一种去除废水中氟化物的方法
【专利摘要】本发明公开了一种去除废水中氟化物的方法,它包括预处理、内电解反应、沉淀反应和混凝反应。本发明采用铝铜双金属内电解反应产生的OH?和氢氧化钙联合提升pH值,大大减少了氢氧化钙的投加量,与传统钙盐沉淀法相比减少了CaF2沉淀对Ca(OH)2颗粒表面的包裹问题;本发明与传统的铝盐络合?钙盐凝聚除氟法相比,采用自然界广泛存在、价格低廉的腐植酸作为吸附剂和絮凝剂,不仅吸附废水中的氟铝络离子,减少了钙的投加量,提高了除氟效果,降低了除氟处理成本,而且还可有效地去除水中的铝离子,从而大大减少了处理出水中铝的残留,减少了二次污染的产生;本发明的方法控制参数简单,条件温和,容易实施,适用于工业化大规模生产。
【专利说明】
一种去除废水中氟化物的方法
技术领域
[0001 ]本发明属于水处理技术领域,具体涉及一种去除废水中氟化物的方法。
【背景技术】
[0002] 工业含氟废水,来源于含氟矿石开采、焦炭、玻璃、化肥、电镀、电子、太阳能电池生 产等行业。工业含氟废水成分复杂,浓度涵盖范围大,从几十毫克每升到几千,甚至上万。以 晶体硅太阳能电池片行业含氟废水的产生为例,在晶体硅太阳能电池片生产过程中,利用 氢氟酸对晶体硅表面进行腐蚀、制绒以及表面冲洗,导致高氟酸性废水的产生。由于不同生 产阶段产生的废水浓度有别,导致废水总排放口的氟离子浓度不断变化,波动范围从几百 毫克每升到几千,甚至上万。
[0003] 氟是人类及动植物必需的微量元素之一,微量氟能促进儿童生长发育和防龋齿。 但过量的氟摄入机体不仅对骨骼系统造成损伤,还对消化、呼吸、神经系统造成损害,引起 心血管、中枢神经等全身性的疾病;此外,过量氟还会对动植物造成一定的损伤。
[0004] 中国是太阳能电池生产第一大国,晶体硅太阳能电池片是太阳能电池的重要组 成。鉴于晶体硅太阳能电池生产废水中氟化物浓度高,酸性极强,危害大,因此,这类含氟工 业废水的排放必须受到严格控制,在排放前必须对其进行处理以达到国家规定的排放标准 (《污水综合排放标准》(GB8978-1996)中规定,氟化物排放的三级标准为<20mg/L,一级和二 级标准为〈l〇mg/L,大致呈中性)。
[0005] 目前,去除该类废水中氟化物的方法主要为石灰和氯化钙联合沉淀法,该方法用 消化石灰乳加入含氟废水中至充分呈碱性,再利用强电解质氯化钙来沉淀氟离子,由于生 成的氟化钙晶体的粒径较小,难以过滤,为了进行固液分离,通常需要加入大分子的絮凝 剂,如铝盐或铝酸盐、高分子聚合物,形成的絮状物先进行沉降分离。但这种方法的缺点是 溶液中Ca(0H)2颗粒的表面被生成的CaF2沉淀包裹,无法让其与溶液充分反应,导致石灰和 钙盐的用量很大。尽管如此,除氟效果仍然较差,而且还使得药剂成本增加,生成的泥渣量 较多;铝盐混凝沉淀过程一般需增大投药量才能提高氟的去除率,这会使处理成本增大,同 时也使处理出水中含有大量的铝离子而造成二次污染。此外,传统的高分子聚合物无法将 处理过程中形成的络合态氟化物进行有效絮凝去除,导致处理出水中氟化物的含量较高, 很难稳定地达标排放。因此,在用钙盐和铝盐联合处理含氟废水时,必须优化工艺过程和工 艺条件使水中氟化物得以有效去除的同时处理成本较低且二次污染少。
【发明内容】
[0006] 本发明的目的在于克服现有技术的缺点,提供一种经济、高效、环保的去除废水中 氟化物的方法。
[0007] 本发明的目的通过以下技术方案来实现:一种去除废水中氟化物的方法,它包括 以下步骤: S1.预处理:收集废水将废水中氟化物浓度调至以氟离子计为1000~3000mg/L,并调 节废水的pH值至酸性,得预处理后的含氟废水; 52. 内电解反应:向预处理后的含氟废水中加入铝铜双金属,在搅拌的条件下进行铝 铜内电解反应; 53. 沉淀反应:在电解反应后的含氟废水中加入石灰调节溶液的pH值至6~9,并在搅 拌的条件下发生沉淀反应,固液分离,所得液体备用; 54. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,再加入聚 丙烯酰胺进行混凝反应,待反应结束后固液分离,所得液体为去除氟化物的水。
[0008] 进一步地,所述废水为晶体硅太阳能电池片生产废水。
[0009] 进一步地,步骤S1中所述废水的pH值为1~3。
[0010] 进一步地,,步骤S2中所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸溶液 依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为0.5~3%的硫酸铜溶液中 进行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在40~ 60°C的无氧条件下干燥50~70min。
[0011] 进一步地,所述铝铜双金属的投加量与预处理后含氟废水中氟化物的质量比为25 ~75:1,处理后含氟废水中氟化物的质量以氟离子计。
[0012] 进一步地,步骤S2中所述铝铜内电解反应的温度为15~25°C,反应时间为30~ 80min,揽摔强度为60~120r/min。
[0013] 进一步地,步骤S3中所述沉淀反应的时间为30~130min,搅拌强度为60~120r/ min〇
[0014] 进一步地,步骤S4中所述腐植酸、聚丙烯酰胺与预处理后含氟废水中氟化物的质 量比为0.25~1.25:0.25~1.25:1,处理后含氟废水中氟化物的质量以氟离子计。
[0015] 进一步地,步骤S4中所述络合、吸附和胶凝反应的温度为15~25°C,反应时间为5 ~25min,并在60~120r/min的转速下进行搅拌。
[0016] 进一步地,步骤S4中所述混凝反应的温度为15~25°C,反应时间为20~40min,并 在60~120r/min的转速下进行搅拌。
[0017]本发明的原理是:铝刨花表面有很多油性物质和氧化铝的钝化膜,分别用NaOH溶 液和HC1清洗铝刨花表面时,可有效除去其表面的油性物质和氧化铝钝化膜。当预处理后的 铝刨花加入硫酸铜溶液中时,发生金属的置换反应,溶液中的铜离子沉积在铝刨花表面,将 此材料进行洗涤、干燥后可制得铝铜双金属。
[0018] 当铝铜双金属放入含氟废水中时,铝铜双金属在溶液中形成电偶原电池,铝作为 阳极失去电子进入溶液中,产生的电子传递到铜电极,利用铜的反应界面,溶液中的H+和02在铜表面上得到电子而被还原,使溶液的pH值逐渐上升。在电偶腐蚀过程中,由于阴极铜的 电催化作用,加快了阳极A1-A13+的反应过程,使溶液中的铝离子不断增多。Al3+与水反应 而水解,低pH值条件下主要以A1(H20)63+存在,由于反应过程中pH值逐渐上升,水合分子逐 步被0?Γ所取代,生成各种羟基铝离子使其以游离态和各种羟基络合态存在,各种形态的铝 离子将水中游离态氟离子(F)转化为各种形态的络合态氟A1FX(0H)(3-X)(其中X为单个铝原 子对应的氟的配位数)。
[0019] 游离态氟转化为络合态氟之后,再引入石灰,一方面将pH值调节至适当范围使废 水中生成大量的水合氢氧化铝,有利于氟的凝聚去除过程;另一方面使溶液中生成大量的 氟铝钙和氟化钙,使氟由溶解态转化成颗粒态,使其容易从水中分离。由于在铝铜内电解反 应阶段,有大量Ο?Γ产生导致的pH值上升,使得在钙沉淀阶段所加入的石灰量较少,这大大 减少了 CaF2对Ca (0H) 2颗粒的包裹。
[0020] 进一步地,采用固液分离反应器去除颗粒态氟后,废水中还残留有大量的铝离子 和络合态的氟离子,腐植酸可通过络合作用吸附这部分离子。腐植酸是自然界中分布最为 广泛的天然高分子有机物,来源广泛且价格低廉。腐植酸具有疏松的"海绵状"结构和巨大 的表面面积(330-340m2/g),腐植酸分子富含许多具有化学活性的含氧官能团,特别是羧基 (-C00H)和羟基(-OH),这使得腐植酸既可通过范德华引力又可通过官能团的络合作用来吸 附废水中的铝离子和络合态的氟离子。此外,腐植酸是一种高分子电解质,在具有高浓度的 铝离子溶液中容易发生胶凝作用,形成小的絮凝体。在聚丙烯酰胺作助凝剂的作用下,这些 吸附有铝离子和络合态氟离子的腐植酸絮凝体会形成更大的絮凝体,通过固体分离,可使 其从水中分离出来,得到净化后的出水。
[0021] 本发明涉及的化学方程式如下: (1) 铝铜内电解反应 阳极(Al):Al-3e--Al3+ 阴极(Cu):2H++2e--2[Η]-Η2 丁 有氧气时 〇2+4H++4e--2Η20 (2) 铝离子的水解以及与氟的络合 Al3+与水反应而水解,低pH值条件下主要以Α1(Η20)63+存在,pH值大于3以后,水合分子 逐步被0?Γ所取代,生成各种羟基铝离子,其主要反应为: ai(h2〇)63+ <-->[ai(oh)(h20)5]2++h+
[Α1(0Η)(Η20)5]2+<->[A1(0H) 2(H20)4]++H+
[ΑΚΟΗ)〗)!!〗。)*]' <-->[Α1(0Η)3(Η20)3]+Η+ 随着羟基离子的增多,各离子羟基之间发生架桥粘结(或称羟基桥连),可生成带正电 的多核羟基络合物:
进一步桥连,则又可生成[A13(0H)4(H20)1Q]5+、[A1 6(0H)15]3+、[A18(0H)2()] 4+以及[Al1304 (0H)24]7+等。
[0022] 其除氟机理为Al3+水解生成A1(0H)3胶体或绒絮体,这些絮体再对F的配位体交 换、物理吸附、卷扫作用除去废水中的Γ;Α13+将水中游离态氟离子0-)转化为AlF2+、[Al 2F02 (H20)] +、[A1F(0H)(H20)2] +、[A12F02(H20)2] +、[A13F03(0H)(H20)2]+、[Al4F0 5(H20)4] +、 [Al6F307(H20)3] +、[Ali-OWOH) ]2+、[A113F6015(0H) (H20)8]2+等各种形态的络合态氟A1FX(0H)(3-x)(其中X为单个铝原子对应的氟的配位数),从而达到除氟的目的。
[0023] (3)石灰调节pH同时进行钙沉淀反应 A1Fx(0H)(3-x)+ Ca2+= AlCaFx(0H)(5-x) F-+Ca2+=CaF2 本发明具有以下优点: (1) 本发明采用铝铜双金属内电解反应产生的Ο?Γ和氢氧化钙联合提升pH值,大大减少 了氢氧化钙的投加量,与传统钙盐沉淀法相比,减少了 CaF2沉淀对Ca(OH)2颗粒表面的包裹 问题; (2) 本发明采用的原料是铝刨花,制备铝铜双金属的方法简单、操作方便,不仅实现变 废为宝,还使得制得的铝铜双金属成本低廉;本发明采用该铝铜双金属在水溶液中发生电 偶腐蚀产生的铝盐来络合水中的氟化物,与传统方法中直接投加铝盐相比,本发明的方法 成本更低; (3) 本发明与传统的铝盐络合-钙盐凝聚除氟法相比,本发明采用自然界广泛存在、价 格低廉的腐植酸作为吸附剂和絮凝剂,不仅吸附废水中的氟铝络离子,减少了钙的投加量, 提高了除氟效果,降低了除氟处理成本,而且还可有效地去除水中的铝离子,从而大大减少 了处理出水中铝的残留,减少了二次污染的产生; (4) 本发明的方法控制参数简单,条件温和,容易实施,适用于工业化大规模生产。
【附图说明】
[0024] 图1为本发明中腐植酸分子对铝离子的吸附、络合作用示意图,图中,腐植酸大分 子以HnHSg表示,金属盐以Me (H20)nFx(m_x)+水合离子表示。
【具体实施方式】
[0025] 下面结合附图及实施例对本发明做进一步的描述,本发明的保护范围不局限于以 下所述。
[0026] 实施例1: 一种去除废水中氟化物的方法,它包括以下步骤: 51. 预处理:收集晶体硅太阳能电池片生产废水将废水中氟化物浓度调至以氟离子计 为1000mg/L,并调节废水的pH值至3,得预处理后的含氟废水; 52. 内电解反应:将预处理后的含氟废水中加入铝铜双金属,铝铜双金属的投加量与 预处理后含氟废水中氟化物的质量比为25:1,处理后含氟废水中氟化物的质量以氟离子 计;在搅拌的条件下进行铝铜内电解反应,铝铜内电解反应的温度为15°C,反应时间为 30min,搅拌强度为60r/min;其中,所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸 溶液依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为0.5%的硫酸铜溶液中 进行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在40°C 的无氧条件下干燥50min; 53. 沉淀反应:在电解反应后的含氟废水中加入石灰调节溶液的pH值至6,并在搅拌的 条件下发生沉淀反应,所述沉淀反应的时间为30min,搅拌强度为60r/min固液分离,所得液 体备用; 54. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,反应的温 度为15°C,反应时间为5min,并在60r/min的转速下进行搅拌,再加入聚丙烯酰胺进行混凝 反应,反应的温度为15°C,反应时间为20min,并在60r/min的转速下进行搅拌,待反应结束 后固液分离,所得液体为去除氟化物的水,其中,所述腐植酸、聚丙烯酰胺与预处理后含氟 废水中氟化物的质量比为0.25:0.25:1,处理后含氟废水中氟化物的质量以氟离子计。此反 应步骤中腐植酸分子对铝离子的吸附、络合作用如图1所示,在反应过程中,腐植酸大分子 不断脱去质子(即H+),而带负电性,由于水中羟基的加入,金属水合离子也会改变荷电数, 二者在水溶液中不断演变并发生络合反应。
[0027] 实施例2: -种去除废水中氟化物的方法,它包括以下步骤: 51. 预处理:收集晶体硅太阳能电池片生产废水将废水中氟化物浓度调至以氟离子计 为3000mg/L,并调节废水的pH值至1,得预处理后的含氟废水; 52. 内电解反应:将预处理后的含氟废水中加入铝铜双金属,铝铜双金属的投加量与 预处理后含氟废水中氟化物的质量比为75:1,处理后含氟废水中氟化物的质量以氟离子 计;在搅拌的条件下进行铝铜内电解反应,铝铜内电解反应的温度为25°C,反应时间为 80min,搅拌强度为120r/min;其中,所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸 溶液依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为3%的硫酸铜溶液中进 行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在60°C的 无氧条件下干燥70min; 53. 沉淀反应:在电解反应后的含氟废水中加入石灰调节溶液的pH值至9,并在搅拌的 条件下发生沉淀反应,所述沉淀反应的时间为130min,搅拌强度为120r/min固液分离,所得 液体备用; 54. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,反应的温 度为25°C,反应时间为25min,并在120r/min的转速下进行搅拌,再加入聚丙烯酰胺进行混 凝反应,反应的温度为25°C,反应时间为40min,并在120r/min的转速下进行搅拌,待反应结 束后固液分离,所得液体为去除氟化物的水,其中,所述腐植酸、聚丙烯酰胺与预处理后含 氟废水中氟化物的质量比为1.25:1.25:1,处理后含氟废水中氟化物的质量以氟离子计。此 反应步骤中腐植酸分子对铝离子的吸附、络合作用如图1所示,在反应过程中,腐植酸大分 子不断脱去质子(即H+),而带负电性,由于水中羟基的加入,金属水合离子也会改变荷电 数,二者在水溶液中不断演变并发生络合反应。
[0028] 实施例3: -种去除废水中氟化物的方法,它包括以下步骤: 51. 预处理:收集晶体硅太阳能电池片生产废水将废水中氟化物浓度调至以氟离子计 为1500mg/L,并调节废水的pH值至2.5,得预处理后的含氟废水; 52. 内电解反应:将预处理后的含氟废水中加入铝铜双金属,铝铜双金属的投加量与 预处理后含氟废水中氟化物的质量比为43:1,处理后含氟废水中氟化物的质量以氟离子 计;在搅拌的条件下进行铝铜内电解反应,铝铜内电解反应的温度为18°C,反应时间为 48min,搅拌强度为82r/min;其中,所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸 溶液依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为1.5%的硫酸铜溶液中 进行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在48°C 的无氧条件下干燥60min; 53. 沉淀反应:在电解反应后的含氟废水中加入石灰调节溶液的pH值至7,并在搅拌的 条件下发生沉淀反应,所述沉淀反应的时间为80min,搅拌强度为85r/min固液分离,所得液 体备用; 54. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,反应的温 度为18°C,反应时间为16min,并在85r/min的转速下进行搅拌,再加入聚丙烯酰胺进行混凝 反应,反应的温度为18°C,反应时间为28min,并在90r/min的转速下进行搅拌,待反应结束 后固液分离,所得液体为去除氟化物的水,其中,所述腐植酸、聚丙烯酰胺与预处理后含氟 废水中氟化物的质量比为〇 .7:1:1,处理后含氟废水中氟化物的质量以氟离子计。此反应步 骤中腐植酸分子对铝离子的吸附、络合作用如图1所示,在反应过程中,腐植酸大分子不断 脱去质子(即H+),而带负电性,由于水中羟基的加入,金属水合离子也会改变荷电数,二者 在水溶液中不断演变并发生络合反应。
[0029] 实施例4: 一种去除废水中氟化物的方法,它包括以下步骤: 51. 预处理:收集晶体硅太阳能电池片生产废水将废水中氟化物浓度调至以氟离子计 为2300mg/L,并调节废水的pH值至1.5,得预处理后的含氟废水; 52. 内电解反应:将预处理后的含氟废水中加入铝铜双金属,铝铜双金属的投加量与 预处理后含氟废水中氟化物的质量比为70:1,处理后含氟废水中氟化物的质量以氟离子 计;在搅拌的条件下进行铝铜内电解反应,铝铜内电解反应的温度为22°C,反应时间为 70min,搅拌强度为110r/min;其中,所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸 溶液依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为2.3%的硫酸铜溶液中 进行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在54°C 的无氧条件下干燥60min; 53. 沉淀反应:在电解反应后的含氟废水中加入石灰调节溶液的pH值至8,并在搅拌的 条件下发生沉淀反应,所述沉淀反应的时间为115min,搅拌强度为110r/min固液分离,所得 液体备用; 54. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,反应的温 度为22°C,反应时间为20min,并在lOOr/min的转速下进行搅拌,再加入聚丙烯酰胺进行混 凝反应,反应的温度为22°C,反应时间为35min,并在100r/min的转速下进行搅拌,待反应结 束后固液分离,所得液体为去除氟化物的水,其中,所述腐植酸、聚丙烯酰胺与预处理后含 氟废水中氟化物的质量比为1:0.75:1,处理后含氟废水中氟化物的质量以氟离子计。此反 应步骤中腐植酸分子对铝离子的吸附、络合作用如图1所示,在反应过程中,腐植酸大分子 不断脱去质子(即H+),而带负电性,由于水中羟基的加入,金属水合离子也会改变荷电数, 二者在水溶液中不断演变并发生络合反应。
[0030] 实验例1: 某晶硅太阳能电池片生产废水中氟化物浓度2040 mg/L,pH值为1.5。通过以下步骤去 除该废水中的氟化物。
[0031] 将用氢氧化钠和盐酸溶液分别对铝刨花(长2cm、宽3mm、厚0.25mm)进行表面处理, 将进行表面处理过的铝刨花放入质量分数为1%的硫酸铜溶液中(铝刨花与溶液中硫酸铜的 质量比为8:1)浸渍25min后,固液分离,用水洗涤至洗出液中无铜离子检出;将所得固体在 温度为40°C的无氧条件下干燥60min,制得错铜双金属; 取10L废水于15L至耐酸碱的聚四氟乙烯容器1中,往容器1内的废水中加入1.2Kg铝铜 双金属,在搅拌强度为l〇〇r/min、温度为25°C的条件下进行错铜内电解反应60min,往内电 解反应结束后的溶液中加入石灰使溶液的pH调整为7,在搅拌强度为lOOr/min的条件下,在 温度为25 °C的条件下进行沉淀反应120min,反应结束后,固液分离,将清液备用; 将所得的清液汇集至15L耐酸碱的聚四氟乙烯容器2中,往容器2中加入腐植酸9g,在反 应温度为25°C的条件下,搅拌(搅拌强度为80r/min)20min,再加入聚丙烯酰胺9g,在快速搅 拌(搅拌强度为120r/min)5min,慢速搅拌(搅拌强度为60r/min)20min的条件下进行混凝反 应。将混凝反应结束后的混合液进行固液分离,清液为处理出水。测定处理出水中氟化物的 浓度为9.815mg/L,氟化物的去除率为99.5%,出水中pH为6.72。
[0032] 实验例2: 某晶硅太阳能电池片生产废水中氟化物浓度1040mg/L,pH值为2。通过以下步骤去除该 废水中的氟化物。
[0033] 将用氢氧化钠和盐酸溶液分别对铝刨花(长2cm、宽3mm、厚0.25mm)进行表面处理, 将进行表面处理过的铝刨花放入质量分数为1%的硫酸铜溶液中(铝刨花与溶液中硫酸铜的 质量比为12:1)浸渍15min后,固液分离、用水洗涤至洗出液中无铜离子检出;将所得固体在 温度为60°C的无氧条件下干燥50min,制得错铜双金属; 取20L废水于30L至耐酸碱的聚四氟乙烯容器1中,往容器1内的废水中加入1.5Kg铝铜 双金属,在搅拌强度为80r/min,温度为20°C的条件下进行铝铜内电解反应30min,往内电解 反应结束后的溶液中加入石灰使溶液的pH调整为8,在搅拌强度为90r/min,温度为20 °C的 条件下进行沉淀反应60min,反应结束后,固液分离,将清液备用; 将所得的清液汇集至30L耐酸碱的聚四氟乙烯容器2中,往容器2中加入腐植酸7g,在反 应温度为20°C的条件下,搅拌(搅拌强度为80r/min)10min,再加入7g聚丙烯酰胺,在快速搅 拌(搅拌强度为120r/min)3 min,慢速搅拌(搅拌强度为80r/min)15min的条件下进行混凝 反应。将混凝反应结束后的混合液进行固液分离,清液为处理出水。测定处理出水中氟化物 的浓度为8.126mg/L,氟化物的去除率为99.2%,出水中pH为6.84。
【主权项】
1. 一种去除废水中氟化物的方法,其特征在于,它包括以下步骤:51. 预处理:收集废水将废水中氟化物浓度调至以氟离子计为1000~3000mg/L,并调 节废水的pH值至酸性,得预处理后的含氟废水;52. 内电解反应:向预处理后的含氟废水中加入铝铜双金属,在搅拌的条件下进行铝 铜内电解反应;53. 沉淀反应:在内电解反应后的含氟废水中加入石灰调节溶液的pH值至6~9,并在 搅拌的条件下发生沉淀反应,固液分离,所得液体备用;54. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,再加入聚 丙烯酰胺进行混凝反应,待反应结束后固液分离,所得液体为去除氟化物的水。2. 如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,所述废水为晶体硅 太阳能电池片生产废水。3. 如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S1中所述废水 的pH值为1~3。4. 如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S2中所述铝铜 双金属采用以下方法制备:用氢氧化钠和盐酸溶液依次对铝刨花进行处理,将处理后的铝 刨花放入质量百分浓度为0.5~3%的硫酸铜溶液中进行浸渍,浸渍后固液分离,所得固体用 水洗涤至洗出液无铜离子,将洗涤后的固体在40~60 °C的无氧条件下干燥50~70min。5. 如权利要求1或4所述的一种去除废水中氟化物的方法,其特征在于,所述铝铜双金 属的投加量与预处理后含氟废水中氟化物的质量比为25~75:1,处理后含氟废水中氟化物 的质量以氟尚子计。6. 如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S2中所述铝铜 内电解反应的温度为15~25°C,反应时间为30~80min,搅拌强度为60~120r/min。7. 如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S3中所述沉淀 反应的时间为30~130min,搅拌强度为60~120r/min。8. 如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S4中所述腐植 酸、聚丙烯酰胺与预处理后含氟废水中氟化物的质量比为〇. 25~1.25:0.25~1.25:1,处理 后含氟废水中氟化物的质量以氟离子计。9. 如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S4中所述络 合、吸附和胶凝反应的温度为15~25°C,反应时间为5~25min,并在60~120r/min的转速下 进行搅拌。10. 如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S4中所述混 凝反应的温度为15~25°C,反应时间为20~40min,并在60~120r/min的转速下进行搅拌。
【文档编号】C02F9/06GK105836937SQ201610233884
【公开日】2016年8月10日
【申请日】2016年4月16日
【发明人】刘咏, 范琴, 刘燕兰, 汪诗翔, 周安澜
【申请人】四川师范大学