专利名称:操作用于生产铝的一个或多个电解槽的方法
技术领域:
本发明涉及以意味着污染物的排出减少的方式来制造铝的改进方法,还涉及在氧化铝的铝电解期间作为副产品而电化学产生的纯氧气的使用,所述氧化铝的铝电解是通过尺寸稳定的阳极技术在熔融氟化物电解质中进行的。氧在动力装置中被用作用于天然气或其它基于碳的燃料的燃烧原料,只产生纯CO2和水蒸气作为废气。本发明特别涉及将铝电解中的尺寸稳定阳极技术与在无污染动力装置中利用的用于氧传输的陶瓷隔膜技术组合在一起的协作。
背景技术:
传统上,在已经一百多年的老Hall-Heroult工艺中,铝是通过电解溶解在基于冰晶石的熔融盐浴中的氧化铝来生产的。在该工艺中使用碳电极,其中,碳阳极参与槽反应,使得根据下面的等式同时产生CO2和铝
(1)如今的槽的碳阳极在该工艺中会被消耗,每产生1吨铝的净阳极消耗为约500到550Kg的碳。碳阳极的使用导致产生污染性的温室气体,例如CO和CO2以及所谓的PFC气体(CF4,C2F6等)。
Edwards,L.和Kvande,H“Inert anodes and other technologychanges in the aluminium industry-The benefits Challenges,andimpact on present technology”,JOM,28-33,May,2001,已经估计了当今使用碳阳极的一般铝电解槽的各种生产工艺的具体CO2-当量排放。不计发电过程以及铝土矿采矿和氧化铝生产的CO2排放,Edwards和Kvande的数据显示每生产1吨铝的世界平均排放量相当于约3.7公吨CO2-当量。如今建立的使用Prebake技术的新的现代铝熔炉具有在230到260kt铝范围之间的年产量。对于这种熔炉,每生产1吨铝来自阳极生产和电解的CO2和PFC的排放通常为约1.8公吨CO2-当量,每年总计约410到470kt CO2-当量。BAT电解数据与世界平均数据之间的所显示出来的差别当然是由于在排放控制较差的老厂(例如SΦderberg厂)中生产的高吨位铝。
US 6,117,302公开了用于电解熔炼氧化铝来生产铝金属的方法和装置,其中,固体氧化物燃料电池和电解熔炼槽以集成化的方式被组合。在一个实施例中,在所述熔炼槽的一个惰性阳极处析出的氧气能够流到燃料电池的阴极侧,在该处其被还原。在一个方面中,用于生产精炼铝的氧化铝矿石精炼设备位于固体氧化物燃料电池附近。这种组合的一个优势是,在装置一个部分中产生的热可以在装置的另一个部分被利用。
由于碳阳极的消耗以及电解工艺会致使温室气体如CO2和氟-碳化合物的排放,所以用有效的惰性材料来替代碳阳极在成本和环境两方面来说都将是非常有利的。在铝氧化物的电解沉积中使用尺寸稳定的析氧阳极(即惰性阳极),总反应将是
(2)这意味着250kt铝的初级生产设备将放出约450kt的氧。所产生的氧气可以收集在废气系统中,并且通过去除灰尘、电解质颗粒和氟化物蒸气而被净化。所产生的氧然后具有商业价值,并且可以被压缩并作为液/加压氧在已有的市场上出售。来自250kt铝设备的450kt氧的经济价值将在1000到1500万美元的数量级上。但是,所提到的氧的体积对于气瓶市场来说似乎太大,只有大规模的生产单位才能使用这么大量的氧。这可能要求在铝设备附近有消耗氧的大型生产设备(例如甲醇设备、GTL设备、钢生产设备、动力装置等等)来利用氧。因此,就地利用所产生的并被净化的氧在经济和技术上似乎更可行(即,没有了建造液氧生产设备而带来的成本)。
铝生产设备将需要很大量的电能。如果假设电流效率为96%,那么250kt铝的初级生产设备将需要约340个槽,每一个槽的槽电压为4.2V,安培数为260kA。这样,就需要约370到400MW的动力装置来向铝设备供电。
本发明的主要目的是实现制造铝的改进工艺。
本发明的另一个目的是以意味着污染物的排放减少的方式来制造铝。
此外,本发明的另一个目的是实现利用在所述铝工艺中产生的氧的方法,以改善动力工艺的性能,并显著减少或去除来自所述集成化的动力工艺的排放物。
发明人在他们对具有减少的排放的改进铝工艺的研究中遇到的一个问题是,铝工艺需要非常大量的电能。传统的基于天然气的动力工艺将由于这些方法的大量排放CO2和NOx而不能采用。在许多国家中,水力发电或其它不释放CO2的动力工艺无法使用,太贵,或者已经被采用。
此外,能够利用在铝工艺中产生的氧来改进性能并降低已采用的动力装置的成本将是有利的。
此外,因为集成化的铝设备和动力装置两者(在大部分情况下)都需要输入的Al2O3和矿物燃料,并且CO2必须输出到地质层(geological formation)来沉积,所以靠近气体枢纽、港口或沉积区域的位置可能是必要的。
利用可以被使用的或者在动力装置中产生的气体来改进铝工艺的操作也将是有利的。因此,发明人开始寻找可以满足所有这些要求的解决方案。
在用含甲烷的燃料作为燃料的传统动力工艺中,将根据下面的反应产生二氧化碳和水(蒸气)
其它碳氢化合物将根据下面的反应产生CO2和H2O,m和n分别是碳原子数和总的氢原子数。
燃料相对于电能的效率典型地将为基于燃料气体低热值的55%。集成化的基于新惰性阳极的铝设备和基于矿物燃料的动力装置因此每年将释放约120万吨的CO2。
由于在燃烧过程中使用空气作为氧化剂的事实,来自动力装置的废气中的CO2被氮气稀释。从以天然气作为供应燃料的组合燃气涡轮机和蒸汽循环动力装置释放出的废气仅含有例如约4%的CO2。废气还将含有有害的氮的氧化物。由于在氧化剂即空气中存在氮气,所以在燃气涡轮燃烧室中在高温下产生氮的氧化物。
由于NOx和CO2的环境方面,相当大地减少这些成份向大气中的排放是至关重要的。
减少CO2排放的一个方法是提高动力工艺的效率,但是对于实现CO2的显著减少来说,这将是不够的。因此,另一种方法是将CO2从废气流中分离出来,压缩CO2,并将CO2沉积在例如空的油气层(oil andgas reservoirs)中,在蓄水层中,或者使用CO2用于增强油的回收或者用于从深的线圈床(coil bed)中回收甲烷。
为了满足国家的NOx控制要求,可以使用不同的方法,例如燃烧炉改进、应用催化燃烧炉、添加蒸气或者废气中NOx的选择性催化还原(SCR)。在燃烧过程中使用的普通空气含有约78%体积比的氮气。一部分氮在燃烧过程中被氧化成NO、NO2和N2O(称为热NOx)。所形成NOx的至少80%到98%来自所述空气中氮气的氧化。其余来自燃料中氮成份的氧化。降低峰值燃烧温度是减少所形成的NOx量的非常有效的途径。不幸的是,这会由于较差的燃烧或者由于燃气涡轮体系的燃烧室中的温度降低而导致效率的显著下降。SCR(选择性催化还原)是减少NOx的有效方法,但是需要例如氨的还原剂以及安装在燃烧流程下游的昂贵催化剂。如果燃料与纯氧燃烧,也将会大大减少或消除NOx的形成。
可以通过几种分离方法将CO2从通常在近大气压下排放的废气中分离出来,所述分离方法例如化学活性分离方法、物理吸收方法、分子筛吸收、隔膜分离和低温技术。化学吸收,例如通过链烷醇胺的化学吸收,是广为讨论的将CO2从废气中分离出来的方法。但是,这些分离方法需要很重和体积很大的设备,并且将消耗非常大量的在燃烧过程中产生的热。与动力工艺结合应用时,这些分离方法会将功率输出减少10%到15%。这主要是由于废气中CO2的浓度低。
但是,通过使含碳燃料与纯氧而非空气燃烧,是可能增加废气中CO2的浓度的。这样的另一个优点是几乎消除了前面描述的一氧化氮的产生。
用于生产纯氧的商用空气分离方法(例如低温分离或压力摆动吸收(PSA))每产生一吨氧需要250到300KWh。如果这些方法被用于向燃起涡轮循环中的燃烧方法供应氧气,那么这些方法会将燃起涡轮循环的总功率输出降低至少15%。在低温单元中生产氧的费用将大大增加电能的价格,并且可能总计达到电能成本的50%那么多。
因此,尤其有利的一种方法将是直接利用来自铝电解槽的净化氧,作为基于天然气或其它矿物燃料的动力装置的原料,以进一步减少CO2或其它有害化合物从集成化的铝设备和动力装置到大气中的排放。
如上显示的,采用惰性阳极的大规模的铝设备每天将产生约1250吨的氧,这对于100MW的动力装置是足够的。铝设备本身将消耗约370MW的电能。这意味着通过利用来自铝工艺的氧可以产生约25%的功率。这还意味着如果所产生的氧被利用在例如专利申请WO 99/63210描述的基于含氧燃料的动力工艺中,那么试验性地来自燃烧天然气的电力生产的25%的CO2可以被回收用于沉积。氮的氧化物的产生也可以减少相同的数量级。但是,该解决方法需要设计约100MW的非常小的氧燃料厂和一个大的传统动力装置。
为了消除从集成化的铝和基于矿物燃料的动力装置排放出CO2和NOx,每天需要约5000吨的氧。因此,每天需要3270吨的额外氧量。由于在低温或PSA工艺中产生的氧的高成本,这些空气分离技术的应用不是很有吸引力的解决方法。
从欧洲专利申请0658 367-A2中得知了比低温分离方法的能量要求更少的方法。该专利申请描述了与燃起涡轮系统集成的混合传导隔膜的应用,其中,隔膜将氧从被加热的空气流中分离出来。
接近或低于大气压并处于高温的纯氧从混合传导隔膜的渗透侧回收。通过还原高氧分压侧(保留侧)的氧以及将低氧分压侧(渗透侧)的氧离子氧化成氧气,氧分压的差使氧气传输通过隔膜。在隔膜块中,阳离子通过扩散过程传输。同时,电子从渗透侧流回隔膜的供入侧。该方法的缺点是氧在低压下被回收,而在燃烧过程中是在高压下需要氧。所回收氧气流的冷却和再压缩必需应用昂贵的工艺设备。再压缩还将需要机械或电能,这将降低总的设备能量效率。
从挪威专利申请NO-A-972632(98年12月7日公开)中得知了一种更为能量有效的方法。该文献描述了发电和发热方法,其中,燃料与氧化剂燃烧,氧化剂为含有O2/CO2/H2O的气体混合物,氧化剂从混合传导隔膜供应。氧通过吹扫气体从混合传导隔膜的渗透侧获得。吹扫气体是来自在隔膜上游的至少一个燃烧过程的产物或产物的一部分。在该专利申请中,含有主要为CO2和H2O混合物的吹扫气体或者吹扫气体的一部分,还作为燃气涡轮循环中的工作流体。吹扫气体的量与燃气涡轮循环中需要的工作流体量有关,即用于控制燃气涡轮体系中的温度。
在瑞典专利申请SE-A-0002037中,省略了CO2循环压缩机,并且在传统的空气循环燃气涡轮机中产生大部分的功率。在该情况下,天然气在混合传导隔膜的渗透侧燃烧,并产生含有CO2和H2O的气体混合物。在该燃烧过程中产生的热的主要部分被传递到空气侧,以加热来自燃气涡轮压缩机的空气。然后,热空气进入燃气涡轮膨胀器(expander),以产生电能或机械能。所产生的热的CO2/H2O混合物可以被冷却以凝结水。这样,CO2就可以在高压下被回收。或者,CO2/H2O气体可以在膨胀器中被减压,来产生电能或机械能。在这种情况下,CO2将在低压下被回收。
或者,在专利申请SE-A-0002037中还描述了混合传导隔膜或混合传导隔膜的一部分被由只传导氧而不传导电子的陶瓷材料制成的固体氧化物燃料电池替代。然后,可以在从燃气涡轮发电机中产生交流电的同时产生直流电。
通过在动力工艺中应用氧,燃烧过程的废气将具有高浓度的CO2和水,并且避免了氮的氧化物的产生。如果通过凝结去除水,那么干燥的CO2将被回收并且沉积到地质层中。
在已经评价了用于低排放物铝工艺的多种发电途径后,发明人决定进一步研究所述铝工艺与基于混合传导隔膜的动力工艺,或者与作为替换的基于包括固体氧化物燃料电池的动力工艺的集成化。
一个要求是来自铝设备的氧应该改进低排放动力装置的性能。在瑞典专利申请SE-A-0002037中,在燃烧过程中利用的所有氧通过混合传导隔膜或者通过纯氧传导隔膜分离。如果由隔膜产生的氧的25%被铝工艺中产生的氧替代,那么隔膜总面积最终将减小25%。
但是,发现向基于隔膜的动力工艺中加入氧能够将隔膜面积减小多于25%。使氧通过混合传导隔膜传输的驱动力是保留侧与渗透侧之间的氧分压差。因此,如果从铝工艺中回收的氧被加入到燃烧过程中,那么需要从空气流中提取的氧将更少。假设在两种情况下涡轮机入口温度相同以保持燃气涡轮机效率,那么这意味着在空气侧的平均氧分压将增加。这将会增加通过隔膜的每平方米的氧传输,这将进一步减小所述隔膜的尺寸和成本。
在瑞典专利申请SE-A-0002037中,被压缩的含有热CO2和H2O的废气进入净化气体涡轮机以回收热作为机械能。如果被压缩的热废气与燃料、以及来自铝设备的循环的CO2和氧混合并被进一步燃烧,那么这将增加净化气体涡轮中产生的能量。因为在净化气体涡轮机中产生了更多的能量,所以在主气体涡轮机中需要产生较少的能量,这还将总隔膜面积减少了约25%。因为减少约25%的能量需要被传递到空气流,所以总的热交换器面积也将减少约25%。
如果固体氧化物燃料电池与动力工艺集成化,那么添加到燃料电池中的少于80%的燃料将被转换或燃烧。从铝工艺中回收的氧然后可以用于使未被转换的气体燃烧成CO2和水。来自未转换燃料的燃烧的热可以被用来预热到固体氧化物燃料电池的空气。
另一个要求是在动力工艺中产生的气体应该改进铝工艺的操作。为了去除在铝阳极处产生的氧,应用吹扫气体将是优选的。因为纯氧对大部分材料都很具侵蚀性,所以将氧稀释到一定程度是有利的,以降低危险或者提高设备的寿命。在大部分情况下,纯氧还必须被稀释以用在燃烧过程中,从而控制燃烧温度。从动力装置回收的CO2然后可以在铝工艺中被用作吹扫气体来改进操作,并且在低排放动力工艺的燃烧过程中用作稀释剂。但是,如果被用作铝工艺中的吹扫气体,那么CO2气体需要是干燥的而没有潮气。在本发明中,部分干燥的CO2的一部分通过普通的公知气体干燥方法被进一步干燥,并且被送入铝设备以用作阳极吹扫气体。所回收的CO2和氧的混合物通过去除灰尘、电解质颗粒和氟化物蒸气而被净化。净化后的氧气混合物然后可以被压缩到增高的压力,以在低排放动力工艺中被用作氧化剂。
在实例和相应的图中将进一步解释和说明本发明。
图1示出了基于混合传导隔膜的动力工艺,其中,所产生的CO2在铝工艺中被用作吹扫阳极,其中,从阳极回收的氧根据本发明被清洁和送到动力工艺中的CO2循环。
图2示出了可替换图1所示工艺的工艺,其中,在铝工艺中从阳极回收的氧被用作在CO2净化气体涡轮上游的燃烧器中的氧化剂。
图3示出了可替换图1工艺的工艺,其中,混合传导隔膜或混合传导隔膜的一部分被纯氧传导隔膜(即固体氧化物燃料电池)替代,其中,来自燃料电池的未被转换的燃料与从铝工艺中回收的氧燃烧。
图4示出了加入氧和不加入氧的隔膜反应器燃烧工艺的操作窗口。离开热交换器的温度是1228℃。
具体实施例方式
图1处于环境温度和压力下的空气(流1)进入压缩机30以被压缩到5和50巴之间。压缩空气(流2)在热交换器31中被预热到700至1100℃之间,并且被进一步送到混合传导隔膜体系32的保留侧33,在这里已被加热的空气流中的一部分氧通过混合传导隔膜被传输到渗透侧34。贫氧的空气流3b可选地在热交换器31b中被进一步加热到高于1100℃。热的贫氧的空气(流4)进入涡轮35,在这里,在发电机40中电能被回收。处于低压的废气(流5)中的热在热交换器体系36中被回收,即作为高压流,以在用于发电的蒸汽涡轮机中使用(未示出)。
含有碳的燃料(流7)进入燃烧器38,在这里,燃料与含氧气流13燃烧,含氧气流13是在混合传导隔膜体系32(流12)中产生的氧和CO2气体与从铝工艺(流24)中回收的氧的混合物。热的燃烧过的气流8被分成一个净化气流14和循环流9,循环流9在进入获得氧的混合传导隔膜体系32的渗透侧34之前,在热交换器31b中被部分冷却。流10中的氧浓度典型地将在5%到12%之间。流10与流2在热交换器31中交换热量,并且通过压缩机37被进一步循环,并且与来自铝工艺的含氧和CO2的气体(流24)混合。
净化气流14进入涡轮39,并且在发电机41中产生电。处于低压的废气在热交换器体系47中被冷却,以回收热,例如作为用于在产生电能的蒸气涡轮中使用的气流(未示出)。
被部分冷却的废气(流16)例如在水冷却热交换器48中被进一步冷却,以凝结水(流18)。冷废气的一部分(流19)被送到压缩机(未示出)以注入地质层中。另一部分(流20)可选地被进一步干燥,并送到铝工艺以用作单元43中的阳极吹扫气体。Al2O3(流28)被送到单元43,并产生纯铝(流29)。在43的阳极处产生的氧通过气流20稀释,处于780到980℃的热的含氧气体进入热回收体系45以及气体清洁体系46,在气体清洁体系46中,例如氟化合物被去除。清洁后的气体(流23)在压缩机44中被压缩到5到50巴之间,并且被进一步加入到循环的气流12中。
图2处于环境温度和压力下的空气(流101)进入压缩机140以被压缩到5和50巴之间。压缩空气(流102)的一部分在热交换器160中被预热到700至1300℃之间,并且被进一步送到混合传导隔膜体系145的保留侧146,在这里在已被加热的空气流中的一部分氧通过混合传送隔膜被传输到渗透侧147。
被压缩空气(流134)的另一部分在热交换器148中被加热到700与1300℃之间,并且进一步与贫氧流104混合。
热的空气混合物(流105)进入涡轮141,在这里,在发电机157中电能被回收。废气(流106)中的热在热交换器体系142中被回收,例如作为高压流,以在用于发电的蒸汽涡轮中使用(未示出)。
含有碳的燃料(流108)进入燃烧器144,在这里,燃料与含氧气流113燃烧。热的燃烧过的气流109被分成一个净化气流114和循环流110,循环流110进入获得氧的混合传导隔膜体系145的渗透侧147。流111中的氧浓度典型地将在5%到12%之间。流111然后与流102在热交换器160中进行热交换,并且通过压缩机143被进一步循环。
净化气流114在热交换器148中被冷却,并与来自铝工艺的含氧气流130一起进入燃烧器149。含碳燃料(流116)被燃烧,热的燃烧过的气流117进入涡轮150,并且在发电机156中产生电。处于低压的废气(流118)在热交换器体系151中被冷却,以回收热量,例如作为用于在产生电能的蒸气涡轮中使用的气流(未示出)。
被部分冷却的废气(流119)例如在水冷却热交换器152中被进一步冷却,以凝结水(流121)。冷废气的一部分(流122)被送到压缩机(未示出)以注入地质层中。
另一部分(流123)可选地被进一步干燥,并且一部分(流124)被送到铝工艺以用作单元154中的阳极吹扫气体。Al2O3(流134)被送到单元154,并产生纯铝(流135)。在154,在阳极处产生的氧通过气流124被稀释,处于780到980℃的热的含氧气体进入热回收体系158以及气体清洁体系159,在气体清洁体系159中,例如氟化物化合物被去除。清洁后的气体(流128)可选地与含CO2的气流125混合,并且在压缩机155中被进一步压缩到5到50巴之间,并且被进一步添加到如上所述的燃烧器149中。
图3处于环境温度和压力下的空气(流201)进入压缩机230以被压缩到3和40巴之间。压缩空气(流202)在热交换器231中被预热到500至1000℃之间,并且被进一步送到固体氧化物燃料电池体系234的阳极侧232,在这里已被加热的空气流中的一部分氧通过燃料电池隔膜被传输到阴极侧233。贫氧的热空气(流204)进入涡轮235,在这里,在发电机245中电能被回收。处于低压的废气(流205)中的热在热交换器体系236中被回收,即作为高压流,以在用于发电的蒸汽涡轮中使用(未示出)。
含有碳的压缩燃料(流207)与循环的蒸气和含有CO2的气流213混合,进入固体氧化物燃料电池体系234的阴极侧,在这里,燃料被预重整,并且进一步部分地氧化成CO、CO2和H2以及H2O的混合物。60%到90%之间的燃料被转换为CO2和H2O。来自燃料电池234的、含有CO2、CO、H2、H2O以及微量CH4的流209进入燃烧室238,在这里,甲烷和被部分转换的甲烷与氧燃烧成CO2和H2O。在燃烧器中产生的热在热交换器231中被用来预热空气(流202)。被部分冷却的废气(流211)被分成两个流,流212和流214。流214在涡轮239中被减压到稍微高于环境压力。被减压的废气流215在热交换器250中被冷却,并且在热交换器241中被进一步冷却,以凝结水。被凝结的水被除去(流218)。
冷废气的一部分(流219)被送到压缩机(未示出)以注入地质层中。另一部分(流220)可选地被进一步干燥,并送到铝工艺以用作单元243中的阳极吹扫气体。Al2O3(流228)被送到单元243,并产生纯铝(流229)。在243的阳极处产生的氧通过气流220稀释,处于780到980℃的热的含氧气体进入热回收体系248以及气体清洁体系247,在气体清洁体系247中,例如氟化物化合物被去除的。清洁后的气体(流223)在压缩机244中被压缩到5到50巴之间,并且被进一步添加到燃烧器238。
实例1该实例示出了根据图1的工艺,其中,根据本发明的方法在组合的动力装置和铝工艺中使用。已经假设动力装置总氧需求的25%由来自铝设备的处于20巴的加压O2替代,所述O2如图1所示在燃烧器38之前被引入。流17中6%的CO2被循环,并用作铝工艺中的吹扫气体。所回收的氧在这种情况下将含有12%的CO2。表1示出了在添加来自铝设备的氧时,对进入和离开隔膜单元32的气流中氧分压的影响。这些数字与没有添加氧的隔膜体系做了比较。
表1
流3和流10之间氧的比例的增加以及流3b和流9b之间的比例的增加将减少所需的隔膜面积。
图4示出了有氧添加和无氧添加的隔膜反应器燃烧过程的操作窗口。O2从外部源供应。离开热交换器31b的温度是1228℃。虚线对应于没有氧添加的过程的操作窗口。空气离开温度TAL20=1228℃。
Tair(out)MCM是不同操作条件的流3b离开单元32的温度。fsweep是吹扫气体9b与空气(流3)之间的比(以kg计算)。添加氧的操作窗口比未添加氧的操作窗口大很多,这意味着添加氧的工艺更容易操作。除了隔膜面积减小之外,热交换器面积也可以被减小。
例如,将MCM模块冷端的空气温度保持在类似于在没有添加氧的情况下的温度,就实现了在吹扫和空气之间的更高的温度差以及更高的吹扫与空气流比。这将减小热交换器的尺寸以及单元32中隔膜的总体积,并且热交换器(单元31和单元31b)的体积可以被减小到50%,同时维持非常近似的空气温度分布。这证明了隔膜工艺中添加氧的优点。
实例2该实例示出了根据图2的工艺,其中,根据本发明的方法在组合的动力装置和铝工艺中使用。
处于15℃和大气压下的空气(流101)进入压缩机140以被压缩到20bara。压缩空气(流102)的88%在热交换器160中被预热到1000℃,并且被进一步送到混合传导隔膜体系145的保留侧146,在这里在已被加热的空气流中的32.4%的氧通过混合传送隔膜被传输到渗透侧147。
被压缩空气(流134)的另一部分在热交换器148中被加热到1200℃,并且进一步与贫氧的流104混合。
处于1200℃的热的空气混合物(流105)进入涡轮141,在这里,在发电机157中产生约212MW的电能。废气(流106)中的热量在热交换器体系142中被回收,例如作为高压流,以在用于产生约63MW电能的蒸汽涡轮机中使用(未示出)。
含有碳的燃料(流108)进入燃烧器144,在这里,燃料与含氧气流113燃烧。处于1215℃的热的燃烧过的气流109被分成一个净化气流114(14.5%)和循环流110(85.5%),循环流110进入获得氧的混合传导隔膜体系145的渗透侧147。流111中的氧浓度为10.4%。流111然后在热交换器160中用流102冷却到470℃,并且通过压缩机143被进一步循环。
净化气流114在热交换器148中被冷却515℃,并与来自铝工艺的含氧气流130一起进入燃烧器149。流130含有77%的CO2和23%的O2。含碳燃料(流116)被燃烧,处于1215℃的热的燃烧过的气流117进入涡轮150,并且在发电机156中产生约81MW的电能。处于低压的废气(流118)在热交换器体系151中被冷却,以回收热量,例如作为用于在产生约34MW的电能的蒸气涡轮机中使用的气流(未示出)。
被部分冷却的废气(流119)例如在水冷却热交换器152中被进一步冷却,以凝结水(流121)。冷废气的40%(流122)被送到压缩机(未示出)以注入地质层中。
另一部分(流123)(60%)可选地被进一步干燥,并且一部分(流124)被送到铝工艺以用作单元154中的阳极吹扫气体。Al2O3(流134)被送到单元154,并产生约250kt/年的纯铝(流135)。在154的阳极处,产生的氧通过气流124被稀释,处于780到980℃的热的含氧气体进入热回收体系158以及气体清洁体系159,在气体清洁体系159中,例如氟化物化合物被去除。清洁后的气体(流128)可选地与含CO2的气流125混合,并且在压缩机155中被进一步压缩到21bara,并且被进一步添加到如上所述的燃烧器149中。
所描述的动力装置将产生约390MW的功率,足以用于每年生产250kt的铝。动力装置的效率将近似为51%,包括回收已准备沉积的所有CO2。由于该回收的氧被CO2稀释到约23%O2,所以这将不仅降低风险,而且还将提高铝设备中设备的寿命。被稀释的氧流还将避免燃烧器149中的高温。
实例3该实例示出了根据图3的工艺,其中,根据本发明的方法在组合的动力装置和铝工艺中使用,以减小所需的隔膜面积并提高动力装置效率。
向固体氧化物燃料电池中添加氧的优点在下面描述。
燃料的低热值(LHV)743MW在燃料电池234中产生的功率300MW(LHV的40%)在涡轮239中产生的功率65MW在涡轮235中产生的功率304MW在蒸气涡轮中产生的功率55MW在压缩机230中使用的功率-190MW在压缩机244中使用的功率10MW在压缩机239中使用的功率4MW总功率产量520MW动力装置效率70%如果来自铝工艺的氧被循环并且被用来在根据图3的过程中燃烧来自燃料电池的未转换燃料,那么动力装置效率可以达到70%,而燃料电池效率仅为40%,燃料转换率为75%。适度的燃料电池效率将提高燃料电池的寿命。还避免了基于隔膜的补燃器,这将降低成本。来自250kt铝设备的氧对于氧化来自基于520MW燃料电池的动力装置的未转换燃料来说已足够。因为铝工艺需要约370到400MW的功率,所以至少可以输出120MW或者可以安装较小的燃料槽。在所有情况下,100%的CO2回收都是可能的,并且几乎消除了NOx的形成。
权利要求
1.一种用于操作生产铝的一个或多个电解槽(43,154,243)的方法,该槽包括惰性或基本惰性的阳极,其中,在槽中由于电解过程析出的含氧气体(21,126,221)被收集并从中去除,其特征在于含氧气体被引入燃烧室(38,149,238),在这里,其与含碳气体(7,116,209)在燃烧过程中反应。
2.根据权利要求1的方法,其特征在于来自燃烧室(38,149,238)的反应过程流(8,117,210)的至少一部分被用在能量转换过程中。
3.根据权利要求2的方法,其特征在于能量转换过程包括反应过程流在燃气涡轮机中的膨胀以将能量转换成机械能。
4.根据权利要求3的方法,其特征在于燃气涡轮机被设置用于驱动发电机以产生电,所产生的电优选地在电解槽中使用。
5.根据权利要求2至4的方法,其特征在于含CO2的反应过程流(8,117,210)的至少一部分被用作电解槽(43,154,243)中的吹扫气体,优选地是在干燥工艺步骤中被干燥(20,123,220)之后。
6.根据权利要求2的方法,其特征在于反应过程流(8)的至少一部分被引导到混合传导隔膜体系(32)的渗透侧(34),以从通过隔膜体系的保留侧(33)的空气流获得氧,其中,所述富氧的流(10)被引导回到燃烧室(38)。
7.根据权利要求2的方法,其特征在于来自第二燃烧室(144)的反应过程流(109)的至少一部分被引导到混合传导隔膜体系(145)的渗透侧(147),以从通过隔膜体系的保留侧(146)的空气流获得氧,其中,所述富氧的流(111)被引导回到所述燃烧室(144),并且其中反应过程流(109)的另一部分被引导到所述第一燃烧室(149)。
8.根据权利要求1的方法,其特征在于所述含碳气体(209)来自燃料电池(234)。
9.根据权利要求1至8的方法,其特征在于基本上所析出的所有CO2部分都被回收和沉积。
10.根据权利要求1至8的方法,其特征在于NOx的形成被基本避免。
11.根据权利要求1的方法,其特征在于流(5,106,205,15,118,215)中的热能通过水的蒸发而被回收,从而所产生的流被用于在一个或多个蒸气涡轮机中产生电能。
12.根据权利要求1的方法,其特征在于含氧气体(21,126,221)在应用到燃烧室中之前通过去除灰尘、电解质颗粒和氟化物蒸气而被净化。
全文摘要
本发明提供了一种用于操作生产铝的一个或多个电解槽的方法,该槽包括惰性或基本惰性的阳极,其中,在槽中由于电解过程析出的含氧气体(21,126,221)被收集并从中除去。含氧气体被引入燃烧室(38,149,238),在这里,其与含碳气体(7,116,209)在燃烧过程中反应。能够减少CO
文档编号F02C3/20GK1711372SQ200380103454
公开日2005年12月21日 申请日期2003年10月10日 优先权日2002年10月16日
发明者K·I·艾森, S·朱尔斯鲁德, O-J·斯尔詹 申请人:诺尔斯海德公司