专利名称:具有用于改善润滑性的生物含氧化合物的链烷属生物衍生的蒸馏物燃料及其制备方法
技术领域:
本发明涉及包含用于改善润滑性的生物含氧化合物的生物衍生的燃料和制备这
样的燃料的方法(工艺),特别是其中这类方法包括使谷物油衍生的甘油三酸酯和脂肪酸 经受部分或不完全加氢脱氧并可选地随后进行催化异构化,且其中这样的加氢脱氧保留足 够的含氧化合物来赋予所产生的生物衍生的燃料改善的润滑性。
背景技术:
以石油资源的当前消耗率,人们期望有替代燃料源。来自生物资源的蒸馏物燃料 的生产是一种可取的选择,因为它最大限度地减少了温室气体(例如二氧化碳)的生成。参 见《新科学家》2006年9月23日第36-41页的皮尔斯的《燃料财富》。 许多由生物资源制备的蒸馏物燃料是以甘油三酸酯(具有高粘度的问题)或由甘 油三酸酯衍生的脂肪酸(羧酸)甲酯的形式。这些燃料是高度含氧的,并且与传统燃料有很 大不同。例如,它们不能用作喷气燃料。例如参见2006年《化学评论》第106巻第4044-4098 页的休伯等人的《从生物质合成运输燃料化学、催化剂与工程》。 希望从这些生物资源来制备与常规燃料(主要是烃)类似的燃料。 一种办法,如 在美国专利申请序列号20040230085中所描述的,是利用加氢脱氧和异构化相结合来将含 氧化合物转换成链烷烃。这产生了含足量的异链烷烃以达到寒冷气候规格的链烷属产物。
不幸的是,已知异链烷属的蒸馏物燃料的润滑性能差。例如参见维尔在1970年 《SAE杂志)》第78巻第4期第42-43页的《稀释恢复润滑》。可以添加传统的润滑添加剂 来改善润滑性,但这些添加剂是昂贵的,且从环境和/或工艺的角度来看,通常希望具有尽 可能多的衍生自生物资源的组分。 鉴于上述情况,希望有一种有效且更具成本效益的生产具有足够润滑性的由甘油
三酸酯衍生的生物燃料的方法。 发明简述 致力于解决直接使用生物衍生的油(包括其酯交换产物)作为燃料的上述问题, 本发明通常涉及调整这些油的方法,以使它们能用作更宽范围的燃料,特别是其中它们符 合当前的运输燃料规格,包括但不限于能量含量、低温性质和润滑性。 在一些实施方案中,本发明是涉及包括如下步骤的方法(a)提供生物燃料前体 材料,其中所述生物燃料前体材料包含甘油三酸酯;(b)对所述生物燃料前体材料中的甘 油三酸酯进行部分加氢脱氧,以产生包含线性烃物种和残余的含氧化合物的生物燃料中间 体;(c)使用异构化催化剂来催化异构化所述生物燃料中间体,以产生包含异链烷烃的生 物燃料;其中进行上述步骤,以使得所产生的生物燃料包含数量大于或等于90wt^的链 烷烃;数量大于或等于所述链烷烃的50%的异链烷烃;和残余的含氧化合物形式的氧,其 数量在无水且无空气基础上为大于或等于0. 001wt% ;且其中所产生的生物燃料在D86的 90%点和10%点之间有300 。F或更小的差别。 为了使后面的本发明的详细说明可以得到更好的理解,上面相当广泛地概述了本发明的特征。下面将说明构成了本发明权利要求主题的本发明的其它特征和优势。
发明详述 如上所述,在一些实施方案中,本发明涉及调整生物衍生的油以用作运输燃料和/ 或其它燃料的方法,例如特别是在前者的情况下,以使它们符合当前的运输燃料规格,包括 但不限于能量含量、低温性质和润滑性的要求。因此,在一些实施方案中,本发明通常涉及 通过使含甘油三酸酯的生物质承受温和加氢处理并任选地进行催化异构化而从生物质制 备燃料的方法。含甘油三酸酯的生物质的温和加氢处理用于对至少一些甘油三酸酯进行部 分加氢脱氧从而在生物燃料产物中保留一些含氧化合物,由此该含氧化合物提供增强的润 滑性。
1.定义 这里定义的术语"生物燃料"是指生物衍生的燃料,即来自于生物来源的生物燃料 前体。这个术语长期被普遍接受为不包括化石燃料。用作运输燃料的生物燃料的例子包括 生物柴油和乙醇。用于生产生物燃料的源头包括植物和动物物质。请注意,生物燃料可以 与其它燃料调和以产生混合燃料。 这里定义的术语"生物燃料前体"是指用于生产生物燃料的生物质源头。 这里定义的术语"生物燃料中间体"是指在作为燃料或特定类型的燃料使用之前
需要一些额外程度的升级的已加工的物种。 这里定义的"甘油三酸酯"是指为具有下面的分子结构的分子物种的甘油(丙三
醇)的三酯
其中,x、 y和z可以是相同或不同的,其中由x、 y和z定义的一个或多个支链可以 有一个或多个不饱和区(即碳碳双键)。例如,为生产柴油燃料,通常是希望使x、y和/或 z中的至少一个等于4至10,这样,一经加氢脱氧,它们就产生C9至C21范围内的链烷烃。
这里定义的"加氢脱氧"是指一类涉及在存在氢气的情况下对含氧物种进行热和/ 或催化脱氧的加氢处理。类似地,"部分加氢脱氧"指的是对存在于经历加氢脱氧的大量材 料中的含氧物种中的至少一些进行不完全脱氧。 这里定义的"异构化"是指对线性烃链中的键进行结构重排以生成支化的烃异构 体。这种异构化一般用催化方法进行。 这里定义的"喷气燃料"是指满足至少一种如下规格的当前版本的、适用于在飞机的涡轮发动机中使用或适用于其它用途的物质ASTMD 1655-99 ;DEF STAN 91-91/3 (DERD 2494),涡轮机燃料,航空煤油型,喷气燃料A-l,北约代号F-35 ;国际航空运输协会 (IATA)"航空涡轮机燃料规格指导材料",第4版,2000年3月出版;和美国军用喷气式燃料 规格MIL-DTL-5624(适用于JP-4和JP-5)和MIL-DTL-83133 (适用于JP-8)。
这里定义的"柴油燃料"是一种适用于在柴油发动机中使用并符合如下至少一种 规格的当前版本的物质ASTM D 975-"柴油机燃料油标准规范";欧洲级CEN 90 ;日本燃料 标准JIS K 2204 ;美国国家度量衡会议(NC丽)1997年优质柴油燃料规范;和美国发动机制 备商协会推荐的优质柴油燃料规范(FQP-IA)。
2.标准 ASTM D86-用于石油产物常压蒸馏的标准测试方法(ASTM国际组织)。
ASTM D6468-用于蒸馏物燃料高温稳定性的标准试验方法。
3.方法 在一些实施方案中,本发明涉及包括如下步骤的方法(步骤1)提供生物燃料前 体材料,其中生物燃料前体材料包含甘油三酸酯;(步骤2)对所述生物燃料前体材料中的 甘油三酸酯进行部分加氢脱氧,以产生包含线性烃物种和残余的含氧化合物的生物燃料中 间体;和(步骤3)使用异构化催化剂来催化异构化所述生物燃料中间体,以产生包含异 链烷烃的生物燃料;其中进行上述步骤,以使得所产生的生物燃料包含数量大于或等于 90wt^的链烷烃;数量大于或等于所述链烷烃的50%的异链烷烃;和残余的含氧化合物形 式的氧,其数量在无水且无空气基础上为大于或等于0. 001wt% ;且其中所产生的生物燃料 在ASTM D86的90%点和10%点之间通常有300 。F或更小、一般为250 。F或更小,更一般为 150。F或更小的差别。 在一些实施方案中,生物燃料前体材料一般包含至少25wt^的甘油三酸酯,典型 地包含至少50wt^的甘油三酸酯。在这些或其它的实施方案中,生物燃料前体材料选自由 谷物油(植物油)、微藻类、动物脂肪及它们的组合组成的组。 在一些实施方案中,部分加氢脱氧的步骤包括对含甘油三酸酯的生物燃料前体材 料进行温和或中度的加氢处理。在一些实施方案中,这一步骤涉及催化途径。在一些这样的 实施方案中,催化途径包括负载型金属催化剂,该负载型金属催化剂包含金属或金属合金, 例如但不限于钯、钼、镍、钼、钴及它们的组合。 一般来说,部分-加氢脱氧对至少一些存在 于生物燃料前体中的甘油三酸酯进行不完全脱氧,从而提供至少一些残余的含氧化合物。 这些残余的含氧化合物包括但不限于甘油、羧酸、醚、酯、醇及它们的组合。参见例如美国专 利申请序列号20040230085。 在一些实施方案中,所述生物燃料中间体包含具有5和20个之间的碳原子的线性 烃物种,链的长度一般与存在于生物燃料前体材料中的甘油三酸酯和/或脂肪酸物种上的 链的长度有关。 在一些实施方案中,在生物燃料产物中存在支化的烃物种起到调整所述生物燃料 的性质(例如冷候性质)的作用。 在一些实施方案中,所述生物燃料包含数量大于或等于95wt^的链烷烃。在这些 或其它的实施方案中,异链烷烃可占生物燃料中总链烷烃的70wt%。在这些或其它的实施 方案中,残余的含氧化合物占无水且无空气基的所述生物燃料的不多于lwt^,更一般地,不多于0. lwt%。 在一些实施方案中,在上流式反应器构造中进行上述对甘油三酸酯进行部分加氢 脱氧的步骤,其中,上流式反应器构造可以允许在部分加氢脱氧期间生成的不想要的碳质 沉积物被连续地清扫出反应器。在一些实施方案中,上流式反应器在使得至少一部分甘油 三酸酯保持为液相的压力下操作。在这些或其它的实施方案中,上流式反应器在低于甘油 三酸酯的分解点的温度下操作,其中部分加氢脱氧所需要的能量是通过进料到反应器中的 加热了的氢气来提供的。 因为生物甘油三酸酯(尤其是来自植物的那些)往往是不饱和的,故在一些实施 方案中,上述对甘油三酸酯进行部分加氢脱氧的步骤应使至少一部分烯烃饱和而不去除所 有的含氧化合物。请注意,烯烃可导致产物不稳定,在一些实施方案中,最终生物燃料产物 应具有令人满意的稳定性,该稳定性由根据ASTM D6468在15(TC下测量90分钟时所测量的 大于65%的反射率来定义。参见例如奥莱尔等人的美国专利号7179311和巴沙等人的美国 专利号6776897。 请注意,这样的上述生物燃料中间体可自己本身作为燃料利用,但异构化提供了 更宽范围的生物燃料产物,从而使这一方法更具普遍性和灵活性。 在一些上述方法的实施方案中,催化异构化生物燃料中间体的步骤包括异构化催 化剂的使用。合适的异构化催化剂可以包括但不限于载体上的铂或钯,所述载体例如但不 限于SAP0-ll、SM-3、SSZ-32、ZSM-23、ZSM-22及类似这样的载体。在一些或其它的实施方案 中,催化异构化脱羧的生物燃料中间体的步骤包括使用负载在酸性载体材料上的铂或钯催 化剂,所述酸性载体材料选自由13或Y型沸石、分子筛、二氧化硅、氧化铝、二氧化硅-氧化 铝及它们的组合组成的组。在一些这样的实施方案中,催化异构化是在约500 。F和约750 °F 之间的温度下进行的。操作压力通常是200-2000psig,更典型地是200-1000psig。氢气流 量一般是500-5000SCF/桶。关于其它合适的异构化催化剂,请参见邹恩斯等人的美国专利 号5300210、米勒的美国专利号5158665和米勒的美国专利号4859312。
关于如上所述的催化异构化步骤,在一些实施方案中,本文所述的方法可通过使 生物燃料中间体与固定的催化剂固定床接触、与固定的流化床接触或与输送床接触来实 施。在一个目前设想的实施方案中,采用滴流床操作,其中, 一般在存在氢气的情况下,使得 这样的原料滴流穿过静止的固定床。有关这类催化剂的操作说明,请参见米勒等人的美国 专利号6204426和6723889。 在上述方法的实施方案中,部分加氢脱羧步骤和催化异构化步骤通常先后进行。 在一些实施方案中,可以采用同时和先后步骤的组合,这将涉及两个步骤在时间上部分而 不是完全重叠。 在一些实施方案中,上面说明的方法还包括在处理期间监测氧含量的步骤以便能 调节处理参数以便如愿在最终产物中产生期望的氧含量。监测该氧含量的合适方式包括但 不限于气相色谱/原子发射检测(GC/AED)及类似这样的技术。例如参见瑞尼斯等人的美 国专利号6759438。 在一些实施方案中,所述生物燃料与其它燃料或生物燃料调和。在一些或其它的 实施方案中,生物燃料中间体在进行催化异构化之前与其它物种调和。在一些或其它的实 施方案中,所述生物燃料中间体与所述生物燃料调和以生成混合产物。这一后者的实施方案在调节最终产物中的氧含量方面提供了额外的灵活性。 在一些典型的实施方案中,产物生物燃料是运输燃料,例如但不限于柴油、 JP_8(美国军用标准MIL-DTL-83133)、 JP-5(美国军用标准MIL-PRF-56245)、喷气燃料 A(ASTM标准D1655)等。
4.产物 除了上述方法之外,本发明还涉及由这种方法生产的新型产物。因此,在一些实施 方案中,本发明涉及生物燃料,该生物燃料包含数量大于或等于90wt^的链烷烃;数量大 于或等于链烷烃的50%的异链烷烃;和残余的含氧化合物形式的氧,其数量在无水且无空 气基础上为大于或等于0. 001wt% ;其中所述生物燃料在D86的90%点和10%点之间具有 300下或更小的差别;且其中所述生物燃料是由包括如下步骤的方法制备的(a)提供生物 燃料前体材料,其中该生物燃料前体材料包含甘油三酸酯;(b)对所述生物燃料前体材料 中的甘油三酸脂进行部分加氢脱氧,以产生包含线性烃物种和残余的含氧化合物的生物燃 料中间体;和(c)使用异构化催化剂来催化异构化所述生物燃料中间体,以产生包含异链 烷烃的生物燃料。在一些这样的实施方案中,生物燃料产物具有根据ASTM D6468在15(TC 下测量90分钟时测得的大于65%的反射率。
5.变型 除上面所述的各种实施方案外,值得提醒的是,可以通过生物燃料前体材料本身 来引入重大的可变性,特别是在其中含有的甘油三酸酯/羧酸物种的含量、类型和范围方 面。这样的生物燃料前体材料可以直接从生物质源头(例如植物油)来提取,或者它们也 可以通过一个或多个额外的处理步骤从生物质源头来产生。此外,特别是在废油及类似物 的情况下, 一些生物燃料前体材料可进一步包含非生物源的组分。
6.优势 如上所述,在一些实施方案中,本发明提供了使用含甘油三酸酯的生物燃料前体 得到各种运输燃料或其它燃料的有效途径。这在很大程度上是因为为润滑而存在的含氧化 合物不是后来添加的,而是在生物燃料前体材料处理过程中原位产生或保留在原处的。
已经表明,当含氧的润滑添加剂与添加它们的基于链烷烃的燃料包含相同数目的 碳时,它们的浓度可以最小化。参见例如阿斯克威思等人在1966年《皇家学会论文集》第 A291巻第500-519页的《薄膜和边界润滑中的添加剂的链长度与润滑剂的关系》。通过从 用于得到所述燃料的甘油三酸酯原位生成含氧化合物,含氧化合物和链烷烃之间的碳数目 的变化几乎可以消除。
7.总结 总之,本发明通常涉及从包含甘油三酸酯物种的生物质制备燃料的方法,其中使
生物质经受部分加氢脱氧以及任选地进行催化异构。甘油三酸酯物种的部分加氢脱氧产生 了保留一些含氧化合物以增强润滑性的燃料,并且这样的含氧化合物的原位产生和/或保
留,可以比现有工艺提供更高的效率和更好的控制。 这里引用的所有专利和出版物都通过引用并入本文,其引用程度为不与本文相抵 触。可以理解,上面说明的实施方案的某些上面说明的结构、功能和操作并不是实施本发明 所必需的,且将它们包含在说明书内,只是简单地为了示例性的一个或多个实施方案的完 整性。此外,应该理解,在上述引用的专利和出版物中列举的特定结构、功能和操作可与本
9发明一起实施,但它们对本发明的实施并不是必要的。因此,应该认识到,可以以不同于具 体说明的方式来实施本发明而不实际脱离由所附权利要求书定义的本发明的精神和范围。
权利要求
一种方法,其包括如下步骤(a)提供生物燃料前体材料,其中所述生物燃料前体材料包含甘油三酸酯;(b)对所述生物燃料前体材料中的甘油三酸酯进行部分加氢脱氧,以产生包含线性烃物种和残余的含氧化合物的生物燃料中间体;和(c)使用异构化催化剂来催化异构化至少一部分所述生物燃料中间体,以产生包含异链烷烃的生物燃料;其中进行上述步骤,以使得所产生的生物燃料包含数量大于或等于90wt%的链烷烃;数量大于或等于所述链烷烃的50%的异链烷烃;和残余的含氧化合物形式的氧,其数量在无水且无空气基础上为大于或等于0.001wt%;且其中所产生的生物燃料在ASTM D86的90%点和10%点之间有300℉或更小的差别。
2. 权利要求l的方法,其中所述生物燃料前体材料包含至少25wt^的甘油三酸酯。
3. 权利要求l的方法,其中所述生物燃料前体材料包含至少50wt^的甘油三酸酯。
4. 权利要求1的方法,其中所述生物燃料前体材料选自由谷物油、微藻类、动物脂肪及 它们的组合组成的组。
5. 权利要求l的方法,其中所述部分加氢脱氧步骤涉及催化途径。
6. 权利要求5的方法,其中所述催化途径包含负载型金属催化剂,该负载型金属催化 剂包含选自由钯、钼、镍、钼、钴和它们的组合组成的组中的金属或金属合金。
7. 权利要求l的方法,其中所述部分加氢脱氧步骤对至少一些甘油三酸酯进行不完全 脱氧,从而提供至少一些残余的含氧化合物。
8. 权利要求1的方法,其中所述生物燃料中间体包含残余的含氧化合物,所述残余的 含氧化合物选自由甘油、羧酸、醚、酯、醇和它们的组合组成的组。
9. 权利要求l的方法,其中所述生物燃料中间体包含具有5和20个之间的碳原子的线 性烃物种。
10. 权利要求l的方法,其中所述催化异构化步骤涉及异构化催化剂,所述异构化催化 剂包含选自由铂、钯和它们的组合组成的组中的金属。
11. 权利要求l的方法,其中所述催化异构化步骤异构化至少一些线性烃物种以产生 支化的烃物种。
12. 权利要求ll的方法,其中所述支化的烃物种的存在起调整燃料性能的作用。
13. 权利要求l的方法,其中所述生物燃料包含数量大于或等于95wt^的链烷烃。
14. 权利要求l的方法,其中所述异链烷烃占所述生物燃料中的总链烷烃的70wt^。
15. 权利要求1的方法,其中所述残余的含氧化合物占无水且无空气基的生物燃料的 不大于lwt%。
16. 权利要求l的方法,其中所述残余的含氧化合物占无水且无空气基的生物燃料的 不大于0. lwt%。
17. 权利要求1的方法,其中所产生的生物燃料在D86的90%点和10%点之间有250 °F 或更小的差别。
18. 权利要求1的方法,其中所产生的生物燃料在D86的90^点和10^点之间有15(TF 或更小的差别。
19. 权利要求1的方法,其中所产生的生物燃料是运输燃料。
20. 权利要求1的方法,其中所述运输燃料选自由JP-8、柴油、JP-5、喷气燃料A和它们 的组合组成的组。
21. 权利要求1的方法,其中对甘油三酸酯进行部分加氢脱氧的步骤是在上流式反应 器构造中进行的。
22. 权利要求21的方法,其中所述上流式反应器构造允许在部分加氢脱氧期间生成的 不想要的碳质沉积物被连续地清扫出反应器。
23. 权利要求21的方法,其中所述上流式反应器在使至少一部分甘油三酸酯保持为液 相的压力下操作。
24. 权利要求21的方法,其中所述上流式反应器在低于甘油三酸酯的分解点的温度 下操作,且其中部分加氢脱氧所需要的能量是通过进料到反应器中的加热了的氢气来提供 的。
25. 权利要求1的方法,其中当按照ASTM D6468在15(TC下测量90分钟时所述生物燃 料具有大于65%的反射率。
26. 权利要求l的方法,还包括在进行本方法的同时分析氧含量的步骤。
27. 权利要求26的方法,其中所述分析步骤是连续的。
28. 权利要求26的方法,其中所述分析步骤是不连续的。
29. 权利要求26的方法,其中所述分析步骤在生产具有特定氧含量的生物燃料时对参 数的调节进行指导。
30. 权利要求l的方法,其中所述生物燃料与选自由其它生物燃料、生物燃料中间体、 其它燃料、其它含氧化合物和它们的组合组成的组中的其它物种调和。
31. 生物燃料,其包含 数量大于或等于90wt^的链烷烃; 数量大于或等于链烷烃的50%的异链烷烃;禾口残余的含氧化合物形式的氧,其数量在无水且无空气基础上为大于或等于0. 001wt% ; 其中所述生物燃料在ASTM D86的90%点和10%点之间具有300 。F或更小的差别;且其中所述生物燃料是由包括如下步骤的方法制备的(a) 提供生物燃料前体材料,其中该生物燃料前体材料包含甘油三酸酯;(b) 对所述生物燃料前体材料中的甘油三酸酯进行部分加氢脱氧,以产生包含线性烃 物种和残余的含氧化合物的生物燃料中间体;禾口(c) 使用异构化催化剂来催化异构化至少一部分所述生物燃料中间体,以产生包含异 链烷烃的生物燃料。
32. 权利要求31的生物燃料,其中所述生物燃料包含数量大于或等于95wt^的链烷烃。
33. 权利要求31的生物燃料,其中所述异链烷烃占所述生物燃料的总链烷烃的 70wt%。
34. 权利要求31的生物燃料,其中所述残余的含氧化合物占无水且无空气基的生物燃 料的lwt%。
35. 权利要求31的生物燃料,其中所述残余的含氧化合物占无水且无空气基的生物燃 料的0. lwt%。
36. 权利要求31的生物燃料,其中所述生物燃料在D86的90%点和10%点之间有 250 。F或更小的差别。
37. 权利要求31的生物燃料,其中所述生物燃料在D86的90%点和10%点之间有 150。F或更小的差别。
38. 权利要求31的生物燃料,其中所述生物燃料是运输燃料。
39. 权利要求38的生物燃料,其中所述运输燃料选自由JP-8、柴油、JP-5、喷气燃料A 和它们的组合组成的组。
40. 权利要求31的生物燃料,其中当按照ASTM D6468在15(TC下测量90分钟时,所述 生物燃料具有大于65%的反射率。
全文摘要
本发明通常涉及从包含甘油三酸酯物种的生物质生产燃料的方法,使生物质经受部分加氢脱氧和(任选的)催化异构化。甘油三酸酯物种的部分加氢脱氧产生了保留一些的含氧化合物以增强润滑性的燃料。
文档编号C10G65/04GK101784639SQ200880103972
公开日2010年7月21日 申请日期2008年7月19日 优先权日2007年7月26日
发明者D·J·奥里尔 申请人:雪佛龙美国公司