用于降低硫含量的膜分离方法

文档序号:5100307阅读:291来源:国知局
专利名称:用于降低硫含量的膜分离方法
技术领域
本发明涉及降低烃物流中含硫量的方法。更具体地,本发明涉及用于降低石脑油原料流、特别是FCC催化石脑油的含硫量、同时基本保持该原料烯烃含量的膜分离法。
背景技术
出于对环境的忧虑,出台了限制气油含硫量的法规。例如,在欧盟中,2000年规定最高硫含量为150ppm,到2005年将进一步降低到最高50ppm。气油中的硫是SOx排放的直接来源,并且其也破坏汽车催化转化器的低温活性。在考虑燃料组成变化对排放的影响时,降低硫含量对于降低烃、CO和NOx的总排放量具有最大的潜力。
气油包含来自几种生产装置的产品的混合物,但是汽油池中硫的主要来源是流化催化裂化(FCC)石脑油,其通常构成汽油池总量的三分之一到一半。因此,针对FCC石脑油来降低硫含量是最有效的。
已经提出了许多方案用于降低气油中的硫,但是这些方法均不理想。因为FCC原料中的硫是FCC石脑油中硫含量的主要来源,显而易见的途径是加氢处理该原料。虽然加氢处理能够使气油的含硫量减少到任何需要的水平,但是安装或者增加必要的加氢处理能力需要相当可观的投资和高的操作成本。此外,烯烃和环烷烃化合物在加氢处理期间对氢化敏感。这导致辛烷值显著降低。加氢处理FCC石脑油还因为高烯烃含量同样倾向于氢化而是成问题的。
关于使用薄膜分离法选择性地渗透含硫化合物的报告很少。例如,美国专利5,396,019(Sartori等)教导了将交联的氟化聚烯烃膜用于芳族化合物/饱和化合物的分离。该专利的实施例7显示,噻吩水平为500ppm。
美国专利5,643,442(Sweet等)教导了使用薄膜分离法降低加氢处理的蒸馏流出物原料含硫量。优选的膜是在全蒸发条件下操作的聚酯酰亚胺膜。
美国专利4,962,271(Black等)教导了借助于使用聚脲/聚氨酯膜的吹扫吸收方法(perstraction)从润滑油馏分中选择性地分离多环芳香族烃。实施例中讨论了分离的级分的苯并噻吩分析结果。
美国专利5,635,055(Sweet等)公开了提高来自液体含烃原料流的汽油和轻烯烃收率的方法,该液体含烃原料流的沸点为650°F到大约1050°F。该方法包括将原料热裂化或者催化裂化,使裂化的原料通过含聚酯酰亚胺膜的芳香族分离区,以分离富含芳香族的级分/富含非芳香族的级分,然后进一步用裂化法处理所述富含非芳香族的级分。在渗透物中达到了低于1.4的浓缩系数。
美国专利5,005,632(Schucker)公开了使用单面的聚脲/聚氨酯膜将芳族化合物和非芳族化合物的混合物分离为富含芳族化合物的物流和富含非芳族化合物的物流的方法。
高度希望的是使用选择性膜分离技术来降低烃物流、特别是石脑油物流中硫含量。膜方法与常规脱硫方法相比提供了许多潜在的优点,包括较高的选择性、较低的操作成本、易于规模运行、适应工艺物流的变化和控制模式简单。

发明内容
我们已经开发了选择性膜分离方法,其优先地降低含烃石脑油原料的含硫量、同时基本上保持原料中存在的烯烃含量。术语“基本上保持原料中存在的烯烃含量”在此用于指示保持至少50wt%的最初存在于未处理原料中的烯烃。按照本发明的方法,将石脑油原料流与包含膜的膜分离区接触,所述膜具有足够的通量和选择性,以分离出富含芳香族和非芳香族烃含硫物质的渗透物级分和贫硫保留物级分。通过膜方法生产的保留物级分可以直接用于或者混入汽油池中,而不需要进一步加工。富硫级分使用常规脱硫技术、例如加氢处理进行处理以降低含硫量。而后,硫含量降低的渗透物产品可以混入汽油池。
按照本发明的方法,贫硫保留物不少于原料的50wt%,并且保留高于50wt%的所述原料的初始烯烃含量。因此,本发明方法通过最小化借助于常规高成本脱硫技术、例如加氢处理方法处理的原料的体积而提供了改进的经济优点。另外,本发明的方法使总的石脑油产品的烯烃含量提高,而不需要附加工艺来恢复辛烷值。
本发明的膜方法还提供了比常规脱硫方法优越的其他优点,例如较少的资本和运转费用、较高的选择性、易于密封操作和对工艺物流变化的适应能力以及简单的控制模式。


附图概略地描述了用于降低石脑油原料流中含硫量的本发明的膜方法。
具体实施例方式
本发明的膜方法可用于生产含硫量降低的和具有高烯烃含量的高质量石脑油产品。按照本发明的方法,将包含烯烃和含硫芳香族烃化合物和含硫非芳香族烃化合物的石脑油原料输送通过膜分离区,而使含硫量降低。所述膜分离区包含膜,该膜具有足够的通量和选择性,可将所述原料分离成与最初的石脑油原料相比贫硫的保留物级分和富含芳香族和非芳香族含硫烃化合物两者的渗透物级分。所述石脑油原料是液体的或者是基本上液体形式的。
对于本发明的目的,术语“石脑油”在此用以表示炼油厂操作中的烃物流,其具有大约50℃到大约220℃之间的沸程。优选,所述石脑油在用于本发明方法之前不进行加氢处理。通常,所述烃物流含高于150ppm、优选大约150ppm到大约3000ppm、最优选大约300到大约1000ppm的硫。
术语“芳香族烃化合物”在此用以指示烃基有机化合物,其包含一种或多种芳族环,例如稠合的和/或桥接的。芳族环以具有单一芳香核的苯为代表。具有多于一个芳族环的芳族化合物包括,例如萘、蒽等等。可用于本发明的优选的芳香族烃包括具有1到2个芳族环的那些。
术语“非芳香烃”在此用以指示不含芳香核的烃基有机化合物。
对于本发明的目的,术语“烃”用来指具有主要的烃特征的有机化合物。在该定义范围内,本发明范围内的烃化合物可以包含至少一种非烃基团(例如硫或者氧),条件是所述非烃基团不改变所述有机化合物的主要的烃特性和/或不反应而改变所述膜的化学性质。
对于本发明的目的,术语“硫浓缩系数”在此用以表示渗透物中的含硫量除以原料中的含硫量的比例。
使用本发明的膜方法获得的所述贫硫保留物级分通常包含低于100ppm、优选低于50ppm和最优选低于30ppm的硫。在优选的实施方案中,回收的保留物物流的含硫量低于原料的初始含硫量的30wt%、优选20wt%和最优选10wt%。
附图概略地描述了本发明优选的膜方法。包含硫和烯烃化合物的石脑油原料流1与膜2接触。所述原料流1被分成渗透物物流3和保留物物流4。所述保留物物流4的含硫量得到降低,但是基本上保留了所述原料流1的烯烃含量。所述保留物物流4可以送到汽油池而不需要进一步处理。所述渗透物物流3包含高硫量并且用常规脱硫技术处理以生产硫含量降低的渗透物物流5,其也被混入所述汽油池。
有利的是,源于所述保留物物流4和硫含量降低的渗透物物流5的总的石脑油产品,当与100%地用常规脱硫技术、例如加氢处理进行处理得到的产品物流的烯烃含量相比时,具有较高的烯烃含量。通常,总石脑油产品的烯烃含量为通过所述膜的总原料的至少50wt%、优选至少70wt%、最优选至少80wt%。对于本发明的目的,术语“总的石脑油产品”在此用以表示贫硫保留物产品和硫含量降低的渗透物产品的总量。
所述保留物物流4和所述渗透物物流5可以合并到汽油池,或者可选择地,可以用于不同的目的。例如,保留物物流4可以混入所述汽油池,而渗透物物流5例如用作重整装置的原料流。
通过该系统生产的保留物4的量决定了回收%,其为保留物4的级分与所述初始石脑油原料流进行的对比。优选,该膜方法以高回收%进行,以便降低成本。处理的石脑油的每立方米成本取决于以下因素例如固定设备、膜、能量和操作成本。当回收%的量增大时,对用于单级系统所要求的膜选择性提高,而有关系统的成本下降。对于在50%回收率下操作的膜,总的1.90硫浓缩系数是典型的。在80%回收率下,总的4.60的硫浓缩系数是典型的。正如本领域技术人员可以理解的,系统成本随着提高回收%而降低,因为较小的原料被蒸发通过所述膜,因此需要较少的能量和较小的膜面积。
通常,所述贫硫保留物级分包含至少50wt%、优选至少70wt%、最优选至少80wt%的在所述膜上通过的总原料。这样高的贫硫产品回收率,通过最小化通常由高成本脱硫技术、例如加氢处理进行处理的原料的体积而提高了经济效益。通常,所述膜方法使用于进一步脱硫的石脑油原料的量降低50%、优选大约70%、最优选大约80%。
可用于本发明膜方法的烃进料包括含石脑油的在气油沸程、50℃到大约220℃中沸腾的进料,该级分包含硫和烯烃不饱和度。该类型的原料包括沸程通常为大约50℃到大约105℃的轻石脑油、沸程通常为大约105℃到大约160℃的中间石脑油和沸程为大约160℃到大约220℃的重石脑油。所述方法可以用于热裂化石脑油,例如裂解汽油和焦化石脑油。在本发明优选的实施方案中,所述原料是催化裂化石脑油,其以例如蓄热器催化裂化(TCC)和FCC方法生产,因为两种方法通常生产以存在烯烃不饱和度和硫为特征的石脑油。在本发明更优选的实施方案中,所述烃原料是FCC石脑油,最优选的原料是FCC轻催化石脑油,其沸程为大约50℃到大约105℃。同时认为,在本发明范围内,所述原料可以是沸程在大约50℃到大约220℃之间的直馏石脑油。
可用于本发明的膜是具有足够的通量和选择性以在含硫和烯烃不饱和度的石脑油存在下渗透含硫化合物的那些膜。所述膜通常具有的硫浓缩系数为高于1.5、优选高于2、甚至更优选为大约2到大约20、最优选从大约2.5到15。优选,所述膜具有不对称结构,其可定义为由在相同或不同材料的厚的多孔基础上的致密的超薄的上部“表层”组成。通常,所述不对称膜支撑在适合的多孔的背材或者载体材料上。
在本发明优选的实施方案中,所述膜是由Matrimid5218或者Lenzing聚酰亚胺聚合物制备的聚酰亚胺膜,如美国专利申请序列号09/126,261所描述的,其在此引入作为参考。
在本发明另一实施方案中,所述膜是具有作为活性分离层的一部分的硅氧烷基聚合物的那种。通常,该分离层被涂覆到微孔性的或者具有超滤作用的载体上。引入聚硅氧烷官能团的膜结构的例子见于美国专利号4,781,733、美国专利4,243,701、美国专利号4,230,463、美国专利号4,493,714、美国专利号5,265,734、美国专利号5,286,280和美国专利号5,733,663,所述参考文献在此引入作为参考。
在本发明另一个实施方案中,所述膜是公开于美国专利4,962,271中的芳香族聚脲/聚氨酯膜,该文献在此引入作为参考,所述聚脲/聚氨酯膜的特征在于具有至少20%但是低于100%的脲指数、至少15摩尔%的芳烃碳含量、至少大约10/1000克聚合物的官能团密度和低于大约8的C=O/NH比例。
所述膜可以任何适当的形式例如片材、管或者中空纤维的形式使用。片材可用于制造螺旋缠绕的模式,这是本领域技术人员熟知的。可选择地,片材可用于制造平面层叠渗透器,其包含众多的被原料-保留物间隔区和渗透物间隔区分离的膜层。该器件描述于美国专利号5,104,532,其在此引入作为参考。
管可以多叶模式使用,其中每个管是平的和与其他平的管平行放置。每个管内部含间隔区。邻接的平管由间隔材料层分离。所述平管与定位间隔材料一起被放进耐压的具有流体入口和出口装置的容纳设备中。管的末端被夹紧,形成相对于壳体中的管呈分离状态的内部和外部区。该类型的装置在美国专利号4,761,229中进行了描述并要求保护,其在此引入作为参考。
中空纤维可以束状排列使用,其在任一端罐装以形成管板并烧制到压力容器中,由此将管的内部与管的外部分离。该类型的装置在本领域中是已知的。标准设计的改进包括通过利用缓冲层将中空纤维束分成分离的区,该缓冲层使液体流在该束状物的管侧上重定向并防止在管侧上流体窜进和偏置。该改进在美国专利号5,169,530中公开并要求保护,其在此引入作为参考。
可以串联或者并联形式使用多个分离元件,它们可以是螺旋缠绕的、板和框型或者中空纤维的形式。美国专利号5,238,563,其在此引入作为参考,公开了多元件套,其中元件与原料/保留物区并联成组,所述原料/保留物区由安装在所述元件相同端的两个管板围绕的空间限定。
本发明的方法使用选择性膜分离在全蒸发或者吹扫吸收方法条件下进行。优选,所述方法在全蒸发条件下进行。
所述全蒸发方法依赖于在渗透物侧面上的真空或者吹扫气体,以蒸发或者以其他方式从所述膜的表面除去所述渗透物。所述原料为液态和/或气态。当为气态时,所述方法可以被称作蒸气渗透。全蒸发可以在大约25℃到200℃和较高的温度下进行,所述最高温度为膜被物理地损伤的温度。优选所述全蒸发方法作为单级操作进行操作,以降低投资费用。
所述全蒸发方法也通常依靠渗透物侧面上的真空进行,以从膜的表面蒸发渗透物和保持浓度梯度推动力,该推动力驱动分离方法进行下去。用于全蒸发的最高温度是蒸发原料中希望选择性地渗透透过膜的组分所必需的温度,但是仍然低于膜被物理地损伤的温度。作为对真空的替代方案,吹扫气体可用于渗透物侧以除去所述产品。在该模式中,渗透物侧将处在大气压力下。
在吹扫吸收方法中,在浓度梯度影响下,原料中的渗透物分子扩散进入膜的薄膜,迁移通过所述薄膜和在渗透物侧上再度出现。吹扫液体流被用在所述膜的渗透物侧以保持浓度梯度推动力。所述吹扫吸收方法描述于美国专利号4,962,271中,其在此引入作为参考。
按照本发明的方法,富含硫的渗透物使用常规脱硫技术进行处理以降低含硫量,所述常规脱硫技术包括但不限于加氢处理、吸附和催化蒸馏。可以用于本发明方法的特定的脱硫方法包括,但是不局限于,Exxon Scanfining,IFP Prime G,CDTECH和Phillips S-Zorb,该方法描述于Tier 2/Sulfur Regulatory Impact Analysis,环境保护局(Environmental Protection Agency),1999年12月,第IV章,49-53,其在此引入作为参考。
借助于本发明的方法,能实现石脑油含硫量的十分明显的降低,在某些情况下,使用本发明的方法可以容易地将硫含量降低90%,而基本上或者显著地保持存在于原料中的最初烯烃水平。通常,存在于总的石脑油产品中的烯烃化合物的总量高于最初原料中烯烃含量的50wt%、优选大约60到大约95wt%、最优选大约80到大约95wt%。
借助于本发明的方法生产的贫硫石脑油可用于汽油池进料,以提供高质量气油和轻烯烃产品。正如本领域技术人员将认识到的,使用本发明的方法在总体上可以获得高经济效益和较高的辛烷值,因为需要混合和进一步加氢处理的总的石脑油原料的部分借助于本发明的方法得到大大降低。此外,因为需要用常规的破坏烯烃的脱硫技术、例如加氢处理进行处理的原料的部分被大大减少,与100%用常规脱硫技术处理的产品相比,总的石脑油产品将具有显著提高的烯烃含量。
为了进一步说明本发明和其优点,给出了以下特定的实施例。所述实施例作为本发明的特定例证说明给出。因此,应该理解,本发明不局限于所述实施例中提出的细节。
实施例和说明书其余部分中的所有份和百分比是重量份和百分比,除非另作说明。
此外,说明书或者权利要求中叙述的数目范围,例如表示具体性能、测定单位、条件、物理状态或者百分比的范围,在此作为参考或者以其他方式明确地用以表示属于此范围的任何数量,包括所列范围内的任何数目的子集。
实施例将膜试样装在用于全蒸发测试的试样夹上。将从炼油厂获得的石脑油的原料溶液或者在实验室中混合的模型溶液泵抽通过膜表面。所述设备设计成使得原料溶液可以被加热和在压力下、最高大约5巴下放置。将真空泵连接到冷阱,然后连接到所述膜的渗透物侧。该泵在渗透物侧上产生低于20mmHg的真空。该渗透物在冷阱中冷凝和随后用气相色谱法分析。这些实验在低分级分割(stage cut)下进行,以便作为渗透物收集的低于原料的1%。浓缩系数(EF)基于渗透物中的含硫量除以原料中的含硫量来计算。
实施例1将来自Sulzer Chem Tech,瑞士的商品全蒸发膜(PERVAP1060),其带有聚硅氧烷分离层,用5组分模型原料(表1)测试。该膜显示相当可观的渗透速率和对于噻吩为2.35的浓缩系数。在较高的温度下,使用石脑油进料,硫醇(烷基S)具有2.37的浓缩系数。
相同的膜还用炼油厂石脑油物流(表2)进行测试。在该石脑油样品的较重端的化合物具有比工作温度高的沸点,导致膜对于那些组分具有较低的渗透速率。提高温度给出较高的渗透速率。
对比表1和2的原料溶液显示,具有较高和较低噻吩含量的溶液均可以在膜渗透物中增浓。
表1使用模型原料的全蒸发实验

表2使用炼油厂石脑油的全蒸发实验

实施例2按照美国专利5,254,165的方法使用聚酰亚胺膜和进行全蒸发测试。将含26%Matrimid 5218聚酰亚胺、5%马来酸、20%丙酮和49%N-甲基吡咯烷酮的涂料溶液以4 ft/min使用7密耳刀片间隙在非织造聚酯织物上流延。在大约30秒之后,将涂层织物在水中在22℃下骤冷形成膜结构。将该膜用水洗涤以除去残留溶剂,然后通过在丙酮中浸渍进行溶剂交换,然后浸渍在润滑油/丙酮/甲苯等量混合物浴中。将该膜空气干燥以得到用调节剂充填的不对称膜。
为了全蒸发测试,将该膜用原料溶液漂洗,然后装配在溶剂润湿的吸收池架中。5-组分模型原料的结果示于表3。令人惊奇地,全蒸发性能在较高的温度下在通量和选择性两个方面得到改进,表示工艺条件可以有利地影响膜性能。该膜对于噻吩显示1.68的浓缩系数。
表3使用模型原料的全蒸发实验

实施例3按照美国专利申请序列号09/126,251使用另一种聚酰亚胺膜并进行全蒸发测试。将含20%Lenzing P84、69%对二氧六环和11%二甲基甲酰胺的涂料溶液以4 ft/min使用7密耳刀片间隙在非织造聚酯织物上流延。在大约3秒之后,将该涂层织物在水中在20℃下骤冷以形成膜结构。将该膜用水洗涤以除去残留溶剂,通过浸渍在2-丁酮中交换溶剂,然后浸渍在润滑油/2-丁酮/甲苯等量混合物浴中。将该膜空气干燥以得到用调节剂充填的不对称膜。
为了全蒸发测试,将该膜用原料溶液漂洗,然后装配在溶剂润湿的吸收池架中。使用石脑油的结果示于表4中。该膜对于噻吩显示4.69的浓缩系数。硫醇(烷基S)具有3.45的浓缩系数。在99%的保留物回收率下,保留物中烯烃回收率为98.6%。
表4使用炼油厂石脑油的全蒸发实验

因为大量的烯烃级分不通过膜渗透,而是保留在保留物中,因此可以被送到汽油池的石脑油的辛烷值得到提高。
实施例4通过在微孔性的载体之上旋涂Matrimid 5218形成聚酰亚胺复合膜。将Matrimid在二甲基甲酰胺中的20%溶液在0.45微米孔径尼龙膜盘(Millipore公司,Bedford,MA;Cat.#HNWP04700)之上以2000rpm旋涂10秒,然后在4000rpm旋涂10秒。然后将该膜空气干燥。该膜直接用石脑油原料(表5)测试,对于噻吩显示2.68的浓缩系数。硫醇(烷基S)具有1.41的浓缩系数。在99%的保留物回收率下,保留物中烯烃回收率为99.1%。
表5使用炼油厂石脑油的全蒸发实验

实施例5按照美国专利4,921,611的方法通过涂覆多孔基材形成聚脲/聚氨酯(PUU)复合膜。向0.7866g甲苯二异氰酸酯封端的聚己二酸亚乙基酯(Aldrich Chemical Company,Milwaukee,WI;Cat.#43,351-9)在9.09g对二氧六环中的溶液加入0.1183g的4-4’亚甲基双苯胺(Aldrich;#13,245-4)溶于3.00g对二氧六环的溶液中。当所述溶液开始凝胶化时,将其用3.6密耳的刀片间隙涂覆在0.2微米孔径的微孔性的聚四氟乙烯(PTFE)膜(W.L.Gore,Elkton,MD)之上。溶剂蒸发之后得到连续膜。然后在100℃烘箱中加热该复合膜一个小时。通过扫描电子显微术测定,最后的复合膜结构具有3微米厚PUU涂层。该膜直接用石脑油(表6)测试。该膜显示对于噻吩具有7.53的浓缩系数和对于硫醇具有3.15的浓缩系数。
表6使用炼油厂石脑油的全蒸发实验

实施例6如实施例5中的描述形成聚脲/聚氨酯(PUU)复合膜,但是用N,N-二甲基甲酰胺(DMF)代替对二氧六环。向0.4846g的甲苯二异氰酸酯封端的聚己二酸亚乙基酯(Aldrich Chemical Company,Milwaukee,WI;Cat.#43,351-9)在3.29gDMF中的溶液中加入0.0749g的4-4’-亚甲基双苯胺(Aldrich;#13,245-4)溶于0.66gDMF中的溶液。当该溶液开始凝胶化时,将其用3.6密耳的刀片间隙涂覆在0.2微米孔径的微孔性的聚四氟乙烯(PTFE)膜(W.L.Gore,Elkton,MD)上。溶剂蒸发之后得到连续膜。然后在94℃烘箱中加热该复合膜两个小时。最后的复合膜结构具有6.1g/m2的PUU涂布量。该膜直接用石脑油(表7)测试。该膜对于噻吩显示9.58的浓缩系数和对于硫醇(烷基S)显示4.15的浓缩系数。在99%的保留物回收率下,保留物中烯烃回收率为99.2%。
表7使用炼油厂石脑油的全蒸发实验

实施例7沸程为50到98℃的FCC轻催化石脑油含300ppm的S化合物。将其以100m3/hr的速率泵入98℃下操作的膜全蒸发系统。
渗透速率为3kg/m2/hr的硫增浓膜被引入含15m2膜的螺旋缠绕组件中。该组件含围绕在中心穿孔金属接收管周围的原料间隔区、膜和渗透物间隔区。粘合剂被用来分离原料和渗透物通道,将材料粘结到接收管上和密封外罩。该组件48英寸长和8英寸直径。将480个这种组件装在耐压机壳中,作为单级系统。在渗透物侧保持真空。以30m3/hr的速率收集冷凝的渗透物,其含高于930ppm的硫化合物。对于S化合物总的浓缩系数是3.1。该渗透物被送到常规加氢处理中,以减少S含量到30ppm,然后送到汽油池。
以70m3/hr从该全蒸发系统产生的保留物含低于30ppm的含硫化合物。该石脑油被送到汽油池。该方法使送到常规加氢处理的石脑油的量减少70%。
权利要求
1.用于降低石脑油烃原料物流中含硫量而保持该原料物流中至少50重量%的烯烃化合物的方法,所述方法包括i)使石脑油原料与膜分离区接触,所述分离区包含具有足够通量和选择性的膜,以分离富含硫的渗透物级分和贫硫的保留物级分,所述膜具有高于1.5的硫浓缩系数,所述石脑油原料包含含硫芳香族烃、含硫非芳香烃和烯烃化合物,所述富含硫的渗透物级分与所述石脑油原料相比富含含硫芳香族烃和含硫非芳香烃;ii)作为产品流回收所述贫硫保留物级分;iii)将富含硫的渗透物级分进行非膜方法处理以降低含硫量;和iv)回收硫含量降低的渗透物产品流。
2.权利要求1的方法,其中所述贫硫保留物级分的含硫量低于100ppm。
3.权利要求2的方法,其中所述贫硫级分的含硫量低于50ppm。
4.权利要求2的方法,其中所述贫硫保留物级分的含硫量低于30ppm。
5.权利要求1的方法,其中所述石脑油原料物流是裂化石脑油。
6.权利要求5的方法,其中所述石脑油是FCC石脑油。
7.权利要求6的方法,其中所述石脑油是FCC轻催化石脑油,其沸程为50℃到105℃。
8.权利要求1的方法,其中所述石脑油是焦化石脑油。
9.权利要求1的方法,其中所述石脑油是直馏的。
10.权利要求1的方法,其中所述贫硫保留物级分包含总原料的至少50wt%。
11.权利要求10的方法,其中所述贫硫保留物级分包含总原料的至少70wt%。
12.权利要求1的方法,其中所述膜分离区在全蒸发条件下操作。
13.权利要求1的方法,其中所述膜分离区在吹扫吸收条件下操作。
14.权利要求1的方法,其中步骤iii)的非膜方法处理是加氢处理。
15.权利要求1的方法,其中步骤iii)的非膜方法处理是吸附处理。
16.权利要求1的方法,其中步骤iii)的非膜方法处理是催化蒸馏。
17.权利要求1的方法,其中所述膜具有高于2的硫浓缩系数。
18.权利要求1的方法,其中所述膜具有2到20的硫浓缩系数。
19.权利要求1的方法,其中所述保留物产品流和所述渗透物产品流中的烯烃化合物的总量为存在于所述原料中的烯烃化合物的50到90wt%。
20.用于降低石脑油烃原料物流中含硫量而基本上保持该原料物流中烯烃化合物产率的方法,所述方法包括i)使石脑油原料与膜分离区接触,所述分离区包含具有足够的通量和选择性的聚酰亚胺膜,以在全蒸发条件下分离富含硫的渗透物级分和贫硫的保留物级分,所述石脑油原料包含含硫芳香族烃、含硫非芳香烃和烯烃化合物,所述富含硫的渗透物级分与所述石脑油原料相比富含含硫芳香族烃和含硫非芳香烃;ii)作为产品流回收所述贫硫保留物级分;iii)将富含硫的渗透物级分进行非膜方法处理以降低含硫量;和iv)回收所述硫含量降低的渗透物产品流,其中存在于保留物产品流和所述渗透物产品流中的烯烃化合物的总量为存在于所述原料中的烯烃化合物的至少50wt%。
21.权利要求20的方法,其中所述贫硫保留物级分的含硫量低于100ppm。
22.权利要求21的方法,其中所述贫硫级分的含硫量低于50ppm。
23.权利要求21的方法,其中所述贫硫保留物级分的含硫量低于30ppm。
24.权利要求20的方法,其中所述石脑油原料物流是裂化石脑油。
25.权利要求24的方法,其中所述石脑油是FCC石脑油。
26.权利要求25的方法,其中所述石脑油是沸程为50℃到105℃的FCC轻催化石脑油。
27.权利要求20的方法,其中所述石脑油是焦化石脑油。
28.权利要求20的方法,其中所述石脑油是直馏的。
29.权利要求20的方法,其中所述贫硫保留物级分包含总原料的至少50wt%。
30.权利要求29的方法,其中所述贫硫保留物级分包含总原料的至少70wt%。
31.权利要求20的方法,其中步骤iii)的非膜方法处理是加氢处理。
32.权利要求20的方法,其中步骤iii)的非膜方法处理是吸附处理。
33.权利要求20的方法,其中步骤iii)的非膜方法处理是催化蒸馏处理。
34.权利要求20的方法,其中所述贫硫保留物级分包含存在于所述初始原料中的烯烃化合物的50到90wt%。
35.用于降低石脑油烃原料物流中含硫量而基本上保持该原料物流中烯烃化合物产率的方法,所述方法包括i)使石脑油原料与膜分离区接触,所述分离区包含具有足够的通量和选择性的聚硅氧烷膜,以在全蒸发条件下分离富含硫的渗透物级分和贫硫的保留物级分,所述石脑油原料包含含硫芳香族烃、含硫非芳香烃和烯烃化合物,所述富含硫的渗透物级分与所述石脑油原料相比富含含硫芳香族烃和含硫非芳香烃;ii)作为产品流回收所述贫硫保留物级分;iii)将富含硫的渗透物级分进行非膜方法处理以降低含硫量;和iv)回收所述硫含量降低的渗透物产品流,其中存在于保留物产品流和所述渗透物产品流中的烯烃化合物的总量为存在于所述原料中的烯烃化合物的至少50wt%。
36.权利要求35的方法,其中所述贫硫保留物级分的含硫量低于100ppm。
37.权利要求36的方法,其中所述贫硫级分的含硫量低于50ppm。
38.权利要求37的方法,其中所述贫硫保留物级分的含硫量低于30ppm。
39.权利要求35的方法,其中所述石脑油原料物流是裂化石脑油。
40.权利要求39的方法,其中所述石脑油是FCC石脑油。
41.权利要求40的方法,其中所述石脑油是沸程为50℃到105℃的FCC轻催化石脑油。
42.权利要求35的方法,其中所述石脑油是焦化石脑油。
43.权利要求35的方法,其中所述石脑油是直馏的。
44.权利要求35的方法,其中所述贫硫保留物级分包含总原料的至少50wt%。
45.权利要求44的方法,其中所述贫硫保留物级分包含总原料的至少70wt%。
46.权利要求35的方法,其中步骤iii)的非膜方法处理是加氢处理。
47.权利要求35的方法,其中步骤iii)的非膜方法处理是吸附处理。
48.权利要求35的方法,其中步骤iii)的非膜方法处理是催化蒸馏。
49.权利要求35的方法,其中所述贫硫保留物级分包含存在于所述初始原料中的烯烃化合物的50到90wt%。
50.权利要求1的方法,其进一步包括混合所述贫硫保留物产品流和所述硫含量降低的渗透物产品流。
51.权利要求20的方法,其进一步包括混合所述贫硫保留物产品流和所述硫含量降低的渗透物产品流。
52.权利要求35的方法,其进一步包括混合所述贫硫保留物产品流和所述硫含量降低的渗透物产品流。
全文摘要
公开了从石脑油原料、特别是FCC轻催化石脑油中去除含硫物质、而不可观地损失烯烃产率的膜方法。该方法包括将石脑油原料流与具有足够的通量和选择性的膜接触,以将贫硫保留物级分从富硫渗透物级分分离,该方法优选在全蒸发条件下进行。贫硫保留物级分可直接用于汽油池中。富硫渗透物级分富含含硫芳香族和非芳香族烃,并用常规脱硫技术、例如加氢处理进一步处理,以降低含硫量。本发明方法提供了含硫量降低的和烯烃化合物含量高的高质量石脑油产品。
文档编号C10G53/08GK1743424SQ200510088270
公开日2006年3月8日 申请日期2002年2月13日 优先权日2001年2月16日
发明者L·S·怀特, R·F·沃尔姆斯贝歇尔, M·勒斯曼 申请人:格雷斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1