专利名称:烃类树脂的氢化方法
技术领域:
本发明涉及适用于烃类树脂和松香原料的催化氢化处理方法。本发明尤其涉及用含有硫化的钨钼酸镍的氢化金属催化剂化合物对这类树脂和松香进行氢化处理的改进方法。
本发明背景用于包括诸如石油燃料、白油、润滑油添加剂和烃类树脂的这类物质的烃化合物的氢化、脱硫和脱氮的氢化处理方法是众所周知的,并已广泛应用于工业界。具体地说,利用负载在金属氧化物载体上的多相催化剂体系能有利地用于促进这一过程的进行是为大家所熟知的。要达到有效的反应速率,就要求氢气分子与烃化合物在活性金属催化剂存在下相互接触,而这些活性金属催化剂通常是固定在惰性载体的孔隙内的。一般认为,如果孔隙大小没有满足设计要求,那么大烃分子进入、通过和离开孔隙的运动就会受到限制,从而使反应速率下降。因此,有大量的关于用多相催化剂使烃化合物氢化的文献资料,例如可参看美国专利5820749中的说明和其中所引的文献。该发明的优选方法采用了包含金属镍和/或钴以及载持在该发明的惰性载体上的钼与钨之一或两者的催化剂。
钨钼酸镍催化剂已公开在WO 99/03578中。该催化剂是通过分解钨钼酸镍(铵)前体以及或以预先硫化的方法或以现场硫化的方法对分解产物进行硫化而制得的。已提出的该催化剂用途包括脱硫作用和脱氮作用。
由这些文献及其所讨论的内容可知,提高生产率和延长运行时间而催化剂不发生降解是理想的,特别是对于烃类树脂来说,如果颜色、芳香性和软化点特征可被保留或得以改善的话。
发明/发明公开内容概述根据本发明,提供了烃类树脂的氢化处理方法,该方法包括使包含烃类树脂或松香的物料在适当的氢化处理条件下与由至少一种第VIII族非贵金属和至少两种VIB族金属所组成的本体多金属催化剂相接触,其中VIB族金属与VIII族非贵金属之比为约10∶1-约1∶10。根据本发明的方法,通过提高物料通过体积和有效的催化剂寿命可实现提高的烃类树脂产率。
由催化聚合或热聚合物流制得的烃类树脂并经本发明方法氢化的烃类树脂呈现的颜色、芳香性和软化点特征至少与先前得到的氢化树脂的特征相当。本发明方法最好是以只含金属类与活性金属组分的混合物构成的本体催化剂来实施。于是该方法适用于固定床氢化反应器,而同时避免了负载催化活性金属化合物的惰性基质载体的负面作用。没有载体基质可大大消除卤素在基体表面积聚的可能性,而这种卤素的积聚又能酸化金属催化剂从而使烃类树脂分子发生额外的、渐进性的裂解。这种裂解现象会损害烃类树脂的重要物理性能如树脂的软化点,降低产物得率以及缩短催化剂的有效使用寿命。
发明的最佳模式和实施例根据本发明的优选实施方法包括在上述催化剂存在下,对经催化聚合或热聚合制得的烃类树脂进行氢化或氢化处理(本文中可互换使用)步骤。催化氢化烃类树脂的任何已知方法都可根据本发明以本发明的催化体系取而代之得以改善,具体地说,美国专利5171793、4629766和4328090以及WO 95/12623中公开的方法都是适合的。所述每篇专利都已列入本文供参考,并作为对聚合方法、单体选择、氢化方法以及所述树脂的最终用途说明的参考。
其它专利文献也介绍了适用于按本发明进行改变的方法。例如,欧洲专利0082726介绍了采用负载在r-氧化铝载体上的镍-钨催化剂对由含烯烃和二烯烃物流经催化聚合或热聚合制得的石油树脂进行氢化的方法,其中氢气压力为1.47×107-1.96×107帕,温度为250-330℃。该物流据说含C5和/或C6烯烃和/或二烯烃物流以及供催化聚合的C8/C9芳族烯烃如苯乙烯、乙烯基苯及任选的茚。热聚合通常在温度为166-320℃、压力为9.8×105-11.7×105帕下进行的,反应时间一般为1.5-4小时。氢化作用后,反应器中混合物可经闪蒸及进一步分离以回收氢化树脂。水蒸汽蒸馏可用来除去低聚物,优选不超过325℃树脂温度。
其它的说明和资料刊载在有关技术文献中。本说明书和权利要求书中所用名词烃类树脂包括已知的由裂解的石油馏出物、煤焦油、松节油馏分和各种纯单体衍生的低分子量聚合物。它们的数均分子量一般低于2000,物理形态包括从粘性液体到硬的、脆性固体。供聚合的物料是由上述原料经各种已知的分馏装置和方法产生的。Friedel-Crafts聚合作用通常是在聚合溶剂中采用已知的Lewis酸催化剂,然后经洗涤和蒸馏除去溶剂和催化剂而完成的。本发明氢化处理方法特别适用于经这类Lewis酸催化制得的树脂,这是由于该聚合方法制得的反应产物含残余卤素。热催化聚合也是可利用的,特别对于脂族、脂环族及脂-芳族石油树脂的聚合。优选的烃类树脂是那些已知适用作粘合剂组合物增粘剂的树脂,尤其是石油馏出物经深度裂解衍生的石油树脂,由纯芳族单体衍生的烃树脂,由煤焦油衍生的苯并呋喃-茚树脂,以及由松节油馏分衍生的聚萜。石油树脂还包括那些已经含芳族或萜的物料改性的树脂。对于物料衍生物、单体组合物、聚合和氢化的方法的其它说明可参看专利文献(见技术背景)和技术文献如“烃树脂(Hydrocarbon Resins)”,Kirk-Othmer Encyclopedia of Chemical Technology,V.13,pp.717-743(J.Wiley & Sons,1995);“聚合物科学和工程大全(Encycl.of Poly.Sci.and Eng’g.)”,vol.7,pp.758-782(J.Wiley & Sons,1987),以及该两文献所引的参考文献。此外,还可参看欧洲专利0240253及其相应的美国专利申请(申请号为07/065792,申请日期为1987年6月24日)。所有这些参考文献都已列入本文供参考。
已知的天然树脂也可按本发明方法进行氢化处理。天然树脂是文献中提供的传统物质,例如,参看encycl.of Poly.Sci.and Eng’g.,V.14,pp.438-452(John Wiley & Sons,1988)。可按本发明进行氢化处理的松香包括技术上已知的适用作增粘剂的任何松香,特别包括酯化松香。松香的主要来源包括松香、木(蒸)松香以及通常由已知来源中提取或收集的并分馏成不同程度的松浆油松香。其它的背景资料可参看有关技术文献,如Kirk-Othmer Encycl.of Chem.Tech.,vol.17,pp.475-478(John Wiley & Sons,1968)和“压敏胶技术手册(Handbook ofPressure-Sensitive Adhesive Technology)”,ed.by D.Satas,pp.353-356(Van Nostrand Reinhold Co.,1982)。
用来实施本发明的加氢操作、氢化处理或氢化作用的催化剂是由至少一种第VIII族非贵金属和至少一种,优选两种第VIB族金属所组成的本体多金属催化剂,其中第VIB族金属与第VIII族非贵金属之比为约10∶1-约1∶10。优选的催化剂是由一种第VIII族非贵金属(优选Ni或Co)和两种第VIB族金属Mo和W所组成的本体三金属催化剂。Mo与W之比优选为约9∶1-约1∶9。
用于实施本发明的优选的本体三金属催化剂组合物以下列通式表示(X)b(Mo)c(W)dOz式中X是第VIII族非贵金属,摩尔比b∶(c+d)为0.5/1-3/1,优选为0.75/1-1.5/1,更优选为0.75/1-1.25/1。
摩尔比c∶d优选为>0.01/1,更优选为>0.1/1,再更优选为1/10-10/1,再更优选为1/3-3/1,最优选的是大体上等摩尔量的Mo与W,如2/3-3/2;以及Z=[2b+6(c+d)]/2。
该基本上无定形物质具有独特的X-衍射图形,在d=2.53埃和d=1.70埃显示出结晶峰。
该混合的金属氧化物是易于通过具有下列通式的前体的分解而制得的(NH4)a(X)b(Mo)c(W)dOz式中摩尔比a∶b为≤1.0/1,优选0-1;b、c及d的规定同上,以及Z=[a+2b+6(c+d)]/2。前体在d=2.53和1.70埃处呈现相似的峰。
前体的分解可在高温如至少约300℃,优选约300-450℃,在适宜的气氛如惰性气体(如氮、氩或水蒸汽)中实施,一直进行到大体上分解完全,即铵大体上完全放出为止。可通过热重分析(TGA),即重量变化曲线变平来容易地确定已大体上达到分解完全。
用来实施本发明的催化剂组合物可通过任何适宜的方法来制备。其中一种方法为不是所有的金属都处于溶液中。通常,在有质子液体的情况下金属组分的接触包括金属组分的混合和随后使所得混合物发生反应。对固态法来说,基本的做法是,在混合步骤中,至少一种金属组分是至少部分地以固态添加的,以及在混合和反应步骤中,至少部分地以固态添加的至少一种金属组分中的金属仍至少部分地保持固态。本文中的“金属”不是指处于金属形态的金属,而是指以金属化合物存在的金属,如最初添加的或存在于本体催化剂组合物中的金属组分。
一般来说,在混合步骤中,或者是至少一种金属组分是至少部分地以固态添加的,而至少一种金属组分是以溶质状态添加的,或者是以所有金属组分是至少部分地以固态添加的,其中,在整个固态法中,至少部分地以固态添加的金属组分中的至少一种金属仍至少部分地保持固态。以“溶质状态”添加的金属组分是指这种金属组分是以该金属组分在质子液体中的溶液添加的。“至少以部分固态”添加的金属组分是指至少部分的金属组分是以固态金属组分添加的,以及任选的是,该金属组分的其它部分是以该金属在质子液体中的溶液添加的。一种常用的实例是金属组分在质子液体中的悬浮体,其中金属是至少部分地以固态存在的,以及任选有部分金属溶解于质子液体中。
为了获得具有高催化活性的本体催化剂组合物,优选的是,在接触过程中至少部分固态金属组分是多孔性金属组分。这些金属组分的总孔隙体积和孔尺寸分布最好是与常规氢化处理的催化剂几乎相同的。常规氢化处理催化剂一般的孔隙体积为0.05-5毫升/克,优选为0.1-4毫升/克,更优选为0.1-3毫升/克而最优选为0.1-2毫升/克(根据氮吸附法测定)。常规氢化处理催化剂中通常没有孔径小于1纳米的孔隙。此外,常规氢化处理催化剂的表面积通常为至少10平方米/克,更优选为至少50平方米/克,而最优选为至少100平方米/克(按B.E.T.法测定)。例如,可选择总孔隙体积为0.19-0.39毫升/克,优选为0.24-0.35毫升/克(按氮吸附法测定),表面积为150-400平方米/克,更优选为200-370平方米/克(按B.E.T.法测定)的碳酸镍。此外,这些金属组分的中值粒径应为至少50纳米,更优选至少100纳米,并优选不超过5000微米,更优选不超过3000微米。还更优选的是,中值粒径为0.1-50微米,最优选为0.5-50微米。例如,通过选择至少部分以固态添加的、拥有大的中值粒径的金属组分,其它金属组分只会与大的金属组分微粒的外层发生反应。在这种情况下,得到了所谓具有芯-壳结构的本体催化剂微粒。
金属组分的适宜形态和织构既可通过采用适当的预加工的金属组分来达到,也可通过在能获得适宜形态和织构的条件下,以如上所述的沉淀法制备这些金属组分来达到。通过例行实验就能对适用的沉淀条件作出合适选择。
如上所述,为了保持至少部分以固体状态添加的金属组分的形态和织构,重要的是在整个固态法过程中,金属组分中的金属至少部分仍保持固态。值得再次指出的是,在固态法过程中不出现固态金属的数量为零的情况是至关重要的。如果固态金属微粒的直径大于可见光波长的话,含固态金属微粒的存在至少可通过目视观察来容易地检测。当然,诸如技术熟练人员已知的准弹性光散射(QELS)或近前向散射法,都可用来保证在固态混合过程的任何时间,不是所有的金属处于溶质状态。
用于制备本发明催化剂的固态法或溶液法中的质子液体可以是任何一种质子液体。其实例包括水、羧酸及醇如甲醇或乙醇。优选的是包含水的液体(如醇与水的混合物),更优选的是以水作为固态混合法中的质子液体。不同的质子液体也可同时用于固态混合法中。例如,可将一种金属组分的乙醇悬浮液添加到另一金属组分的水溶液中。
第VIB族金属通常包括铬、钼、钨或它们的混合物。适用的第VIII族非贵金属为例如铁、钴、镍或它们的混合物。优选的是,固态混合法中可采用包含镍、钼和钨或镍、钴、钼和钨的金属组分混合物。如果质子液体是水,在接触期间至少部分为固态的适用镍组分包括水不溶的镍组分如碳酸镍、氢氧化镍、磷酸镍、亚磷酸镍、甲酸镍、硫化镍、钼酸镍、钨酸镍、氧化镍、镍合金(如镍钼合金、Raney镍)或它们的混合物。在接触期间至少部分为固态的适用钼组分包括水不溶的钼组分如二氧化钼和三氧化钼、碳化钼、氮化钼、钼酸铝、钼酸(如H2MoO4),硫化钼或它们的混合物。最后,在接触期间至少部分为固态的适用钨组分包括二氧化钨和三氧化钨、硫化钨(WS2和WS3)、碳化钨、钨酸(如H2WO4·H2O、H2W4O13·9H2O)、氮化钨、钨酸铝(偏钨酸铝或多钨酸铝)或它们的混合物。这些组分一般是可商购的,或者也可通过例如沉淀法制备,如在氯化镍、硫酸镍或硝酸镍溶液中添加适量的碳酸钠可制得碳酸镍。技术熟练人员都知道选择适当的沉淀条件来制得符合要求的形态和织构。
一般来说,除金属外主要含C、O和/或H的金属组分是优选,因为它们对环境损害较少。碳酸镍是至少部分以固态添加的优选金属组分,这是因为当添加碳酸镍时会放出CO2,因而对反应混合物的pH值有正面影响。此外,由于碳酸盐转变为CO2,因此,碳酸盐不会残留在废水中。
以溶质状态添加的优选镍组分是水溶性镍组分,如硝酸镍、硫酸镍、乙酸镍、氯化镍或它们的混合物。以溶质状态添加的优选钼和钨组分是水溶性钼和钨组分如碱金属或铵的钼酸盐(也包括过钼酸盐、二、三、四、七、八或十四钼酸盐),Mo-P杂多阴离子化合物、Wo-Si杂多阴离子化合物、W-P杂多阴离子化合物、W-Si杂多阴离子化合物、Ni-Mo-W杂多阴离子化合物、Co-Mo-W杂多阴离子化合物,碱金属或铵的钨酸盐(也包括偏、仲、六或多钨酸盐)或它们的混合物。
优选的金属组分混合物是碳酸镍、钨酸与氧化钼的混合物。另一种优选的混合物是碳酸镍、二钼酸铵及偏钨酸铵。选择其它适用的金属组分混合物也属技术熟练人员了解的范围。必须指出的是,碳酸镍总是包含一定量的羟基基团。碳酸镍中有高含量的羟基基团是优选的。
另一种制备用于实施本发明的催化剂的方法是通过使在溶液中第VIII族非贵金属组分与在溶液中的第VIB族金属组分的反应混合物发生反应而制得沉淀物的方法来制备该本体催化剂组合物。对于固态法来说,以一种第VIII族非贵金属组分与两种第VIB族金属组分反应为佳。对于溶液法来说,第VIB族金属与第VIII族非贵金属的摩尔比最好与固态法相同。适用的第VIB族金属组分和第VIII族非贵金属组分为例如如上所述的适用于固态法的水溶性镍、钼和钨组分。其它的第VIII族非贵金属组分为如钴或铁组分。其它的第VIB族金属组分为如铬组分。金属组分可以溶液、悬浮液的形态或直接添加到反应混合物中。如果以可溶性盐添加的话,它们会溶解在反应混合物中,接着生成沉淀。适用的、溶于水的第VIB金属盐是铵盐如二钼酸铵、三钼酸铵、四钼酸铵、七钼酸铵、八钼酸铵和十四钼酸铵,仲钨酸铵、偏钨酸铵、六钨酸铵和多钨酸铵,第VIB族金属的碱金属盐、硅酸盐如硅钼酸、硅钨钼酸、钨酸、偏钨酸、过钨酸、Mo-P、Mo-Si、W-P和W-Si的杂多阴离子化合物。添加时不是呈溶液态的、但在反应混合物中以溶液起作用的含第VIB族金属的化合物也是可采用的。这类化合物的实例是含有大量结晶水的、当温度升高时,会溶解在自身金属水中的金属化合物。此外,不溶解的金属盐可以悬浮体形态或直接添加,但在反应混合物中以溶液形态发生作用。适用的不溶解的金属盐是Co-Mo-W的杂多阴离子化合物(在冷水中有中等溶解度)、Ni-Mo-W的杂多阴离子化合物(在冷水中有中等溶解度)。
使反应混合物反应以获得沉淀。可通过以下方法形成沉淀在第VIII族非贵金属与第VIB族金属沉淀的温度和pH值条件下,添加第VIII族非贵金属盐溶液,添加一种能络合该金属并能在升高温度或改变pH值时释放供沉淀的金属的化合物,或者在第VIII族非贵金属和第VIB族金属沉淀的温度和pH值条件下,添加第VIB族金属盐溶液,改变温度、改变pH值或减少溶剂用量。按这种方法得到的沉淀具有高的催化活性。与常规的、通常包括浸有第VIII族非贵金属和第VIB族金属的载体的常规加氢处理催化剂不同,所述沉淀不必采用载体即可使用。无载体催化剂组合物通常称为本体催化剂。向反应混合物添加碱或酸可改变其pH值,或者添加会随温度升高而分解出氢氧离子或H+离子,从而分别提高或降低pH值的化合物来改变pH值。会随温度升高而发生分解,从而提高或降低pH值的化合物的实例是尿素、亚硝酸盐、氰酸铵、氢氧化铵以及碳酸铵。
根据溶液法的说明性过程,制备第VIB族金属的铵盐溶液和制备第VIII族非贵金属的硝酸盐溶液。将两种溶液加热至约90℃。向第VIB族金属溶液添加氢氧化铵,将第VIII族非贵金属溶液添加到第VIB族金属溶液中,立即发生VIB族和第VIII族非贵金属组分的沉淀。这一过程也可在较低温度和/或降低压力下或较高温度和/或升高压力下进行。
根据溶液法的另一说明性过程,将第VIB族金属盐、第VIII族金属盐和氢氧化铵在溶液中混合,并加热以使氨放出,从而使pH值降低到发生沉淀的pH值。例如,当采用镍、钼和钨组分时,通常在pH值低于7时发生沉淀。
无论选用固态法还是溶液法,所得的本体催化剂组合物优选包含具有上述本体催化剂微粒特征的本体催化剂微粒,而更优选是基本上由具有上述本体催化剂微粒特征的本体催化剂微粒组成的。
本体催化剂组合物通常可直接成形为用于氢化处理的微粒。如果本体催化剂组合物中的液体含量很高以致不能直接进行成形步骤的话,则在成形前要进行固液分离。任选的是,或者不进行固液分离,或者在固液分离后,在成形前对本体催化剂组合物进行煅烧。
本体催化剂微粒的中值直径为至少50纳米,更优选为至少100纳米,优选不超过5000微米,更优选不超过3000微米。还更优选的中值粒径为0.1-50微米,而最优选为0.5-50微米。
如果在制备催化剂组合物时使用粘合材料的话,可采用通常在氢化处理催化剂中用作粘合剂的任何材料。这类粘合材料的实例包括二氧化硅,二氧化硅-氧化铝如常规二氧化硅-氧化铝、涂二氧化硅的氧化铝和涂氧化铝的二氧化硅,氧化铝如(假)勃姆石或三水铝石,二氧化钛,氧化锆,阳离子白土或阴离子白土如滑石粉、膨润土、高岭土、海泡石或水滑石,或它们的混合物。优选的粘合剂是二氧化硅、二氧化硅-氧化铝、氧化铝、二氧化钛、氧化锆或它们的混合物。这些粘合材料可直接使用或经胶溶后使用。采用这些粘合材料的前体也是可能的,其中这些前体能在本发明实施过程中转变成上述任何一种粘合材料。适用的前体是例如碱金属铝酸盐(可得到氧化铝粘合剂),水玻璃(可得到二氧化硅粘合剂),碱金属铝酸盐和水玻璃的混合物(可得到硅铝粘合剂),二价、三价和/或四价金属源的混合物如水溶性镁盐、铝盐和/或硅(可制备阳离子白土和/或阴离子白土),chlorohydrol,硫酸铝,或它们的混合物。
根据需要,粘合材料可在形成本体催化剂组合物前和/或在催化剂组合物制备过程中加入之前与第VIB族金属和/或第VIII族非贵金属相混合。可以这些材料浸渍固体粘合材料的方法来实施粘合材料与任一种金属的混合。技术熟练人员都知道适用的浸渍技术。如果粘合材料是经胶溶的话,可在第VIB族金属和/或第VIII族非贵金属组分存在下进行胶溶作用。
如果以氧化铝作为粘合剂,其表面积优选为100-400平方米/克,更优选为150-350平方米/克(以B.E.T.法测定)。氧化铝的孔隙体积优选为0.5-1.5毫升/克(以氮吸附法测定)。
一般来说,添加在本发明方法中的粘合材料的催化活性低于本体催化剂组合物,或者完全没有催化活性。因而,随着粘合材料的添加,本体催化剂组合物的活性会下降。因此,本发明方法中粘合材料的添加量通常随所需的最终催化剂组合物的活性而定。粘合剂用量为总组合物量的0-95(重量)%是适宜的,并随预定的催化剂用途而定。然而,为了利用本发明组合物的异乎寻常的高催化活性这一优点,粘合剂的添加量通常为总组合物的0.5-75(重量)%。
本发明的催化剂通常在氢存在下以硫化剂进行活化。可采用的含硫化合物包括H2S、二硫化碳、二甲二硫、二乙二硫、二硫化二丙基、二硫化二异丙基、二硫化二丁基、二硫化二叔丁基、硫茚、噻吩、二硫化二仲丁基、硫醇、含硫烃油以及硫醚(如二甲硫醚、二乙硫醚、二丙硫醚、二异丙硫醚、二丁硫醚、仲二丁硫醚、叔二丁硫醚、二硫醇以及含硫汽油)。在氢气存在下,能在催化剂上转变成H2S的任何其它有机硫源都可采用。本发明催化剂也可按美国专利4530917所述的有机硫处理方法以及其中所述其它处理方法进行活化,该专利所述内容已列入本说明书供参考。
一般的氢化处理条件包括反应温度为约100℃~350℃,氢气压力为5大气压(506千帕)与300大气压(30390千帕)之间,例如10-275大气压(1013千帕-27579千帕)。在一个实施方案中,反应温度范围为180℃-320℃,氢气压力为15195千帕-20260千帕。氢气供入反应器的体积比在标准条件(25℃,1大气压)下,通常可为20-200,对于水白色树脂来说,100-200是优选的。
由于在催化剂载体上出现碳的沉积,因而随着时间的推移,催化剂的活性会下降,这种情况可通过高压氢气压在约310℃-350℃下使催化剂床再生的方法而得以消除。在此所述的高压是指例如至少约180巴。再生过程最好在反应器中没有烃原料供入的情况下进行,例如在氢化处理中断的条件下进行。
本发明的经氢化的聚合物树脂特定地包括适用作粘合剂组合物增粘剂的烃类树脂,具体地说,包括天然或合成弹性体的聚合基聚合物体系的粘合剂组合物,其中包括源自苯乙烯嵌段共聚物、烯烃橡胶、烯烃衍生的弹性体或塑性体以及具有弹性体特征的各种共聚物(如乙烯-乙烯基酯共聚物)的合成弹性体。这类粘合剂组合物在热熔粘合剂和压敏粘合剂(如粘胶带、尿布用襻(diaper tabs)、信封、便条纸簿等)的用途中具有特定的实用价值。常通过选择具有高含量芳烃单体的烃类树脂可使增粘剂与聚合基聚合物体系达到极好的相容性。同时,要选择具有与基础聚合物体系的颜色特征相匹配的发色特征的增粘剂,优选的是,聚合物体系及其增粘剂是基本上透明的,生色团含量低,即颜色浅的。在加热操作(如配料时的熔融处理和在高温下将粘合剂组合物涂布到基体材料上)期间保持低的发色特征是很重要的。已知进行适当的氢化作用可使由脂族或芳族单体或它们的混合物制得的聚合烃类树脂具有所要求的热稳定的低颜色性质。通过采用本发明方法可达到上述两个目的。
以下列实施例对上述讨论进行说明。所有份额、比例和百分比都以重量计,除非另有说明。虽然这些实施例可涉及本发明的某些实施方案,但不能认为是对本发明的限制。
实施例为了说明本发明催化剂在树脂氢化工艺中的效用,进行下列试验。使芳族改性的C5/C9脂族树脂(从Exxon Mobil Chemical Company商购的Escorez 2101TM)在固定床反应器中进行氢化处理。Escorez 2101TM含有约150ppm氯化物。固定床反应器的操作条件是H2压力为3000磅/平方英寸表压,液体体积/床体积/小时为1,气体与液体体积比为150。对两种催化剂进行试验。催化剂A是根据本发明制备的无载体Ni/Mo/W催化剂。催化剂B是当前常用的氧化铝为载体的Ni/W氢化催化剂。类似催化剂细节已公开在美国专利5820749中。表1 ESCOREZ 2101TM烃类树脂的氢化
表1数据表明,本发明无载体催化剂对除去树脂的颜色(即使共轭双键加氢)很有效。此外,象氧化铝为载体的催化剂一样,本发明无载体催化剂仍能保留树脂的大部分芳香性。
本发明的无载体催化剂同样能对非氯化树脂(如由热聚合法制得的二环戊二烯基树脂)进行氢化处理。因此,该催化剂本身适用于以单固定床氢化器对来自热聚合装置和氯化物催化剂聚合装置的树脂物料进行氢化处理。
虽然为了说明本发明已列出了几个代表性实施方案和细节,但对于技术熟练人员来说,在不违背所附权利要求书规定的本发明范围的前提下,可对本文中公开的方法和产物作各种变更,这是显而易见的。
权利要求
1.烃类树脂分子和松香分子的氢化处理方法包括在本体多金属氢化催化剂存在下,使所述分子与氢相接触,其中该催化剂是由至少一种第VIII族非贵金属和至少两种第VIB族金属所组成,第VIB族金属与第VIII族非贵金属之比为约10∶1-约1∶10。
2.权利要求1的氢化处理方法,该方法包括在温度为100℃-330℃,氢气压力为1013千帕-27.6×103千帕下进行氢化处理。
3.权利要求2的方法,其中所述温度为至少180℃,所述压力为1013千帕-15.2×103千帕。
4.权利要求1的方法,其中所述烃分子包括石油树脂。
5.权利要求1的方法,其中所述烃分子包括脂族或脂环族石油树脂。
6.权利要求1的方法,其中所述烃分子包括脂-芳族石油树脂。
7.权利要求1的方法,其中所述烃类树脂是天然树脂或酯化松香。
8.权利要求1的方法,其中所述烃类树脂是在路易斯酸聚合催化剂存在下经弗列德尔-克拉弗兹聚合而制成。
9.权利要求8的方法,其中所述路易斯酸聚合催化剂是AlCl3。
全文摘要
本发明提供了一种烃类树脂的氢化处理方法,该方法包括使包含烃类树脂或松香的原料在适当的氢化处理条件下与本体多金属催化剂相接触,其中该催化剂是由至少一种第Ⅷ族非贵金属和至少两种第ⅥB族金属所组成,第ⅥB族金属与第Ⅷ族非贵金属之比为约10∶1-约1∶10。根据本发明的方法通过提高物料通过体积和有效的催化剂寿命可达到提高烃类树脂的产率。本发明方法优选以只由具有活性金属组分的金属混合物组成的本体催化剂加以实施的。没有负载基体可大大地消除卤素在基体表面上积聚的可能性,而卤素积聚会使金属催化剂酸化,以致使烃类树脂分子发生额外的、渐进性裂解。
文档编号B01J37/08GK1322217SQ00802041
公开日2001年11月14日 申请日期2000年1月14日 优先权日1999年1月15日
发明者J·L·哈卢斯卡, K·L·赖利 申请人:埃克森美孚化学专利公司