废混凝土和混凝料的回收装置的制作方法

文档序号:5070460阅读:441来源:国知局
专利名称:废混凝土和混凝料的回收装置的制作方法
技术领域
本发明涉及一种从泥浆中回收固态混凝料的方法和装置,其可以更好地从泥浆中除去微细粉末,从而对水进行净化。本发明特别涉及混凝土的配料,但并不是仅限于此,其也可用于需要将固体从液体中分离的情况下。
背景技术
在混凝土的配料过程中,多余的混凝土、废弃的混凝土的安放以及搅拌机汽车和搅拌装置的清洗容易污染环境,其操作成本较高。
通常使用沉淀池将固体从液体中分离。将需要进行处理的带有固体的泥浆倒入一个用于初次分离的第一沉淀池。在第二沉淀池中,更多的残留的物质被沉淀,剩余的清水被注入第三沉淀池。此系统使得较重的物质通过重力被分离。这些固体物质最终被物理分离。然而,为了使沉淀更加有效率。需要较大的沉淀池。这在土地匮乏的地区如新加坡是不方便的。
现在较佳的方法是在将一种或更多的固体从一种或更多的液体中分离之前,每种固体以呈悬浮状的细微粉末或液体中沉淀物或泥沙、花岗岩和沙子的形式存在于每种液体中。分离的目的是为了回收液体或固体或两者兼有来用于进一步的处理或者用于将其中之一释放到环境当中。
现有的很多装置都可以将带有固体的泥浆和不同尺寸的颗粒分离成为明显的分离的组。为实现这一目的,筛子被广泛地应用。
静态的筛子经常被使用,其顶部设置有一储水装置,一上部有液体流过的出堰和一个允许滤出的液体流过的同时将悬浮的固体分离的倾斜的筛子。固体从该筛子的较低一端流下。静态的筛子虽然允许连续的筛选进行,但是只能对流速较低的物质进行分离,因此便需要较大的区域对较高流速的物质进行分离。另外由于筛子必须向下倾斜并且为了有效进行分离,对筛子的长度具有一定的要求,该筛子顶部需要的用于制成的头部很大。并且此种回收装置可能会使得过多的产品流入筛子上,并且在静态筛子中没有限制产品流动的任何方式。
旋转筛子相对于静态筛子进行了可以旋转的改进,其包括一中空可旋转的鼓,该鼓设有一穿有孔洞的用于筛选的壁以及用于将悬浮物输送至鼓的内侧的装置。此旋转式的总有一干净的表面朝向悬浮物,使得其相对于静态筛子可以对较大流速的物质进行分离。然而此种筛子在固体尺寸不同的情况下,固体可能会随着液体流过该孔洞,或阻塞孔洞。
另外一种分离器是螺旋形分离装置。该分离装置设有一种螺旋形传送装置来带动产品穿过一个回收气缸或回收室。该螺旋回收装置需要延伸于该回收气缸的整个长度上。此种螺旋形传送装置效率较低,因为其工作时需要对抗重力。螺旋形传送装置迫使产品向上穿过回收气缸或回收室,而不是允许重力较充分地将产品分离出。另外此种回收装置的水压容量有限,其无法对多卡车容量的泥浆进行处理。
还有一种从液体中分离废混凝料的方法涉及到一种带有螺旋的桶。混凝料被注入到桶中,通过旋转的螺旋,混凝料被从液体中带向前方进而分离。此种系统的效率也较低因为旋转的螺旋需要考虑到其所在的每个桶的重量。
除了机械装置,聚合物和化学添加系统也可以被加入来提高固体的分离。例如凝结剂和絮凝剂被添加到泥浆中来除去悬浮的固体。然而这些化合物和添加剂的加入可能会改变回收物质和液体的质量,因此是不令人满意的。

发明内容
本发明的目的是克服或改进一个或一个以上的上述现有技术中的问题。
对上述现有技术的讨论并非是对现有技术人员的公知常识的承认的声明。
根据本发明的一个方面,其提供了一种固体物质分离装置,其用于将固体物质从流过该装置的储水装置的泥浆中分离,其包括,内部设置有复数个鳃瓣状分离板的储水装置;用于在该泥浆相对于该分离板运动时接收至少部分来自泥浆中的固体物质的分离板;其特征为,该装置包括有一液体运动生成装置,其可使泥浆在储水装置中生成相对于分离板的运动。
本发明的其他方面是与权利要求中的从属权利要求的主题相一致的,并通过说明书的描述进行说明。
在本发的一个实施例中,鳃瓣状分离板增加了有效的分离面积使得其最大的可容纳的水压承载要高于传统的回收系统。最终固体91形成较大的混凝土团粒分布于鳃瓣状分离板的较低一端,而微细粉末92在鳃瓣状分离板的较高一端。由于使用了鳃瓣状分离板,可以在短距离内实现沉淀,使得用于浮选和沉淀的有效分离区域面积增加。
在较佳实施例中,通过搅拌机构传递的搅拌强度可以被使用者所控制。搅拌机构的目的是用来搅拌固体的混凝料和泥浆,将足够的速度传递给带有固体的泥浆使其高于泥浆中微粒的沉淀速度。因此不必设置占用空间的沉淀池。可知搅拌的强度越大,得到的速度就越高。其可以使得泥浆中具有较低的沉淀速度的较微细的颗粒被搅拌并举起,不会沉淀到回收罐的底部。因此通过调整搅拌机构的速度来控制搅拌的强度,使用者可以控制沉至回收罐底部的微粒的尺寸。
在另一个较佳实施例中,回收装置还包括有一个固体移动机构。该固体移动机构用于将沉淀的较重的固体从回收罐的底部移至罐体的外部用于再次利用。
在一个较佳实施例中,回收罐还包括一个位于回收罐一端的凹槽,其用于暂时存储沉淀的固体。
较佳地,该固体移动机构是一个从罐体内部延伸出的传送系统,最好是从回收罐的凹槽处至罐体的外部,并且传送沉淀出的废混凝料。
在较佳实施例中,传送系统被设置为带子上的复数个突起,其允许沉淀在回收罐底部的废混凝料借助于突起或突块被向上带至回收罐的一端。
在本发明的另外一个实施例中,该回收装置还包括一个用来容纳在带有固体的泥浆被导入回收罐中时产生的湍流的隔板。这使得罐体内可以承载较大的水压,并且无需在罐体中设置精密的仪表。
根据本发明的再一方面,其提供了一种固体物质分离装置,其用于将固体物质从流过该装置的储水装置的泥浆中分离,其包括,内部设置有复数个鳃瓣状分离板的储水装置;用于在该泥浆相对于该分离板运动时接收至少部分来自泥浆中的固体物质的分离板;其特征为,该装置包括有一液体运动生成装置,其具有一可调节进入储水装置的泥浆速度的液体驱动机构。
较佳地该液体驱动机构是一个压力生成装置。
在一个较佳实施例中,该固体物质分离装置包括有鳃瓣状设置的分离板,其包括一个第一分离板组和第二分离板组,其中第一分离板组的分离板与第二分离板组的分离板交错设置,其两者之间形成一个螺旋形通道供泥浆流过。
该储水装置较佳地由一个内部表面进行限定,并且第二分离板组中的至少部分分离板从储水装置的内表面上延伸出来并且部分延伸至储水装置中。
较佳地,第一分离板组中的至少部分分离板从储水装置中的支撑部分突起并部分延伸至储水装置中。
较佳地,上述从支撑部分上延伸出的分离板于从储水装置的内表面上延伸出的分离板交错设置形成上述螺旋形通道。
根据本发明的另外一个方面,其提供了一个用于将较重的固体和微细粉末从泥浆中分离的回收系统,其包括
一个输入装置,其使得一股带有固体的泥浆注入;一个回收罐,其用来容纳从输入装置输入的物质;复数个鳃瓣状分离板,其通过增加有效的分离表面积来改善分离的过程;一个搅拌机构,其用于将较重的固体中从泥浆中分离,并且上述的搅拌机构包括复数个突起或突块;一个输出装置,其使得分离后的泥浆从罐体中排出;一个带堰溢流容器,其用于容纳从罐体中排出的上述分离后的泥浆;一个固体输出装置;一个液体输出装置;复数个鳃瓣状分离板,上述鳃瓣状分离板被分成第一分离板组和第二分离板组;一个输入装置;和一个搅拌装置;其特征为,上述回收装置还包括一个传送装置,其将带堰溢出容器收集到的泥浆传送到澄清器处。
根据本发明的另外一个方面,其提供了一种固体物质分离的方法,其用于使液体流过该装置的储水装置从而将固体从液体中分离,其特征为,其包括提供一储水装置,其内部设置有复数个鳃瓣状设置的分离板;在泥浆相对分离板运动的同时,使分离板接收至少泥浆中的部分固体物质于其上;使用液体运动生成装置,使得储水装置中的泥浆相对分离板进行运动。


为了使得本发明更便于理解,本发明的实施例将会通过例子参照附图进行说明,其中图1为回收装置的一个实施例;
图2为回收装置的第二个实施例;图3为澄清器的较佳实施例;并且图4为回收装置和澄清器组成回收系统的实施例;图5显示了将固体物质从泥浆中分离出的方法。
附图并非按比例绘制。
具体实施例方式
下面结合附图给出本发明较佳实施例,以详细说明本发明的技术方案。较佳实施例的叙述并不是为了将本发明的实施例限定在最宽的保护范围内,相反,其是为了覆盖住其他的在本发明的从属权利要求的构思和范围内的选择对象、修改和等同物。另外在下文的具体描述中涉及到很多细节以使得本发明的实施例更加清楚。
参考图1,其显示了一种作为固体物质分离装置的实施例的回收装置100。回收装置100包括一作为储水装置的回收罐10,其最好为倾斜的。需要说明的是回收罐的底部倾斜并不是本发明的必要的技术特征,当回收罐10的底部为水平时,本发明也还是可以工作的。
回收装置100用于从流过回收罐10的带有固体的泥浆中分离良好的可以供回收的固体91。此种良好的固体举例来说可以是微细粉末、泥沙、花岗岩和沙子。
此处的带有固体的泥浆是指固体和微细粉末,此处的微细粉末是指颗粒状的固体例如泥沙和沉积物。
回收罐10内部设置有一连串的复数个鳃瓣状排列的分离板20,其成鳃瓣状排列,其最好为倾斜并且不为水平。如图1所示,其以与水平成0-180°夹角为较佳,并且其不为90°为较佳。该分离板20设置为接收相对分离板20移动的带有固体的泥浆90中的部分固体91。
部分或所有的分离板被设置成一个倾斜的坡度因此所有的位于其上的固体90最终都会在重力作用下从分离板20上落下。然而当分离板之间的液体速率大于固体沉淀的速率时,该固体将被向上带至分离板之间并带出回收罐。
带有固体的泥浆90通过输入装置50被引入回收罐10中。
为了将微细粉末92从带有固体的泥浆90的固体91中分离,回收罐10还包括一作为液体运动生成装置的搅拌机构40。该搅拌机构40通过搅拌在储水装置中生成相对于分离板20的运动并将一速度传递给带有固体的泥浆90。
传递给液体的速度要大于微细粉末92的沉淀速度。因此液体的流动带走微细粉末92,并阻止微细粉末92沉淀于该储水装置的底部。
搅拌机构40可以调整储水装置中带有固体的泥浆90相对于分离板的运动强度从而使得不同尺寸的固体91从泥浆中被分离板20分离出来。
“搅拌”一词并不是用来限定该引起液体运动的机构为任何一种特定形式的运动的。例如说该运动可以为本实施例中所述的持续单一方向上的运动,或者该液体运动可以由一个从装置一侧向另一侧作往复运动的搅拌机构生成。重要的是搅拌机构起到了引起液体运动的功能。
该机构40所传递的运动的强度的选择取决于回收装置100所要分离的固体91的尺寸。
举例来说,当固体91的沉淀速度要高于搅拌机构40所决定的速度时,固体91将会沉到回收罐10的底部。
相反,那些沉淀速度低于该搅拌机构40传递给带有固体的泥浆90的速度的微细粉末92将被运送至鳃瓣状分离板20的上方,进而与固体91分离。
如此,运动强度以及带有固体的泥浆90相对鳃瓣状分离板20的运动速度的不同能够影响被分离板20从带有固体的泥浆90中分离出的固体91的数量和尺寸。使用者能够通过有选择性的控制运动生成装置来改变液体相对分离板的运动强度和速度,使之达到期望的效果。
带有固体的泥浆90流过鳃瓣状分离板20之间。该复数个分离板20的鳃瓣状设置相对于单个分离板的设置增大了储水装置每个单位体积内的有效分离板表面积。分离板上多余的表面区域可以增加固体91的可以着陆的表面积使得固体91可以适当地在分离板上沉积。
沉淀速度较低的微细粉末92移动至鳃瓣状分离板20上方,并通过一个输出装置30从回收罐10中流出。在较佳实施例中,该输出装置包括一连串的堰31。泥浆260和微细粉末92进入带堰溢出容器80中,如果有必要得话,其将用于进一步的回收或处理。
为了使得鳃瓣状分离板20更加坚硬,不会由于进入的带有固体的泥浆90造成的连续撞击而发生扭曲,鳃瓣状分离板20可以采用弯曲或扭结或其它设置来加强鳃瓣状分离板20的硬度。
可以在回收罐10上设置一个隔板60用来防止在将带有固体的泥浆90注入回收装置100和回收罐10中时,对带有固体的泥浆90的不必要的搅拌。由此搅拌仅仅会通过搅拌机构40传递至回收罐10内。
在本实施例中,由于带有固体的泥浆90进入罐10所引起的运动是湍急的,其是与搅拌机构40所引起的可预测的稳定运动是相反的。因此隔板60使得湍流被容纳于其后侧,进而该湍流不会显著地影响罐10中的液体运动。
沉淀于回收罐10底部的固体91在搅拌机构40的作用下向回收罐10的一端运动,以移动到回收罐10的较低的倾斜的一端为佳。
搅拌机构40可以设置为可将搅拌传递给回收罐中的带有固体的泥浆90的任意机构。例如说使用喷射出的液体将运动传递给回收罐10中的液体或是回收罐10中的旋转螺栓以传递搅拌。在图1所示的实施例中,搅拌机构40包括一个或以上的表面装置,其可以在泥浆中移动以生成不同强度的液体的运动。在本实施例中,表面装置是突起42,但其也可以是板状、桨状、鳍状或是叶片状。
在较佳的实施例中,液体运动生成装置包括一个作为可移动的固定装置的机械传送装置41,突起42固定于其上并且藉此在储水装置的泥浆中移动。突起42在传送装置41上等间隔设置。然而可以推测出突起进行不等间隔的设置也是可以的。
传送装置41旋转或在储水装置中以环形状态围绕突起42运动以产生搅拌。此种旋转可以是顺时针的,也可以是逆时针的,并且不受制于分离板20的倾斜角度。
传送装置41还具有固体移动机构70的功能,其表面装置移动推动沉淀在储水装置底部的固体91。传送装置41使得突起42扫过回收罐10的底部,并将沉淀的固体91向回收罐10的一端传送。在一个实施例中,突起91的外围还设置有刚毛或刷子,来加强突起91将固体运送出回收罐10的效率。
为了减轻回收罐10的负担,可以在回收罐10的输入装置50处增设一个筛网(图未示)。因此带有固体的泥浆90将首先通过该筛网的初步筛选才能进入回收罐10。该筛网的网孔大小固定,使得无法被回收的较差的固体不会混入带有固体的泥浆中,而是在进入回收罐10之前就被除去。其将会提高回收装置100的效率。
回收罐10的一个较低的表面上设置有一个可以对沉淀的固体91进行临时储藏的凹槽11。突起42将固体91推进凹槽11。在回收罐10一端设置的凹槽11起到了容纳被扫过的固体91的沉积穴的作用。
用于移动被扫入凹槽11内的固体91的固体移动机构70被设置于回收罐10的同一端。在图1所示的较佳实施例中,固体移动机构是传送系统71。
回收罐10的较低的表面处设有一个倾斜的区域。在图1所示的实施例中倾斜的区域向凹槽11倾斜。
在图1中,突起42的运动首先推动固体91向凹槽11处移动,之后推动其向上并移动至回收罐10之外。因此如果有必要的话固体91被移动至回收罐10的外部用于回收或进一步进行处理。
图2显示了固体物质分离装置100的另一个实施例。回收罐10可以看成是两个区域。在第一区域14中带有固体的泥浆90在搅拌机构40的作用下进行一定强度的运动,使得带有固体的泥浆90可以相对分离板20移动。在第二区域15中,带有固体的泥浆仅仅在搅拌机构40的作用下进行一定强度的运动,但并不相对于分离板20进行运动。
当传递给液体的速度低于微细粉末92的沉淀速度时,由于沉淀速度的不同,部分微细粉末92仍可能悬浮飘起。在设有鳃瓣状分离板20的地方,如第一区域14,该微细粉末92将会漂浮并相对于分离板20移动,并最终沉淀至储水装置的底部。因此上升至分离板20上部并流出罐体的液体是清水261。
然而在第二区域15中,由于没有相对于分离板20的运动,上升并流出罐体10的液体是泥浆260和微细粉末92。
为了将来自第一区域14和第二区域15的不同质量的输出物质进行区分,带堰溢出容器80是分开设置的以使得来自第一区域14的清水261可以直接被导出装置100,用于其他情况下则从第一带堰溢出容器83中流出。来自第二区域15的泥浆260和微细粉末92进入一个第二带堰溢出容器84中,如果有必要的话将用于进一步回收或处理。
输入装置50包含一个定量将带有固体的泥浆90供给回收罐10的装置。在一个实施例中,设置有一个螺旋形通道(图未示),因此导入回收罐10中的带有固体的泥浆90首先要通过此通道。螺旋形通道有效的增加了罐体10的有效面积。在另一实施例中,输入装置50包括一个漏斗或是螺旋(图未示),以使得进入回收罐10中的物质可以被测量或控制。
可以推测出搅拌机构40和固体移动机构70是一个连续的系统,其中传送装置41和传送系统71在端点处共同享有一个转轴72,并可以以同样的频率旋转。因此在本实施例中可移动的固定装置和固体移动机构是作为一个整体设置的,并享有一个相同的转轴。
在图1中,罐体10中存在的部分固体物质通过分离板20离开罐体10,同时部分固体91沉淀于底部并被突起42扫出。
通常分离板20用于移除较轻的固体,而较重的固体将会沉淀在罐体10的底部并被突起42带走。因此,分离板设置于该储水装置的上部区域以用来接收未沉淀于罐中的固体91。
可以推测出突起的形状可以是梯形的,以使从罐体底部被带走的固体被“跳过”的情况减到最小。如此梯形的突起还可以更加有效地扫过固体物质。
为了从泥浆260中进一步将微细粉末92分离,泥浆260被导入到作为固体物质分离装置的澄清器200中,如另一实施例中所示,其作垂直设置,如图3中的较佳实施例所示。
该澄清器200的输入装置230用于通过一个带堰溢出容器80将泥浆260导入澄清罐210。该带堰溢出容器内容纳有储水装置排出的水。该带堰溢出容器包括一个输出装置使得该带堰溢出容器中的水可以排干。
该澄清罐210包括一个使得较重的微细粉末92排出罐体的微细粉末输出装置262,具体请参考图3中的导管213,其由该澄清罐210的外部延伸至澄清罐210的中部。该导管213还设置有一阀500,以使得导管213可以在打开和关闭的状态之间转换。
在图3中所示的另一实施例也在同一原则下运作,即液体相对于分离板的运动或速度的不同可以用来决定数量和/或分离板从泥浆中除去的固体物质的尺寸。因此,液体运动生成装置包括有一个用来控制泥浆进入储水装置的速度的液体驱动机构。
液体驱动机构用来在液体上产生压力来生成运动,在本实施例中是一个泵95。该压力还可以由螺旋桨或其他适宜的机构生成。
泥浆260通过输入装置230被泵95抽吸入澄清罐210中,该泵95被设置为邻近于输入装置230。该泵95可以是本领域中的任意一种泵。泵头可以根据使用者的不同需要进行选取。
输入装置230较佳地设置于固体输出装置240的相反位置处。该固体输出装置240较佳地设置于该澄清罐200的中心位置处。
鳃瓣状分离板220设置于该澄清罐210中,用以增加进入的泥浆260的分离表面积。
在本实施例中,鳃瓣状分离板包括一第一分离板组和第二分离板组。
第一分离板组221中鳃瓣状分离板220从一个固体输出装置240的外表面241上突起。
第二分离板组222中的鳃瓣状板220从澄清罐210的内表面201上突起。
第一分离板组和第二分离板组设置为交替设置,使得泥浆260可以流过第一分离板组221,流向第二分离板组222。该第一分离板组合第二分离板组交织在一起形成一个可供泥浆260流过的螺旋形通道。
现仅对澄清罐210的左侧进行说明,因为澄清罐210的左侧和右侧互成镜像关系,因此在一侧中的效果和特征可以等同应用于左右两侧。
泥浆260从泵95的头部得到一个速度。该被传递的速度在其上升到澄清罐210的顶部时减弱。因此具有较大的沉淀速度的较重的微细粉末92将会首先沉淀,之后才是具有较低的沉淀速度的微细粉末92。
澄清罐210的内部通过一个内部表面得到限定。部分第二分离板组的分离板222从该罐体210的内表面延伸出来并部分突出进入罐体。该第一分离板组的部分分离板221从位于罐体210中心处的作为支持装置的导管213上延伸并从该导管213突出部分进入罐体210。
导管213实际是作为一个允许较重的微细粉末92排出罐体210的固体输出装置262。在图3中,导管213从罐体的外部延伸至罐体内部的中段。在本实施例中导管设置于储水装置的中部。
从导管213上延伸出的分离板221与从罐体的内表面上延伸出的分离板222交错设置形成螺旋形通道。在图3中,螺旋形通道包括有S型和C型的转弯。
分离板的交错设置相对于并未进行此种设置的情况减少了用于设置分离板所需要的空间,并且使得澄清罐210的整体结构在设计上更加紧凑。
进入澄清罐210后,泥浆260流过罐体210并相对于重力向上运动。
泥浆260流过第一分离板组的第一分离板221。第一分离板突起于导管213的外表面241上。在此种情况下,较重的微细粉末92将会沉淀在第一分离板组的分离板221的较低一端225处。第一分离板组的分离板221的表面在倾斜表面的较低一端具有一个固体物质输出装置(图中为虚线)。
鳃瓣状分离板221向下倾斜,使得外表面241和较低一端225的角度小于90°,并且在较佳实施例中为45°。在同一侧的鳃瓣状分离板较佳地统一保持该角度。设置于相反一侧的鳃瓣状分离板同样也在导管213的外部表面之间设置为具有小于90°的角度。在该澄清罐210的同样一侧该角度同样也较佳地保持一致,较好为45°。
从图3中可以看出将分离板倾斜设置的原因之一。一个或以上的分离板的边缘被设置于另一个分离板的表面上方,使得固体从第二分离板组中的分离板222掉落至第一分离板组中的分离板221。
上述未被收集至第一分离板221上的微细粉末92通过泥浆260的运动继续被带动延螺旋形通道运动。
导管213上较佳开有狭长的切口,以使得沉淀于鳃瓣状分离板的较低一端225的微细粉末92可以通过狭长切口270进入导管213。这些微细粉末92可以离开澄清罐,随着较澄清的泥浆离开罐体。
较澄清的泥浆260借助于泵95产生的压力将会进一步上升至第二分离板组的分离板222处。在这一步骤中被分离出的微细粉末92将会从第二分离板组222的较低的一端226处掉落至第一分离板组221的分离板的较低一端。这些较重的微细粉末92将会再次通过导管213的切口270进入导管213。
在澄清罐210的较高处,产生的压力将会逐渐递减并且较大的微细粉末92将会沉淀在鳃瓣状分离板220上。
在后续的鳃瓣状分离板组(第一和第二分离板组)中上述过程不断重复,并且该分离板组均包括有一与该导管213一体设置的切口270。
分离板组并不一定是由第一分离板组和第二分离板组组成,也可以是2个第一分离板组加上两个第二分离板组的分离板组成,或任何数字的组合。只要泥浆260穿过倾斜的鳃瓣状分离板220变为澄清的水过程中,微细粉末92在泥浆260向澄清罐210的上端移动时被分离。
然而在图3所示的较佳实施例中还另外设置了第二分离板组的分离板220。
最终澄清的水261通过设置在澄清罐210的相反一侧上的液体输出装置280被排出。液体输出装置280被设置在罐体210的上端。
固体输出装置262包括一个阀500使得其可以在打开状态和关闭状态之间转换。
澄清罐210被设置于该澄清罐210中至少位于该导管213所处位置之上的水平位置处,以使通过导管213的切口270被排出罐体的微细粉末92不会使得澄清罐210承受压力或导致液压的减少。
图4显示的是回收装置100和澄清器200组成一体的回收系统300。带有固体的泥浆90经回收装置100的输入装置50,进入回收罐10。回收过程如上文所述。
带堰溢出容器80还包括有一个将微细粉末92和泥浆260排出该带堰溢出容器80并使之进入下一过程的开口81。该带堰溢出容器对排出分离装置的分离后的泥浆进行收集。
当阀82处于打开状态时,微细粉末92和泥浆260可以被排出带堰溢出容器80。之后它们被传送机构85抽取出来,其中该传送机构85包括一个管道系统,在图4中显示为管道系统86。带堰溢出容器80包括一个将液体抽取穿过澄清器200的输入装置230进入澄清罐210的泵95。泵95将带堰溢出容器中收集的泥浆送入澄清罐中。传送机构85连接在溢出容器80的开口81上,和澄清罐21的输入装置230上。
可推知回收装置100可以单独使用,也可以和澄清器200一起使用,取决于使用者的需要。
图5显示了本发明中将固体物质从流过该装置的一个储水装置的泥浆中分离的方法的流程图。该方法包括在上述储水装置上设置鳃瓣状分离板使得储水装置的有效分离面积加大。该分离板设置在该储水装置内,其在泥浆相对于分离板运动的同时接收来自泥浆中的至少部分固体物质。最后,一个液体运动发生装置用于在储水装置中的泥浆相对于分离板产生一定程度的移动,使固体物质从泥浆中分离,并在上述储水装置的上部生成澄清的水。
本实施例仅仅是为了给出例子进行进一步的说明,在本发明的权利要求的范围内进行的修改都是可以的。
权利要求
1.一种固体物质分离装置,其用于将固体物质从流过该装置的储水装置的泥浆中分离,内部设置有复数个鳃瓣状设置的分离板的该储水装置;用于在该泥浆相对于该分离板运动时接收至少部分来自泥浆中的固体物质的该分离板;其特征为,该装置包括有液体运动生成装置,其可使泥浆在该储水装置中生成相对于该分离板的运动。
2.根据权利要求1所述的固体物质分离装置,其特征为,该液体运动生成装置可以调整该储水装置中泥浆相对于该分离板的运动强度,进而改变该分离板从泥浆中分离出的固体物质的尺寸。
3.根据权利要求1所述的固体物质分离装置,其特征为,该液体运动生成装置可以调整该储水装置中泥浆相对于该分离板的运动强度,进而改变该分离板从泥浆中分离出的固体物质的量。
4.根据权利要求2或3所述的固体物质分离装置,其特征为,该液体运动生成装置可以调整该分离板之间泥浆运动的强度。
5.根据权利要求2至4中任意一项所述的固体物质分离装置,其特征为,使用者可以有选择性地控制该液体运动生成装置来选择使用者所需的运动强度。
6.根据权利要求2至5中任意一项所述的固体物质分离装置,其特征为,该液体生成装置可以改变泥浆相对于该分离板的运动速度。
7.根据权利要求6所述的固体物质分离装置,其特征为,该液体运动生成装置为一个至少可以在该储水装置中喷射液体的装置。
8.根据权利要求1至6中任意一项所述的固体物质分离装置,其特征为,该液体运动生成装置包括一个或一个以上的可在泥浆中移动并在液体中生成一定强度的运动的表面装置。
9.根据权利要求8所述的固体物质分离装置,其特征为,一个或一个以上的该表面装置是突起。
10.根据权利要求9所述的固体物质分离装置,其特征为,一个或一个以上的该突起为板状、桨状、鳍状或叶片状物体。
11.根据权利要求10所述的固体物质分离装置,其特征为,一个或一个以上的该突起为梯形。
12.根据权利要求9、10或11中任意一项所述的固体物质分离装置,其特征为,该液体运动生成装置包括有一个供一个或一个以上的该表面装置进行固定并在该储水装置中的泥浆内移动的固定装置。
13.根据权利要求12所述的固体物质分离装置,其特征为,一个或一个以上的表面装置依一定空间关系地固定于该可移动的固定装置之上。
14.根据权利要求13所述的固体物质分离装置,其特征为,该可移动的固定装置为带有表面装置的可移动传送装置,该传送装置使得该表面装置在泥浆中移动。
15.根据权利要求12至14中任意一项所述的固体物质分离装置,其特征为,该可移动的固定装置在储水装置中以环形状态围绕该表面装置移动。
16.根据权利要求12至15中任意一项所述的固体物质分离装置,其特征为,该可移动的固定装置还可以作为一个固体移动机构,其通过该表面装置的移动来推动该储水装置中沉淀的固体。
17.根据权利要求16所述的固体物质分离装置,其特征为,该可移动的固定装置和该固体移动机构整体上为一体设置。
18.根据权利要求17所述的固体物质分离装置,其特征为,该可移动固定装置和该固体移动机构共同享有同一转轴。
19.根据权利要求8至18中任意一项所述的固体物质分离装置,其特征为,该储水装置包括一个较低的表面,该表面上设置有一个供沉淀的固体物质临时进行储存的凹槽,该表面装置将固体推进该凹槽。
20.根据权利要求19所述的固体物质分离装置,其特征为,该储水装置的较低的表面具有一个倾斜的区域。
21.根据权利要求20所述的固体物质分离装置,其特征为,该倾斜的区域向该凹槽处倾斜。
22.根据权利要求16至21中任意一项所述的固体物质分离装置,其特征为,该表面装置的移动还将固体推出该储水装置外。
23.根据以上权利要求中任意一项所述的固体物质分离装置,其特征为,至少该分离板中的一部分是设置于该储水装置上部的,使得该分离板接收该固体物质而非使其沉淀至该储水装置中。
24.根据以上权利要求中任意一项所述的固体物质分离装置,其特征为,部分或全部分离板设置为具有一定的倾斜角使得任何掉落至其上的该固体物质最终都会在重力作用下从该分离板上掉落。
25.根据权利要求24所述的固体物质分离装置,其特征为,该分离板的倾斜角度为相对于垂直方向0度到180度。
26.根据上述权利要求中任意一项所述的固体物质分离装置,其特征为,一个输入装置,其使得一股带有固体的泥浆注入该储水装置;作为储水装置的回收罐,其接收并容纳来自于该输入装置的物质输入;复数个分离板用于增加有效的分离表面积以改进分离过程,这些分离板按一角度排布;一个液体运动生成装置,其将较重的固体从泥浆中去除;一个输出装置,通过该输出装置将去除掉固体的泥浆从该储水装置中排出。
27.根据权利要求26所述的固体物质分离装置,其特征为,该输出装置包括有一连串的堰。
28.根据上述权利要求中任意一项所述的固体物质分离装置,其特征为,该装置还包括一个隔板其用于抑制由于该带有固体的泥浆进入该储水装置时产生的湍流。
29.根据上述权利要求中任意一项所述的固体物质分离装置,其特征为,该装置还包括有一个带堰溢出容器,用于容纳排出该储水装置中的泥浆。
30.根据权利要求29所述的固体物质分离装置,其特征为,该带堰溢出容器还包括一个使得该溢出容器可以排干的输出装置。
31.根据权利要求26所述的固体物质分离装置,其特征为,该输出装置包括一个可以使得该输出装置处于打开状态或关闭状态的阀。
32.根据上述权利要求中任意一项所述的固体物质分离装置,其特征为,其还包括一个对进入该储水装置的液体进行初次筛选的筛网。
33.根据上述权利要求中任意一项所述的固体物质分离装置,其特征为,该分离板是弯曲的或扭结的。
34.根据权利要求10至33中任意一项所述的固体物质分离装置,其特征为,至少一个突起还在其外围上包括有刚毛。
35.根据权利要求1至6中任意一项所述的固体物质分离装置,其特征为,该液体运动生成装置包括有一个液体驱动机构,其可以对该泥浆进入该储水装置的速度进行控制。
36.根据权利要求35所述的固体物质分离装置,其特征为,该液体运动生成装置包括一个压力生成装置。
37.根据权利要求35所述的固体物质分离装置,其特征为,该液体驱动机构是一个泵。
38.根据权利要求35至37中任意一项所述的固体物质分离装置,其特征为,该鳃瓣状设置的分离板包括一个第一分离板组和第二分离板组,其该第一分离板组和该第二分离板组交错设置,以形成一个可以使得该泥浆通过其中的螺旋形通道。
39.根据权利要求38所述的固体物质分离装置,其特征为,该储水装置由一个内部表面所划分而成,第二分离板组中的至少部分分离板从该储水装置的内部表面突起并部分延伸至该储水装置中。
40.根据权利要求39所述的固体物质分离装置,其特征为,该第一分离板组中的至少部分分离板从该储水装置中的支撑部分突起并部分延伸至该储水装置中。
41.根据权利要求40所述的固体物质分离装置,其特征为,上述从该支撑部分上延伸出的分离板与从该储水装置的内表面上延伸出的分离板交错设置形成上述螺旋形通道。
42.根据权利要求38至41中任意一项所述的固体物质分离装置,其特征为,该螺旋形通道包括有S型的转弯。
43.根据权利要求38至41中任意一项所述的固体物质分离装置,其特征为,该螺旋形通道包括有C型的转弯。
44.根据权利要求38至43中任意一项所述的固体物质分离装置,其特征为,该分离板的交错设置使得该装置所占的体积相对于未进行交错设置的情况下减小。
45.根据权利要求38至44中任意一项所述的固体物质分离装置,其特征为,该泥浆相对于重力向上穿行。
46.根据权利要求35至45中任意一项所述的固体物质分离装置,其特征为,该分离板被设置为一个或一个以上的分离板的边缘被设置在另外的分离板表面之上,使得固体物质从该第二分离板组的一个分离板掉落至该第一分离板组的一个分离板上。
47.根据权利要求46所述的固体物质分离装置,其特征为,该第一分离板组的分离板具有一个倾斜的表面,一固体物质的输出装置设置在倾斜表面的较低一端。
48.根据权利要求35至47中任意一项所述的固体物质分离装置,其特征为,该装置还包括有一个固体输出装置,一个液体输出装置和一个输入装置。
49.根据权利要求48所述的固体物质分离装置,其特征为,该液体运动生成装置被设置在该输入装置旁边。
50.根据权利要求48或49所述的固体物质分离装置,其特征为,该固体输出装置是一个从该储水装置外部延伸至该储水装置中部的导管。
51.根据权利要求50所述的固体物质分离装置,其特征为,该固体输出装置还包括一个使得该固体输出装置可以处于打开和关闭状态的阀。
52.根据权利要求50或51所述的固体物质分离装置,其特征为,该导管被设置在该储水装置的中央。
53.根据权利要求47至52中任意一项所述的固体物质分离装置,其特征为,该液体输出装置被设置于该储水装置的项部。
54.根据权利要求35至53中任意一项所述的固体物质分离装置,其特征为,该分离板倾斜成一定角度。
55.一个用于将较重的固体和微细粉末从泥浆中分离的回收系统,其包括一个根据权利要求1至34中任意一项所述的回收装置和一个根据权利要求35至54中任意一项所述的澄清罐,其特征为,该泥浆从该回收装置流入该澄清罐。
56.根据权利要求55所述的回收系统,其特征为,其还包括一个用于收集该回收装置排出的分离后的泥浆的带堰溢出容器。
57.根据权利要求56所述的回收系统,其特征为,回收装置包括一个传送装置,其用于将该带堰溢出容器收集到的泥浆传送至该澄清罐。
58.根据权利要求57所述的回收系统,其特征为,该传送装置是一个管道系统。
59.根据权利要求57或58所述的回收系统,其特征为,该带堰溢出容器还包括一个泵。
60.一个用于将较重的固体和微细粉末从泥浆中分离的回收系统,其包括一个输入装置,其使得一股带有固体的泥浆注入;一个回收罐,其用来容纳从该输入装置输入的物质;复数个鳃瓣状分离板,其通过增加有效的分离表面积来改善分离的过程;一个搅拌机构,其用于将较重的固体和泥浆分离,并且上述的搅拌机构为传送装置并包括复数个突起或突块;一个输出装置,其使得分离后的泥浆从罐体中排出;一个带堰溢出容器,其用于容纳从罐体中排出的上述分离后的泥浆;一个固体输出装置;一个液体输出装置;复数个鳃瓣状分离板,上述鳃瓣状分离板被分成第一分离板组和第二分离板组;一个输入装置;和一个搅拌装置;其特征为,上述回收装置还包括一个传送装置,其将收集在该带堰溢出容器中的泥浆传送到该澄清器的输入装置处。
61.一种固体物质分离的方法,其用于将固体物质从流过该装置的储水装置的泥浆中分离,其特征为,其包括提供一储水装置,其内部设置有复数个鳃瓣状设置的分离板;在泥浆相对分离板运动的同时,用该分离板接收至少泥浆中的部分固体物质于其上;使用液体运动生成装置,使得该储水装置中的泥浆相对该分离板进行运动。
62.根据权利要求61所述的方法,其特征为,该固体物质分离装置为权利要求1至54中任意一项所述的装置。
63.根据权利要求62所述的方法,其特征为,该固体物质分离装置为权利要求55至60中任意一项所述的回收系统的一部分。
全文摘要
本发明公开了一种回收装置,其用于从泥浆中分离较重的固体,其包括一个将一股带有固体的泥浆(90)引入的输入装置(50),一个容纳输入装置(50)中输入的物质的回收罐(10),用于增加有效分离表面积来改善分离过程的复个鳃瓣状分离板(20),上述鳃瓣状分离板(20)设置为具有一定角度,一个用于将泥浆和较重的固体分离的搅拌机构(40),一个输出装置(82)使得泥浆被排出罐体(10),该搅拌机构(40)是一个传送装置,其具有复数个突起(42)。
文档编号B03B5/66GK101060899SQ200580032464
公开日2007年10月24日 申请日期2005年7月28日 优先权日2004年7月28日
发明者黄启扬, 黄毓生, 刘尧隆, 黄惠玲, 沈悦乐 申请人:Sp-志同有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1