使用基于锆、铈和铌的组合物作为催化剂来处理含氮氧化物(NOx)的气体的方法

文档序号:4919068阅读:353来源:国知局
使用基于锆、铈和铌的组合物作为催化剂来处理含氮氧化物(NOx)的气体的方法
【专利摘要】本发明涉及用于处理含氮氧化物(NOx)的气体的方法,在该方法中通过含氮还原剂进行NOx的还原反应,并且其特征在于使用催化体系作为这种还原反应的催化剂,该催化体系包含基于锆、铈和铌的组合物,具有以氧化物表示的下述质量含量:铈氧化物:10%-50%,铌氧化物:5%-20%,其余为锆氧化物。
【专利说明】使用基于锆、铈和铌的组合物作为催化剂来处理含氮氧化物(NOx)的气体的方法
【技术领域】
[0001]本发明涉及使用基于锆、铈和铌的组合物作为催化剂来处理含氮氧化物(NOx)的气体的方法。
【背景技术】
[0002]已知机动车发动机排放对环境有害的含氮氧化物(NOx)的气体。因此需要处理这些氧化物以将其转化为氮气。
[0003]对于这种处理来说已知的方法是SCR法(选择性催化还原(Selective CatalyticReduction),在这种方法中,通过氨或氨前体如尿素对NOx进行还原。
[0004]SCR法使得所述气体的有效处理成为可能,但其在低温下的效率仍有待提高。因而,目前用于实施这种方法的催化体系通常仅在高于250°C的温度下有效。因而有利的是拥有在大约250°C的温度下能够具有显著活性的催化剂。
[0005]因而还寻求其抗老化性得以改善的催化剂,例如在经历900-1000°C的温度之后其仍具有显著的效率。

【发明内容】

[0006]本发明的目标因而在于提供对于SCR催化来说更为有效的催化剂。
[0007]在此目标下,本发明的方法是用于处理含氮氧化物(NOx)的气体的方法,在该方法中通过含氮还原剂进行NOx的还原反应,并且其特征在于使用催化体系作为这种还原反应的催化剂,该催化体系包含基于锆、铈和铌的组合物,具有以氧化物表示的下述质量含量:
[0008]-铈氧化物:5%-50%,排除后一个数值;
[0009]-铌氧化物:5% -20 % ;
[0010]-其余为锆氧化物。
[0011]通过阅读以下的描述以及用于说明本发明的具体但非限制性的各种实施例,本发明的其它特性、细节和优点将会更加清楚。
[0012]在本文中,术语“稀土金属”被理解为是指由钇和周期表中原子序数在包括端值在内的57-71之间的元素所构成的组中的元素。
[0013]术语“比表面积”是指根据ASTM D3663-78标准通过氮吸附法测定的BET比表面积,该标准是以The Journal of the American Chemical Society(美国化学学会杂志),通,309 (1938)中描述的BRUNAUER-EMMETT-TELLER方法为基础制定的。
[0014]除非另外指出,本文中所述的煅烧是指在空气中的煅烧。针对某一温度所指的煅烧持续时间对应于在此温度下稳定状态的持续时间。
[0015]除非另外指出,针对某一温度和相应给出的持续时间所指的比表面积值对应于在空气中在此温度下的稳定状态下进行所指持续时间的煅烧。[0016]除非另外指出,含量或比例以质量和氧化物(尤其是CeO2, Ln2O3, Ln表示三价稀土金属,在镨的特定情况下的Pr6O11,在铌的情况下的Nb2O5)表示。
[0017]对于下文来说还要说明的是,除非另外指出,在所给出的数值范围当中,边界值被包括在内。
[0018]本发明催化体系的组合物以其成分的性质和比例为特征。
[0019]因而,其基于锆、铈和铌,元素锆、铌和铈在该组合物中通常以氧化物的形式存在。但不排除这些元素能够至少部分地以其它形式存在,例如氢氧化物或羟基氧化物的形式。
[0020]此外,这些元素按照以上给出的特定比例存在。
[0021]该组合物中的铈氧化物的质量比例可尤其是5-40%,更特别地是10-40%或15-40%,再特别地是 10-30% 或 15-30%。
[0022]该组合物中的铌氧化物的质量比例可更特别地是5-15%并且再特别地是5-10%。当低于5%时注意到该组合物的效率降低,并且当高于20%时不再注意到效率的改善。
[0023]根据本发明的一种特定实施方式,锆氧化物的含量可更特别地为60-85%并且再特别地为65-80%。
[0024]根据本发明的另一实施方式,本发明催化体系的组合物还包含至少一种从以下组中选择的元素M,该组包含钨、钥、铁、铜、硅、铝、锰、钛、钒和除铈之外的稀土金属,该组合物具有以氧化物质量表示的以下比例:
[0025]-铈氧化物:5%-50%,排除后一个数值;
[0026]-铌氧化物:5% -20 % ;
[0027]-元素M的氧化物:最多为20%;
[0028]-其余为锆氧化物。
[0029]如同锆或铈一样,元素M在该组合物中通常以氧化物的形式存在,但不排除其它的存在形式(氢氧化物或羟基氧化物)。
[0030]这种元素M的作用尤其是稳定锆和铈的混合氧化物的比表面积或者改善该组合物的还原性。在下文中,应当理解,尽管出于简化的原因只提一种元素M,但显然本发明适用于其中该组合物包含多种元素M的情况。
[0031]在稀土金属和钨的情况下,元素M的氧化物的最大比例可更特别地为至多15%并且再特别地为至多10%质量元素M的氧化物(稀土金属和/或钨)。最小含量为至少1%,更特别地为至少2 %,以上给出的含量以相对于锆氧化物-铈氧化物-铌氧化物-元素M的氧化物的总和来表示。
[0032]在其中M既不是稀土金属也不是钨的情况下,元素M的氧化物的含量可更特别地为至多10%并且再特别地为至多5%。最小含量可以为至少1%。这个含量以相对于锆氧化物、铈氧化物、铌氧化物和元素M的氧化物的总和来表示。
[0033]在稀土金属的情况下,元素M可更特别地是除钇之外的稀土金属,尤其是镧、镨和钕。
[0034]本发明还涉及其中所述组合物基本上由上述元素锆、铈、铌和必要时的元素M组
成的情况。术语“基本上由......组成”被理解为是指所考虑的组合物只包含上述形式的
上述元素并且该组合物不包含其它功能元素,也即对该组合物的催化作用、还原性和/或稳定性具有正面影响的元素。相反,该组合物可包含尤其来自于其制备过程如来自于所用原料或起始试剂的元素,如杂质。
[0035]本发明催化体系的组合物具有足够稳定的比表面积,即在高温下足够高以使得其可被用在催化领域中。
[0036]因而,通常,本发明催化体系的组合物可具有在800°C下煅烧4小时之后的比表面积为至少35m2 / g,更特别地为至少40m2 / g。
[0037]本发明催化体系的组合物还可具有在900°C下煅烧4小时之后的比表面积为至少15m2/g,更特别地为至少20m2 / g。
[0038]所述组合物可任选地呈现铌、铈和必要时的元素M的氧化物在锆氧化物中的固溶体的形式。在这种情况下则通过X射线衍射观察到存在单相,该单相对应于铈和锆的混合氧化物的立方或四方相。对于经历了最高达900°c的煅烧的组合物来说可存在这种单相。
[0039]本发明催化体系的组合物可以通过已知浸溃方法来制备。因而,将预先制备的锆和铈的混合氧化物用包含铌化合物如草酸铌或草酸铌铵的溶液浸溃。在制备还包含元素M的氧化物的组合物的情况下,对于该浸溃来说使用除了铌化合物之外还包含这种元素M的化合物的溶液。元素M也可存在于要浸溃的起始锆和铈的混合氧化物中。
[0040]更特别地使用干浸溃。该干浸溃在于向要被浸溃的产品中添加与要被浸溃的固体的孔体积相等的浸溃元素溶液的体积。
[0041]锆和铈的氧化物应当具有使得其能够应用于催化作用的比表面积性能。因而,此表面积必须是稳定的,即其应当具有对于这种应用来说足够的值,即使是在高温下。
[0042]对于这种任选地具有元素M的氧化物,尤其是在元素M为稀土金属的情况下,作为适合于本发明的产品,可提及尤其在以下文献中描述的那些:专利申请EP605274、EP1991354、EP614854、EP863846、EP1527018、EP1603667、EP2007682 和 EP2024084。对于本发明的实施,因而可以在需要时参考上述专利申请的描述的全部内容。
[0043]此外,本发明组合物还可通过共沉淀类型的已知方法制备,在该方法中向包含该组合物的组成元素的盐的溶液中添加碱,然后煅烧所获得的沉淀物;或者通过固/固反应类型的已知方法制备,在该方法中将这些元素的氧化物或这些氧化物的前体研磨,然后煅烧由该研磨产生的混合物。
[0044]在本发明方法中使用的催化体系包含如上所述的组合物,此组合物通常与在催化剂配制剂领域中常用的材料(也即选自热惰性材料的材料)混合。这种材料因而可选自氧化铝、钛氧化物、铈氧化物、锆氧化物、二氧化硅、尖晶石、硅酸盐、结晶的硅铝磷酸盐、结晶的铝磷酸盐。
[0045]通常,本发明方法中使用的催化体系可由沉积在基材上的上述混合物构成。更具体地,该组合物和该热惰性材料的混合物构成了具有催化性能的涂层(wash coat),并且此涂层被沉积在基材上,所述基材例如是由以下材料制成的整料(monolithe)类型的:金属如FerCralloy,陶瓷如堇青石,碳化硅,钛酸铝或模来石。
[0046]这种涂层如下获得:将该组合物与该热惰性材料混合以形成悬浮液,该悬浮液随后可被沉积到基材上。
[0047]根据另一实施方式,本发明方法中使用的催化体系可基于如上所述的组合物,该组合物以挤出形式使用。其因而可以是具有蜂窝结构的整料形式或者颗粒过滤器(部分封闭的槽)类型的整料形式。在这两种情况下,本发明组合物可以与用于促进挤出并且确保挤出物机械强度的已知类型的添加剂混合。这些添加剂可尤其选自二氧化硅,氧化铝,粘土、硅酸盐、硫酸钛、陶瓷纤维,尤其以通常所用的比例,也即最高达大约30%质量,相对于组合物整体计。
[0048]本发明还涉及除了基于铈、锆和铌的组合物之外还包含沸石的催化体系。
[0049]该沸石可以是天然的或合成的并且其可以是铝硅酸盐、铝磷酸盐或硅铝磷酸盐类型的。
[0050]优选使用经历了旨在改善其高温稳定性的处理的沸石。作为此类处理的实例,可以提及(i)通过如下处理进行的脱铝:利用蒸汽进行处理并且使用酸或配位剂(例如EDTA-乙二胺四乙酸)进行酸提取;利用酸和/或配位剂的处理;通过SiCl4气流的处理;(?)通过使用多价阳离子如La阳离子进行的阳离子交换;以及(iii)使用含磷的化合物。
[0051]根据本发明的另一特别的实施方式并且在铝硅酸盐类型的沸石的情况下,所述沸石具有至少10,更特别地至少20的Si / Al原子比。
[0052]根据本发明的一种更特别的实施方式,所述沸石包含至少一种其它元素,该其它元素选自铁、铜或铺。
[0053]“包含至少一种其它元素的沸石”被理解为是指在其结构中通过离子交换、浸溃或同晶取代加入了一种或多种上述类型的金属的沸石。
[0054]在此实施方式中,金属含量可以为大约1%至大约5%,该含量以相对于沸石的金属元素的质量表示。
[0055]作为在本发明催化体系的组合物的构成中可包含的铝硅酸盐类型的沸石,可更特别地提及选自以下的那些:β沸石、Y沸石、ZSM5和ZSM34。对于铝磷酸盐类型的沸石,可以提及以下类型的那些:SAP0-17、SAP0-18、SAP0-34、SAP0-35、SAP0-39、SAP0-43 和 SAP0-56。
[0056]在本发明的催化体系中,沸石相对于组合物总质量的质量百分数可以是10-70%,更优选20-60 %,再优选30-50 %。
[0057]对于所述催化体系中加入沸石的这种变化形式的实施,可以进行基于铈、锆和铌的组合物与沸石的简单物理混合。
[0058]这种采用上述沸石与本发明组合物的组合的本发明变化形式赋予了本发明催化体系在NOx还原方面的改善的活性。
[0059]本发明的气体处理方法是SCR类型的方法,其实施对于本领域技术人员来说是众所周知的。
[0060]可回顾的是,作为NOx的还原剂,这种方法使用含氮还原剂,其可以是氨、肼或任何合适的氨前体,例如碳酸铵、尿素、氨基甲酸铵、碳酸氢铵、甲酸铵或者含有氨的有机金属化合物。可更特别地选择氨或尿素。
[0061]在用于将NOx还原为元素氮的SCR方法中可以采用多种化学反应。下面仅作为示例给出能够发生的一些反应,氨是还原剂。
[0062]第一个反应可由反应式(I)来表示
[0063]4N0+4NH3+02 — 4N2+6H20 (I)
[0064]还可提及按照反应式(2)的在NOx中存在的NO2与NH3的反应。
[0065]3N02+4NH3 — (7 / 2) N2+6H20 (2)[0066]此外,NH3和NO和NO2之间的反应可以用反应式⑶来表示
[0067]N0+N02+2NH3 — 2N2+3H20 (3)
[0068]该方法可用于处理来自内燃机(移动式或固定式)的气体,尤其是来自机动车发动机的气体,或者来自燃气轮机、来自使用煤或燃料运行的发电厂或其它任何工业设备的气体。
[0069]根据一种特定的实施方式,该方法用于处理来自柴油发动机或贫燃条件(m6langepauvre)下的内燃机的废气。
[0070]所述方法在实施中除了使用本发明组合物之外还可以使用其它催化剂,该其它催化剂是用于将气体的一氧化氮氧化为二氧化氮的催化剂。在这种情况下,该方法在下述这样的体系中使用:在该体系中,这种氧化催化剂被置于将含氮还原剂注入到废气中的注入点的上游。
[0071]这种氧化催化剂可以包含在例如氧化铝、二氧化铈、氧化锆、钛氧化物类型的载体上的至少一种选自钼系金属的金属,如钼、钯或铑,催化剂/载体的整体被包含在尤其是整料类型的基材上的涂层(washcoat)中。
[0072]根据本发明的有利变化形式并且在装配有旨在阻止由各种燃料的燃烧产生的烟灰或含碳颗粒的颗粒过滤器的排气管路的情况下,可通过将如上所述的催化体系置于这种过滤器上(如沉积在过滤器壁上的涂层(wash-coat)的形式)来实施本发明的气体处理方法。可观察到,根据这种变化形式的本发明组合物的使用还降低了开始颗粒燃烧的温度。
【具体实施方式】
[0073]下面将给出实施例
[0074]实施例1
[0075]此实施例涉及基于相应质量比例为18%、72%和10%的铈、锆和铌的氧化物的组合物的制备。
[0076]草酸铌(V)铵溶液通过将192g的草酸铌(V)铵在300g去离子水中热溶解来制备。此溶液被保持在50°C下。此溶液的浓度以Nb2O5表示为14.2%。然后将铈和锆的混合氧化物粉末(质量组成Ce02/Zr0220% -80%,在800°C下煅烧4小时之后的比表面积为62m2 /g)用此溶液浸溃,直至孔体积饱和。
[0077]浸溃的粉末随后在800°C下煅烧4小时。
[0078]实施例2
[0079]此实施例涉及基于相应质量比例为19%、74%和7%的铈、锆和铌的氧化物的组合物的制备。
[0080]草酸铌(V)铵溶液通过将134g的草酸铌(V)铵在300g去离子水中热溶解来制备。此溶液被保持在50°C下。此溶液的浓度以Nb2O5表示为9.9%。然后将与实施例1中相同的铈和锆的混合氧化物粉末用此溶液浸溃。浸溃的粉末随后在800°C下煅烧4小时。
[0081]对比实施例3
[0082]此实施例涉及基于相应质量比例为19%、78%和3%的铈、锆和铌的氧化物的组合物的制备。
[0083]草酸铌(V)铵溶液通过将58g的草酸铌(V)铵在300g去离子水中热溶解来制备。此溶液被保持在50°C下。此溶液的浓度以Nb2O5表示为4.3%。然后将与实施例1中相同的铈和锆的混合氧化物粉末用此溶液浸溃,直至孔体积饱和。
[0084]浸溃的粉末随后在800°C下煅烧4小时。
[0085]下表1给出了上述实施例的产物的表面积特性。
[0086]表1
[0087]
【权利要求】
1.用于处理含氮氧化物(NOx)的气体的方法,在该方法中通过含氮还原剂进行NOx的还原反应,并且使用催化体系作为这种还原反应的催化剂,该催化体系包含基于锆、铈和铌的组合物,具有以氧化物表示的下述质量含量: -铈氧化物:5% -50%,排除后一个数值; -铌氧化物:5% -20% ; -其余为锆氧化物。
2.根据权利要求1的方法,其特征在于上述组合物还包含至少一种从以下组中选择的元素M,该组包含钨、钥、铁、铜、硅、铝、锰、钛、钒和除铈之外的稀土金属,该组合物具有以氧化物质量表示的以下比例: -铈氧化物:5% -50%,排除后一个数值; -铌氧化物:5% -20% ; -元素M的氧化物:最多为20% ; -其余为锆氧化物。
3.根据权利要求1或2的方法,其特征在于上述组合物具有5%-40%的铈氧化物的质量比例。
4.根据前述权利要求之一的方法,其特征在于上述组合物具有10%-40%的铈氧化物的质量比例。
5.根据前述权利要求之一的方法,其特征在于上述组合物具有10%-30%的铈氧化物的质量比例。
6.根据前述权利要求之一的方法,其特征在于上述组合物具有5%-15%的铌氧化物的质量比例。
7.根据前述权利要求之一的方法,其特征在于上述组合物具有5%-10%的铌氧化物的质量比例。
8.根据前述权利要求之一的方法,其特征在于上述催化体系另外包含沸石。
9.根据前述权利要求之一的方法,其特征在于使用氨或尿素作为含氮还原剂。
10.根据前述权利要求之一的方法,其特征在于处理来自机动车发动机的废气。
11.根据权利要求10的方法,其特征在于上述催化体系被置于颗粒过滤器上并且其基于上述组合物,所述组合物为挤出形式。
【文档编号】B01J23/10GK103702744SQ201280012236
【公开日】2014年4月2日 申请日期:2012年2月28日 优先权日:2011年3月8日
【发明者】L·比松, J·埃尔南德兹, R·M·若热科埃略马克斯, E·罗阿尔, M·博尔图, D·J·哈里斯, C·约内斯 申请人:罗地亚管理公司, 伊利可创镁业有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1