUndatim(EadaoinM.Joyce,TimothyJ.Mason,"SonicationusedasabiocideAreview:Ultrasoundagreeneralternativetochemicalbiocides?,,,ChemistryToday26(6),22-26(2008))开始的超声用于处理循环冷却水的研究,他们发现高频率超声处理对于控制循环水中藻类的生长及灭菌有很好的效果。Ashland(W098/01394)于2003年将S0N0XIDE系统引入欧洲,2004年进入美国市场,目前已在350多套冷却水循环系统中成功应用。该发明是一种超声水处理体系(Sonoxicbprocess),采用的超声频率为200kHz10MHz,用于控制冷却水循环系统中细菌、细菌生物膜和藻类等微生物的生长,替代传统的腐蚀性、有毒、有害化学微生物杀生剂,该系统为密封式或半密封式水系统提供了一个独特的无需化学品的水处理方案。该方法的不足是起到同样杀菌效果,高频方法虽需较小能耗,但作用距离短。JP2005021814采用的超声频率为2540kHz,功率为13KW,水室箱体容积为4.31m3,将超声换能器安装于水室箱体两侧,水路从箱体中通过,30个箱体可同时工作,超声波将经过的水体中微生物杀灭。JP2006007184将超声换能器(28200kHz)加于管道外壁,水处理体积为0.54m3,通过超声波将经过管道的压舱水进行杀菌灭藻处理,可在短时间内对水体进行处理。低频方法可作用较远距离,但杀菌需较大功率,会产生较大的能耗。
发明内容本发明的目的是为了克服现有单频超声波用于工业循环冷却水系统净化技术的缺陷,而提出了一种用于工业循环冷却水系统的超声杀菌除藻方法;首次将混频超声引入,能够打破现有超声波用于工业循环冷却水系统单一超声频率的局限,是一种绿色、节能环保的工业循环冷却水系统净化技术新路线。本发明的技术方案本发明人的研究发现低频超声对细菌和藻类的致死作用占据了主要地位,但耗能比较大;虽高频超声的输出功率随频率的增高而减小,高频超声空化作用也小于低频时的声空化作用,但高频超声可更快的解离细菌和藻类的细胞簇,有较好的抑菌效果;而将高、低频超声混频则能集中两者优点,弥补两者缺陷,还能减少单一频率超声波产生的可导致空化效应减弱的驻波,对不同大小的生物细胞均可产生较大的破坏与抑制作用,大大提高了超声杀菌、抑菌的效率,减少能耗,也延长超声处理器工作寿命,为实现超声波用于工业循环冷却水系统净化的工业化进程提供了更实用的技术条件。本发明的具体技术方案一种用于工业循环冷却水系统的超声杀菌除藻方法,其特征在于采用混频超声辐照装置置于循环水输送管道外壁或者浸没在在储水池中,辐照工业循环冷却水,即得到杀菌除藻的循环冷却水;其中所述的混频超声辐照装置由高、低频的4超声发生器和超声换能器组成。超声换能器为压电陶瓷超声波换能器或磁致伸缩超声波换能器。优选混频超声的低频超声频率为10100kHz,高频超声频率为200kHz10MHz;也就是所用的混频超声的超声频率为频率10100kHz的任一低频超声和频率200kHz10MHz任一高频超声的混合;其中优选频差大的混频超声;优选高频超声声强为0.01Wcm—20.1WcnT2,低频超声声强为0.7Wcm_210Wcm_2,超声辐照时间为515min;超声连续处理过程,可采用较低声强,其中高频超声声强为0.01Wcm_20.05Wcm_2,低频超声声强为0.7Wcm_25W*cnT2。延长设备使用寿命。所述的高、低频的超声换能器的排布形式为单个阵列或多个阵列。当混频超声辐照装置置于循环水输送管道外壁时,所用的超声换能器的排布形式为单个阵列,如图1所示,高、低频换能器交替均勻分布在循环冷却水管道外壁上,可根据实际处理量与声强需要确定超声换能器个数;当混频超声辐照装置浸没在储水池中,采用多个阵列,如图2所示,在水体中设置多层超声换能器,每层中高、低频超声换能器交替均勻分布,上、下层相对的位置为频率不同的超声换能器,可根据实际处理量与声强需要确定在水体中设置超声换能器的层数及每层中超声换能器的个数。其中所用的超声换能器的形状、超声频率的大小可根据实际场合的需要设计并制作。优选循环水输送管道内径为0.5mlm。本发明的工业循环冷却水经过混频超声辐照装置辐照515min后,参照GB4789.2-94(即平板菌落计数法)来测定本方法对工业循环冷却水系统的杀菌除藻效果。有益效果(1)采用混频超声波,混频超声能够通过倍频、分频波等途径产生更多的空化效应,并且可以减少单一频率超声波产生的可导致空化效应减弱的驻波,打破了采用单一低频或高频超声使用的局限及缺点,且可杀灭循环冷却水体系中不同种类、大小的菌类,进而为实现超声用于工业循环冷却水系统净化的工业化进程提供了一种可行的技术路线。(2)本方法用于工业循环冷却水系统杀菌和灭藻净化过程,可不用传统杀菌剂,不仅能消除杀菌剂余毒对环境的影响,而且是一种高强度、低能耗、绿色、环保的循环水杀菌、除藻方法。(3)本发明工艺流程简单,操作简单且操作费用少,易于实施。图1为超声换能器的排布形式为单个阵列的超声辐照装置剖面示意图;图2超声换能器的排布形式为多个阵列的超声辐照装置剖面示意图;其中1-高频超声发生器;2-低频超声发生器;3-高频超声换能器;4-低频超声换能器;5-循环冷却水输送管道;6-循环水储水池;7-循环水进口;8-循环水出口。具体实施方案下面通过实例进一步说明本发明的特点,但本专利的保护范围并不受实施例的限制。实施例1工业循环冷却水经过混频超声辐照装置辐照5min,lOmin和15min,其中超声辐照装置采用图1的形式,循环冷却水管道内径为0.5m,6个高、低频超声换能器(无锡华能超声电子有限公司)交替均勻分布在管道外壁,循环水体流量为0.01m7min,采用的超声频率为20kHz和1MHz的混频超声,高频超声声强为0.01WcnT2,低频超声声强为0.9WcnT2,然后将辐照后的循环冷却水的样品用生理盐水做一系列的稀释,之后置于恒温培养箱中培养36h(37°C),以平板菌落计数法,测定存活的菌数。结果见表1。表1<table>tableseeoriginaldocumentpage6</column></row><table>实施例2采用的试验方法及超声辐照装置同实施例1,采用的超声频率为20kHz和5MHz的混频超声,高频超声声强为0.03Wcm—2,低频超声声强为1Wcm—2。结果见表2。表2<table>tableseeoriginaldocumentpage6</column></row><table>实施例3试验方法同实施例1,超声辐照装置采用图2的形式,其中,储水池长、宽均为lm,高为0.5m,水体流量为0.03m3/min,8个超声换能器(无锡华能超声电子有限公司)平均分为2层(上下两层分布形式相同),高、低频超声换能器交替均勻分布在循环水体中,采用的超声频率为40kHz和5MHz的混频超声,高频超声声强为0.07Wcm_2,低频超声声强为1.2Wcm_2。结果见表3。表3<table>tableseeoriginaldocumentpage7</column></row><table>从表13可以看出,本发明采用混频超声用于工业循环冷却水系统的净化能有效降低工业循环冷却水中细菌的含量,开辟了一种新的绿色环保的工业循环冷却水系统净化的技术路线。权利要求一种用于工业循环冷却水系统的超声杀菌除藻方法,其特征在于采用混频超声辐照装置置于循环水输送管道外壁或者浸没在储水池中,辐照工业循环冷却水,即得到杀菌除藻的循环冷却水;其中所述的混频超声辐照装置由高、低频的超声发生器和超声换能器组成。2.如权利要求1所述的方法,其特征在于所述的高、低频的超声换能器的排布形式为单个阵列或多个阵列。3.如权利要求1所述的方法,其特征在于所述的超声换能器为压电陶瓷超声波换能器或磁致伸缩超声波换能器。4.如权利要求1所述的方法,其特征在于所用的混频超声的低频超声频率为10100kHz,高频超声频率为200kHz10MHz;高频超声声强为0.01Wcm_20.1Wcm_2,低频超声声强为0.7WcnT210WcnT2。5.如权利要求4所述的方法,其特征在于所述的高频超声声强为0.01W*cm—20.05WcnT2,低频超声声强为0.7WcnT25WcnT2。全文摘要本发明涉及一种用于工业循环冷却水系统的超声杀菌除藻方法,其特征在于采用混频超声辐照装置置于循环水输送管道外壁或者浸没在储水池中,辐照工业循环冷却水,即得到杀菌除藻的循环冷却水;其中所述的混频超声辐照装置由高、低频的超声发生器和超声换能器组成。本发明提供的方法可强化单频超声杀菌效果,不用杀菌剂,能有效抑制系统中菌、藻类的生长,并有很好的杀菌、藻效果;操作简单易行,降低处理能耗,且绿色环保。文档编号C02F1/50GK101817572SQ20101015909公开日2010年9月1日申请日期2010年4月28日优先权日2010年4月28日发明者吕效平,张帆,韩萍芳申请人:南京工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1