专利名称:催化反应器的制作方法
技术领域:
本发明涉及适合用于在升高的压力下进行气相反应的催化反应器,特别但不是专门用于进行吸热反应,并涉及使用催化反应器的化学方法。
背景技术:
应用支持在金属衬底上的催化材料是众所周知的技术。例如英国专利GB 1490 977描述一种催化剂,它包括含铝的铁素体合金衬底,涂覆一层耐熔的氧化物,如氧化铝、二氧化钛或氧化锆,接着涂覆催化的铂系金属。如在GB 1 531 134和GB 1 546 097中描述的那样,催化剂本体可以包括这种材料的基本平的片和有波纹的片,它们交替排列以便限定通过本体的通道,或者几个这样的片排列成一叠层,或者两个这样的片缠绕在一起形成盘管。在这些例子中,平片和波纹片两者都有叠加在它们上面的小尺度的波纹以便有助于涂层的形成。描述的这种催化剂本体适合用于处理车辆的排放气体。
在WO 99/64146(DBB Fuel Cell Engines GmbH)中描述一种紧凑催化反应器的结构,其中由布置成叠层的板中的凹槽限定气体的流动通道,和其中板是连接在一起(使用焊接)。至少某些凹槽在其壁上可以含有催化剂,而将传热介质供给另一组凹槽;如果所需的反应是吸热的,热量可由另一组凹槽中燃料的催化氧化直接供给。例如它可用于烃的水蒸汽转化。这样的反应器称为微型反应器,和凹槽称为微型结构;例如所述的板本身其厚度在0.3到0.5mm之间,所以凹槽有非常小的横截面积。对许多化学过程来说这样小尺寸的流动通道是不利的,只是因为使流体沿着它们流动必然需要压力降。EP 0 885 653A(Friedrich等人)描述了另一种类型的催化反应器,其中通道有较大的横截面,由单张长片折叠成手风琴状或锯齿形而限定,以便形成许多平行的流动路径,并有波纹箔放在每个流动路径中。该箔可用合适的催化剂涂覆。该箔可以拆除。这样的反应器不适合用于相邻的流动通道之间有很大压力差的情况,因为每个流动通道的整个面积必须承受任何压力差;和因为每个流动通道的一侧和两端都是开口的。US 6 098 396=DE 19 923 431(Wen等人)描述与内燃机组合使用的一种催化反应器,包括在相反的表面上有不同催化剂的几个波纹箔,一个催化放热反应,另一个催化吸热反应;燃料/空气混合物在两个表面上流过,吸热反应防止催化剂过热。在各个箔的两个相反侧上的气体之间不存在压力差,因为供应到各个侧的是同一气体混合物。
发明内容
根据本发明,提供一种催化反应器,其包括多个布置成为叠层并且结合在一起的金属片材,这些金属片材受到成形以在相邻片材之间限定多个第一气体流动通道和在相邻片材之间限定多个第二气体流动通道,在叠层中第一气体流动通道与第二气体流动通道相互交替,并且气体流动通道之间各限定通道的片材部分与相邻的金属片材接触因而提供热接触,由此在第一和第二气体流动通道中的流体之间存在良好的热接触,并提供结构支承使得在第一和第二气体流动通道内的流体可处于不同压力,第一气体流动通道延伸在叠层相对两面之间叠层的整个宽度,并且第二气体流动通道延伸在叠层的相对两面之间叠层的整个宽度,以及第一气体流动通道的取向横向于第二气体流动通道的取向;将流体供给流动通道的头部,头部可将不同的流体供给到第一和第二流动通道;以及在各气体流动通道内的携载催化剂的波纹状金属箔。
在本发明的催化反应器中,所述携载催化剂的金属箔包括其中结合有催化剂材料的陶瓷涂层。
在本发明的催化反应器中,所述陶瓷涂层的厚度在10-50微米的范围内。
在本发明的催化反应器中,第一气体流动通道中波纹状箔上的所述陶瓷涂层与第二气体流动通道中的不同。
在本发明的催化反应器中,至少第一气体流动通道中的陶瓷涂层包括氧化铝。
在本发明的催化反应器中,波纹状箔包括含铝铁素钢。
在本发明的催化反应器中,至少某些所述流动通道的宽度或深度沿其长度是变化的。
在本发明的催化反应器中,所述第一和第二流动通道两者在至少一个横向于流动方向的方向上宽度都少于5毫米。
根据本发明,还提供了一种运用包括有第一气体流动通道和第二气体流动通道的反应器进行气体间化学反应的方法,其中供应到所述第一气体流动通道的气体混合物不同于供应到所述第二气体流动通道的气体混合物,各气体混合物进行某种反应,其中一种反应是吸热反应而另一种反应是放热反应,从而在相邻通道之间传导热量,特征在于运用如上述任一权利要求所述的反应器。
在本发明的上述方法中,所述吸热反应是甲烷/蒸汽转化。
根据本发明,还提供了一种用于处理甲烷以便生产较高分子重量烃的方法,该方法包括在具有第一和第二气体流动通道的第一催化反应器中,通过在升高的压力下将蒸汽和甲烷供给第一催化反应器的第一气体流动通道,进行蒸汽/甲烷转化,并在第一催化反应器的第二气体流动通道内进行甲烷燃烧以便产生热量;将蒸汽/甲烷转化产生的气体混合物供给第二催化反应器来进行费-托合成;并且冷凝由费-托合成产生的流体混合物中的液体组份;其中至少所述第一催化反应器是如前面所述的本发明的催化反应器。
现在通过仅以示例子的方式和参考附图进一步更具体地描述本发明。
图1是不属于本发明的催化反应器的纵向剖面图;图2是图1的反应器的横剖面图;图3是用图1和2的反应器可以进行的化学过程的流程图;图4是形成本发明催化反应器的层叠板的剖面图;具体实施方式
参考图1,不属于本发明的催化反应器10包括Fecralloy钢制的几个套装的同心压力管12,每个壁厚为0.5mm(在图中仅表示4个,但实际上管12的数目可以比方说是15或16)。最内部的管12包括电加热元件14。如在图2中所示,在管12之间的环形通道15定位有波纹状Fecralloy钢的箔16,它的波纹一般是2.0mm高(峰到峰)有2.0mm的间距。
当已经装配好所有的管12和波纹箔16时,用氧化锆溶胶涂覆第1、第3、第5等环形通道15a的表面,和用氧化铝溶胶涂覆第2、第4、第6等环形通道15b的表面。这可以通过例如用蜡暂时堵塞一组环形通道的端部,并将组件浸没到合适的溶胶中进行。然后慢慢干燥该组件,接着烧结,例如在空气炉中,经过4小时将温度升到例如1100℃然后保持该组件于那个温度再经过4小时。在冷却该涂覆的组件之后,接着例如以适宜的金属的盐的形式引入催化剂材料在这个例子中将钯引入到通道15a中氧化锆涂层上,和将铑引入到通道15b中氧化铝涂层上。通过热处理使盐分解(或还原)然后生成催化剂金属。
然后将环形端帽18激光焊接到每个环形通道15的端部上,每个端帽18与入口或出口导管20连通。所得的反应器10的外直径是50mm,和它的长度是500mm。
反应器10特别适合进行蒸汽/甲烷的转化反应,也就是这个反应
这个反应是吸热反应,被通道15b中的铑催化剂催化。使这个反应进行所需的热量可由甲烷的燃烧提供,也就是说
它是放热反应,由通道15a中的钯催化剂催化。由这个燃烧反应产生的热量通过管12的壁传导到相邻的通道15b中。因此在使用中,反应器10首先用电加热元件14加热。在接近大气压下将甲烷和空气的混合物供应给所有的15a通道,在那里进行催化燃烧。将蒸汽和甲烷混合物供应给另一组通道15b,在那里产生蒸汽/甲烷转化反应;最好蒸汽和甲烷混合物是在升高的压力下,因为这提高质量流速从而能处理较大量的甲烷气。例如这些15b通道可以处于1Mpa压力下。
然后可以用蒸汽/甲烷转化产生的气体混合物进行费-托(Fischer-Tropsch)合成,也就是说
它是放热反应,在升高的温度如320℃和升高的压力(如1.8-2.2Mpa)下,在催化剂如铁、钴或熔融的磁铁矿存在,用钾作助催化剂时发生反应。反应生成的有机化合物的精确特性取决于温度、压力、和催化剂、以及一氧化碳和氢的比例。可以使用由这个合成反应生成的热量,提供蒸汽/甲烷转化反应所需的至少部分热量,例如可以使用传热流体如氦从发生费-托合成的反应器传出热量,使用该热量来预热至少一个供应给反应器10的气流。
现在参考图3,以流程图表示整个化学过程。大多数流体都处于升高的压力10巴(1Mpa)。进给气24主要包括甲烷,有小百分比含量(如10%)的乙烷和丙烷,压力为10巴。将气体通过热交换器25使它的温度约为400℃,然后通过流体涡流混合器26将它供给第一催化反应器28;在混合器26中进给气与也是温度约为400℃和压力为10巴的蒸汽流混合,这些气流通过切向入口进入到混合器26和跟随螺旋的路径到轴向出口,从而使它们彻底混合。反应器28的第一部分是在400℃下具有镍甲烷化催化剂的预转化器29,其中将高级链烷烃与蒸汽反应生成甲烷(和一氧化碳)。反应器28的第二部分是具有铂/铑催化剂的转化器30,在那里甲烷和蒸汽反应生成一氧化碳和氢。这个反应可以在800℃下进行,由甲烷在钯(或铂)催化剂上燃烧提供热量。由转化器30来的灼热气体然后通过热交换器31急冷,以提供供应到涡流混合器26的热蒸汽,接着通过热交换器25,在那里它们把热量传给进给气。
接着将一氧化碳和氢气流供给第三反应器32,在那里一氧化碳和氢反应,进行费-托合成生成烷烃或类似的化合物。这个反应是放热反应,优选地是在约350℃下发生,用该热量预热供给热交换器31的蒸汽,使用热交换流体如氦,氦在反应器32和蒸汽发生器33中的热交换通道之间循环。在这个合成中气体的体积减小,所以这个过程也在升高的压力10巴下进行。然后将所得的气体通入到冷凝器34中,在那里它们首先在25℃与水热交换。高级链烷烃(如C5或以上)冷凝成液体,水也是一样,将这个液体混合物送到重力分离器35;接着可以取出分离的高级链烷烃作为所需的产品,而水通过热交换器33和31回到混合器26。任何低级链烷烃或甲烷和剩下的氢气通过冷凝器34,接着供给到冷却的冷凝器36,在那里气体和蒸汽被冷却到约5℃。将剩余的气体,主要包括氢、二氧化碳、甲烷和乙烷,通过释放压力的通气阀37到放空燃烧装置38。将冷凝的蒸汽,主要包括丙烷、丁烷和水,送到重力分离器39,从那里水与从分离器35来的再循环的水汇合,而链烷烃再循环到费-托合成反应器32的入口。
在第一冷凝器34中蒸汽降低到的温度决定冷凝的并且也是作为产品排出的链烷烃的分子量。因此通过改变供给冷凝器34的水温可以修改产品的特征。上面的反应流程依赖于蒸汽/甲烷的比例,该比例接近于转化器30化学计量的需要,铑催化剂是特别耐结焦;这有如下好处,在转化器30中生成数量可以忽略不计的二氧化碳,从而不需要进一步处理气体(应用相反的水煤气变换反应)以将二氧化碳再转换成一氧化碳。将还能理解如果进给气只包括甲烷,那么预转化器29可以省略。
当应用这种形式时,过程的最终结果是将甲烷转换成分子量较大的烃,它们一般在环境温度和压力下呈液态。可以在油或气井使用该过程将天然气转换成容易运输的液态烃。
将能理解可以应用图1和2的反应器10进行各种化学过程,和在每个通道15内的催化剂必须适合相应的过程。
现在参考图4,本发明的一种反应器40包括一板42的叠层,每个板是Fecralloy钢,在这种情况下该板是200mm的方形和3mm厚(在图中以剖面形式仅表示两块板的一部分)。宽8mm和深2.5mm的槽44平行于一侧延伸跨过每块板42的整个宽度,由宽度3mm的槽脊45分隔,槽44是机械加工的。Fecralloy钢的载体箔46用含有催化剂材料的陶瓷涂层涂覆50μm厚,和有波纹2.5mm高,将其放入到每个这样的槽44中。装配这样的带有催化剂箔46的板42的叠层,在顺序的板42中槽44的取向相差90°,并用Fecralloy钢的平顶板覆盖;然后在惰性气氛中将该叠层加热到温度600℃到1200℃范围内,把该叠层扩散结合在一起。或者在这个阶段或者其后可以在该板叠层上装设头部。这样,由槽44限定气体流动通道,一组通道譬如说在叠层中从右边延伸到左边,而另一组通道(在另一些板42中)从叠层的前面延伸到后面。
将能理解沉积在气体流动通道中波纹箔46上的陶瓷类型在叠层中连续的各板42中可以是不同的,因此,催化剂材料也可以不同。例如(用图1和2的反应器10)在一个气体流动通道中陶瓷可以包括氧化铝,而其它气体流动通道的陶瓷可以包括氧化锆。
最好是,在扩散结合之后,该板叠层42保持在约900℃并让氧化气流通过所有限定气体流动通道的槽44。这促进在通道的表面上生成富含氧化铝的氧化物层。在这个氧化步骤之后,将该叠层冷却到室温,将或者氧化铝或者氧化锆溶胶的水悬浮液泵送通过槽44,然后排干(这样在通道的壁上留下溶胶的涂层);通过改变溶胶悬浮液的pH值或浓度可以调节溶胶悬浮液的粘度,而除去多余的溶胶可以依靠在重力下排干,或可以泵送来进行,这取决于粘度。接着在氧化的气氛中在温度例如接近800℃下烧结该叠层,这样将氧化铝溶胶颗粒烧结在Fecralloy钢表面上的氧化物层上,从而形成陶瓷的催化剂载体层。这层希望的厚度是在10-50μm范围,如果需要可以重复用合适的溶胶涂覆然后烧结的步骤,以便达到所需的厚度。最后泵送合适的催化剂金属盐的溶液通过通道44,接着在还原(或氧化)的气氛中干燥和热处理该叠层,以便产生在气体流动通道44内催化剂金属分散在陶瓷载体层上的所需形式。
与反应器10一样,由板42构成的反应器将适合进行蒸汽/甲烷的转化,例如使用铑催化剂。可用甲烷燃烧提供使这个反应进行所需的热量,燃烧可由钯催化剂催化。因为构成叠层的板42是结合在一起,所以气体流动通道是气密的(除了在每端用头部连通之外),和在另外的气体流动通道中的压力也可以不同,如有关反应器10叙述的那样。
将能理解这样窄的气体流动通道的优点是,扩散路径的长度短,和因为边界层的影响较小使热和质量的传递速率增加。化学反应要求反应的物质扩散以与催化剂表面接触,因此化学反应的速率提高,和在放热反应与吸热反应之间的传热速率也提高。因此这样的催化反应器可以提供高的功率密度。
如上所述,陶瓷涂层可以从溶胶形式的材料沉积而成,也就是说分散包含颗粒的颗粒尺寸为1nm到1μm。对具体的溶胶,如氧化铝溶胶,制备溶胶的方式确定颗粒的尺寸。某些氧化铝溶胶有各个分离的颗粒作为主要的溶胶颗粒(所谓不团聚的),而某些氧化铝溶胶有更小颗粒团聚成的溶胶颗粒。一般来说,团聚类型的溶胶比不团聚的溶胶将产生更加多孔的陶瓷涂层。因此通过选择所用溶胶的类型,或通过混合不同数量的不同类型溶胶,可以控制陶瓷涂层的孔隙率。通过调节陶瓷的孔隙率和催化剂材料的装载,可以控制陶瓷涂层的催化剂活性。在制作进行强放热反应的催化反应器时,可能要求沿着流动路径调节催化剂的活性,例如开始时提供的催化剂活性较低,沿着流动路径进一步提高催化剂的活性,以便防止热点形成。例如在进行费-托合成的反应器中这可能是合适的方法。在使用氧化锆溶胶构成氧化锆陶瓷涂层时要应用相类似的考虑;此外它可能要求包含阳离子如钇,以便形成稳定的氧化锆,特别是在操作时可能达到高温的陶瓷涂层处,因为稳定的氧化锆提供稳定的表面区域。
现在再参考图4,将能理解气体流动通道44可以沿着它们的长度改变宽度和深度,以便改变流体流动条件和传热或传质的系数,以便控制在反应器40内不同地方的化学反应。这特别可以应用到费-托合成的反应器,在该反应器中气体体积减小,例如通过适当地收缩通道44使在反应进行时可以维持气体的速度。还有,波纹箔46的节距或图案沿着反应通道44可以改变,以便调节催化剂的活性,从而对反应器40内不同点的温度或反应速率提供控制。例如还可以使波纹箔46成形有穿孔,以便促进在通道44内流体的混合。
权利要求
1.一种催化反应器(40),其包括多个布置成为叠层并且结合在一起的金属片材(42),这些金属片材受到成形以在相邻片材之间限定多个第一气体流动通道(44)和在相邻片材之间限定多个第二气体流动通道(44),在叠层中第一气体流动通道与第二气体流动通道相互交替,并且气体流动通道(44)之间各限定通道的片材(42)部分(45)与相邻的金属片材(42)接触因而提供热接触,由此在第一和第二气体流动通道(44)中的流体之间存在良好的热接触,并提供结构支承使得在第一和第二气体流动通道(44)内的流体可处于不同压力,第一气体流动通道(44)延伸在叠层相对两面之间叠层的整个宽度,并且第二气体流动通道(44)延伸在叠层的相对两面之间叠层的整个宽度,以及第一气体流动通道(44)的取向横向于第二气体流动通道(44)的取向;将流体供给流动通道(44)的头部,头部可将不同的流体供给到第一和第二流动通道(44);以及在各气体流动通道(44)内的携载催化剂的波纹状金属箔(46)。
2.如权利要求1所述的反应器,其特征在于,所述携载催化剂的金属箔(46)包括其中结合有催化剂材料的陶瓷涂层。
3.如权利要求2所述的反应器,其特征在于,所述陶瓷涂层的厚度在10-50微米的范围内。
4.如权利要求2或3所述的反应器,其特征在于,第一气体流动通道中波纹状箔(46)上的所述陶瓷涂层与第二气体流动通道中的不同。
5.如权利要求2-4中任一所述的反应器,其特征在于,至少第一气体流动通道(44)中的陶瓷涂层包括氧化铝。
6.上述任一权利要求所述的反应器,其特征在于,波纹状箔(46)包括含铝铁素钢。
7.上述任一权利要求所述的催化反应器,其特征在于,至少某些所述流动通道的宽度或深度沿其长度是变化的。
8.上述任一权利要求所述的催化反应器,其特征在于,所述第一和第二流动通道(44)两者在至少一个横向于流动方向的方向上宽度都少于5毫米。
9.一种运用包括有第一气体流动通道(44)和第二气体流动通道(44)的反应器(40)进行气体间化学反应的方法,其中供应到所述第一气体流动通道的气体混合物不同于供应到所述第二气体流动通道的气体混合物,各气体混合物进行某种反应,其中一种反应是吸热反应而另一种反应是放热反应,从而在相邻通道之间传导热量,特征在于运用如上述任一权利要求所述的反应器(40)。
10.如权利要求9所述的方法,其特征在于,所述吸热反应是甲烷/蒸汽转化。
11.一种处理甲烷以生产更高分子重量烃的方法,所述方法包括在具有第一和第二气体流动通道中,通过将处于升高压力的蒸汽和甲烷提供到所述第一催化反应器(30)的第一气体流动通道进行蒸汽/甲烷转化,并在所述第一催化反应器(30)的第二气体流动通道中进行甲烷燃烧以产生热量;将从蒸汽/甲烷转化得到的气体混合物提供到第二催化反应器(32)以进行费-托合成;以及凝聚(34,36)从费-托合成得到的流体混合物中的液体成份;其中,至少所述第一催化反应器是权利要求1-8中任一项所述的催化反应器(40)。
12.如权利要求10所述的方法,还包括传导在费-托合成期间释放出来的热量以预热提供到所述第一催化反应器的气体。
13.如权利要求10或11所述的方法,还包括传导来自从蒸汽/甲烷转化得到的气体混合物的热量(31)以预热提供到所述第一催化反应器的气体。
14.如权利要求11-13中任一项所述的方法,还包括从费-托合成产生的流体混合物中提取短链烃,并且将这些短链烃再循环到第二催化反应器以便再次经历费-托合成。
全文摘要
一种催化反应器,其包括多个布置成为叠层并且结合在一起的金属片材,这些金属片材受到成形以在相邻片材之间限定多个第一气体流动通道和在相邻片材之间限定多个第二气体流动通道,在叠层中第一气体流动通道与第二气体流动通道相互交替,并且气体流动通道之间各限定通道的片材部分与相邻的金属片材接触因而提供热接触,由此在第一和第二气体流动通道中的流体之间存在良好的热接触,并提供结构支承使得在第一和第二气体流动通道内的流体可处于不同压力,第一气体流动通道延伸在叠层相对两面之间叠层的整个宽度,并且第二气体流动通道延伸在叠层的相对两面之间叠层的整个宽度,以及第一气体流动通道的取向横向于第二气体流动通道的取向;将流体供给流动通道的头部,头部可将不同的流体供给到第一和第二流动通道;以及在各气体流动通道内的携载催化剂的波纹状金属箔。
文档编号B01J37/00GK1772368SQ200510119390
公开日2006年5月17日 申请日期2001年1月10日 优先权日2000年1月11日
发明者M·J·波维, J·W·斯泰尔曼德, I·F·齐默曼, J·A·毛德 申请人:阿山特斯有限公司