专利名称:用于燃气轮机氮气清洗系统的方法和设备的制作方法
技术领域:
本发明通常涉及回转式机械,并且更具体而言涉及氮气清洗子系统。
背景技术:
在一些已知的双燃料燃气轮机中,涡轮机通过燃烧气体燃料或者液体燃料而被供能,后一燃料典型地为馏分油。这些燃气轮机具有用于这两种液体和气体燃料的燃料供应系统。燃气轮机通常不同时燃烧气体和液体燃料两者。相反,当燃气轮机燃烧液体燃料时,气体燃料供应停止工作。或者,当燃气轮机燃烧气体燃料时,液体燃料供应停止工作。
在某些已知的工业燃气轮机中,燃烧系统可能具有一列燃烧容器,每个燃烧容器具有至少一个液体燃料喷嘴和至少一个气体燃料喷嘴。在燃烧容器布置中,燃烧在喷嘴稍微下游的点处在燃烧容器内开始。来自压缩机(通常用于向燃烧系统传送压缩空气)的空气在燃烧容器周围流动并流过燃烧容器以提供用于燃烧的氧气。
某些具有双燃料能力(气体燃料为主而液体燃料作为备用)的已知现有燃气轮机可能容易有在液体燃料系统中形成的含碳沉淀微粒形式的碳沉积物。含碳微粒沉淀和最终的沉积物通常在液体燃料缺氧情况下被加热到177℃(350)时开始形成。在缺氧情况下,该过程加速并且含碳微粒沉淀在约93℃(200)下开始形成。当含碳微粒蓄积时,他们有效地减小液体燃料流过的横截面通道。如果含碳微粒沉淀持续不减少,微粒可能阻塞液体燃料通道。通常,燃气轮机的较暖区域往往与位于许多已知燃气轮机系统的涡轮机舱中的燃烧系统相关。所以,含碳微粒的形成在受到涡轮机舱的加热时最可能被促进,并且可能在涡轮机舱上游的液体燃料系统中并不存在。
在燃烧气体燃料之前液体燃料喷嘴通道通常通过流连接到液体燃料系统的清洗空气系统被清洗。但是,静态液体燃料可能保留在系统位于涡轮机舱中的部分内以便于准备快速燃料传送。在液体燃料系统被停止工作期间,清洗空气子系统在与液体燃料系统流连通的点处处于更高压力,并且空气很可渗漏到液体燃料系统的一部分中。该情况可能增大燃料和空气之间相互作用的可能性,并且最终可能促进含碳微粒形成。
通常,当液体燃料系统保持停止工作超过预定时间限制时,涡轮机舱内的静态液体燃料将开始遭受含碳微粒沉淀的可能性增大。清洗空气到液体燃料系统中的渗漏促进空气与液体燃料接触,并且随着与燃料系统保持停止工作相关的时间段长度增大和空气渗漏量增大,空气燃料相互作用扩大的可能性也增大。如上所述,液体燃料含碳微粒沉淀在缺氧情况下在低很多的温度下发生。考虑到某些已知涡轮机舱温度已经测量超过157℃(315),如果渗漏的清洗空气保持与静态液体燃料接触则更可能发生含碳微粒沉淀。当形成含碳微粒时,它们可能阻塞液体燃料内部流动通道,包括燃烧燃料喷嘴中的那些通道。
发明简述在一个方面,提供了一种操作燃料系统的方法。该方法包括使用重力排泄过程从燃料系统的至少一部分去除燃料。该方法还包括引导氮气进入燃料系统的至少一部分中以有助于从燃料系统的至少一部分去除空气和残余燃料,由此减少含碳沉淀微粒的形成。该方法还包括使用通气过程在燃料再填充期间从燃料系统的至少一部分去除空气和氮气,使得燃料系统的至少一部分基本上被燃料填满并且基本上排空空气和氮气。该方法还包括使用通气过程从再填充的燃料系统的至少一部分去除空气。
在另一个方面,提供了一种用于双燃料燃气轮机的液体燃料系统的氮气清洗子系统。所述燃料系统具有至少一个腔体。所述氮气清洗子系统包括耦合到与该腔体流连通的管路的氮气源。所述氮气清洗子系统还包括控制从所述源经由所述管路到所述腔体的氮气流的至少一个阀。所述至少一个阀具有打开状态,使得氮气从所述源通过所述管路流入所述腔体中以便于从所述腔体去除液体燃料和空气,因此含碳沉淀微粒的形成减少。
在又一个方面,提供了一种液体燃料系统,包括至少一个阀、至少一个管路、至少一个腔体和至少一个泵。所述至少一个阀和至少一个管路包括氮气清洗子系统。所述氮气清洗子系统包括耦合到与所述腔体流连通的所述管路的氮气源。所述氮气清洗子系统还包括控制从所述源经由所述管路到所述腔体的氮气流的至少一个阀。所述至少一个阀具有打开状态,使得氮气从所述源通过所述管路流入所述腔体中以便于从所述腔体去除液体燃料和空气,因此含碳沉淀微粒的形成减少。
图1是包括氮气清洗子系统的液体燃料系统的示例性实施例的示意图;和图2是包括氮气清洗子系统的液体燃料系统的替代实施例的示意图。
具体实施例方式
图1是具有氮气清洗子系统200的液体燃料系统100的示例性实施例的示意图。液体燃料系统100具有至少一个腔,该腔包括管路、集管和存储箱,它们进一步包括液体燃料运送子系统102、燃料泵吸入集管104、至少一个燃料过滤器105、燃料泵106、燃料泵排出集管108、燃料泵排出压力安全阀集管110、燃料泵排出压力安全阀112、燃料泵排出单向阀114、燃料泵旁通集管116、旁通集管手动闭塞阀118、燃料泵旁通集管单向阀120、液体燃料流控制阀122、控制阀再循环集管124、液体燃料流断流阀126、断流阀再循环集管128、断流阀再循环管线单向阀130、公共再循环集管132、流分配器吸入集管134、包括至少一个非驱动齿轮泵137的流分配器136、至少一个流分配器排出集管138(为清楚起见仅示出了一个)、至少一个燃烧容器供应集管140(为清楚起见仅示出了一个)、至少一个燃烧容器流文氏管142(为清楚起见仅示出了一个)、至少一个燃烧容器液体燃料喷嘴供应歧管144(为清楚起见仅示出了一个)、包括多个液体燃料喷嘴148的至少一个燃烧容器146(为清楚起见仅示出了一个)、和液体燃料清洗空气子系统150。涡轮机舱152以虚线示出。系统100还包括故障起动排泄存储箱154和仪表空气子系统156。
氮气清洗子系统200包括流分配器吸入集管压力安全阀供应集管202、流分配器吸入集管压力安全阀204、电磁阀208、流孔210、单向阀212、至少一个液体燃料排泄集管216(为清楚起见仅示出了一个)、至少一个液体燃料手动排泄阀218(为清楚起见仅示出了一个)、至少一个三通阀220(为清楚起见仅示出了一个)、操纵空气供应源222(为清楚起见仅示出了一个)、至少一个三通阀检测管线224(为清楚起见仅示出了一个)、至少一个三通阀偏置弹簧226(为清楚起见仅示出了一个)、至少一个氮气清洗/空气通气集管228(为清楚起见仅示出了一个)、至少一个氮气清洗/空气通气集管手动闭塞阀230(为清楚起见仅示出了一个)、公共氮气清洗/空气通气收集歧管232、氮气供应子系统234、氮气供应手动闭塞阀236、通气管线238、通气管线手动闭塞阀240和通气管线单向阀242。
液体燃料从液体燃料运送子系统102流入液体燃料系统100。液体燃料运送子系统102可以包括至少一个存储箱(图1中未示出)和至少一个泵(图1中未示出)。在液体燃料工作期间,至少一个液体燃料运送泵便于液体燃料流动到吸入集管104并且燃料通过过滤器105流动到燃料泵106的入口。燃料泵106将燃料排出到排出集管108,其中压力安全阀112被定位和偏置以在不能实现泵106的设计流情况下有助于充足的流通过泵106来保护泵106,由此有助于保护泵106、泵电机(图1中未示出)和泵106下游的相关管路。安全阀集管110流连接到公共再循环集管132。液体燃料通常从排出集管108通过单向阀114流动到控制阀122。单向阀114被定位并偏置以有助于减小从排出集管108流过泵106的反向液体燃料流,从而有助于防止泵106反向旋转。
泵旁通集管116包括手动闭塞阀118和单向阀120。集管116的目的是有助于作为泵106的替代向系统100供应液体燃料,例如在如下更详细说明的通气时向系统100填充液体燃料。阀118常闭并且可以被打开以便于流动。单向阀120被定位并偏置以便于在泵106工作时减小燃料从泵排出集管108返回到泵吸入管线104的燃料流。
液体燃料流过控制阀122和断流阀126。图1图示了在液体燃料系统100停止工作时燃气轮机(图1中未示出)以天然气点火的模式,即操作中的气体燃料模式下阀122和126的布置。控制阀122和断流阀126被图示为布置成便于液体燃料通过各自的再循环集管124和128流动到公共再循环集管132。集管132随后便于流动到泵吸入集管104。注意当液体燃料系统100停止工作时的再循环流可能很小,因为泵106在这些时间段期间通常停止工作。
当泵106工作并且通过泵106引起进入集管108的液体燃料流以及燃气轮机在气体燃料上工作时,阀122和126可能被偏置以便于基本上全部液体燃料从泵106分别流动到再循环集管124和128,即操作的液体燃料备用模式。通过集管124的流可能大于通过集管128的流。所以,单向阀130定位在集管128中并且被偏置以有助于减小从集管132经由集管128到断流阀126的燃料流。
当系统100在工作并且燃气轮机在液体燃料上工作,即在操作的液体燃料模式时,泵106通常在工作,阀122和126被偏置以有助于到流分配器吸入集管134的流并且液体燃料被引导到流分配器136。流分配器136包括多个非驱动齿轮泵137,它们有助于到每个相关燃烧容器146有基本上相似并且恒定的流分配。
每个齿轮泵137对流提供足够的阻力,以有助于在整个集管134上有基本相似的燃料压力,由此有助于到每个齿轮泵137有基本上相似的吸入压力。此外,每个齿轮泵137经由从集管134通过每个相关齿轮泵137的液体燃料流旋转地供能,并且以预定排出压力在预定流率下排出燃料到每个相关的流分配器排出集管138中。以下讨论包括一个齿轮泵137、一个集管138和一个三通阀220的后续流通道之一。
在从流分配器136排出时,液体燃料从集管138流动到相关的三通阀220。图1图示了布置为三通阀220布置为便于清洗空气流从清洗空气子系统150经由阀220流动到燃烧容器146。此布置可以被称为阀220的操作的空气清洗模式。阀220的图示布置还表明燃料集管138与氮气清洗/空气通气集管228流连通。在燃气轮机液体燃料流模式操作期间,阀220通常被偏置以便于从集管138到燃烧容器146的燃料流。阀220的此布置可以被称为阀220的操作的液体燃料燃烧模式。在此模式中,阀220还基本上堵塞来自清洗空气子系统150的清洗空气,并且可以允许一部分燃料流到集管228。阀220包括从清洗空气子系统150接收空气的操纵空气供应源222。阀220还包括梭阀(图1中未示出),并且此梭阀包括多个流端口(图1中未示出),这些流端口有助于清洗空气和液体燃料对燃气轮机操作的所选择模式正确流动。操纵空气供应源222引起阀220梭阀芯上的偏置力,该偏置力趋向于引起梭阀芯的运动使得液体燃料被传送到容器146。检测管线224引起阀220梭阀芯上的偏置,该偏置趋向于引起梭阀芯的运动使得液体燃料被传送到容器146。阀220还包括弹簧226,该弹簧226引起对阀220梭阀芯的偏置以便于清洗空气流到燃烧容器146。所以,当系统100工作时,经由泵106引起的液体燃料压力大于基本上静态的清洗空气子系统150压力和弹簧226偏置力以定位梭阀芯,使得液体燃料从集管138通过三通阀220流到燃烧容器供应集管140。或者,操纵空气供应源222压力可以大于基本上静态的清洗空气子系统150压力和弹簧226偏置力以定位阀220梭阀芯使得液体燃料从集管138通过三通阀220流动到燃烧容器供应集管140。
来自清洗空气子系统150的清洗空气通常被偏置为比在泵106不工作情况下基本静态的液体燃料系统压力高的基本静态压力。在泵106不工作的气体燃料模式操作期间,清洗空气子系统150压力与弹簧226一起偏置与每个燃烧容器146相关的三通阀220,使得液体燃料被阻止进入相应燃烧容器146并且清洗空气可以被传送到容器146。清洗空气可以被用于在相关燃烧容器146中液体燃料燃烧结束时便于经由喷嘴148从集管140和歧管144清除液体燃料。清洗空气还可以在操作的气体燃料模式期间有助于经由喷射到喷嘴148中的冷空气冷却喷嘴148。相同的清洗空气被传送到容器146并且有助于促动三通阀220,该清洗空气可能渗过密封件(图1中未示出)、与液体燃料相互作用、并且促进含碳微粒沉淀。
在燃气轮机操作从气体燃料模式转换到液体燃料模式期间,泵106投入工作并且集管138中的液体燃料压力增大。当集管138中的液体燃料压力超过清洗空气压力,三通阀220阀芯将开始梭动,并且最终将基本上结束到燃烧容器146的清洗空气流,并有助于到容器146的液体燃料流。在典型系统100中,液体燃料压力将开始偏置阀芯梭动至有助于在清洗空气压力之上约552千帕压差(kPad)(80磅每平方英寸压差(psid))下的燃料流。
在子系统200的示例性实施例中,在操作的燃气轮机气体燃料模式期间,如果三通阀220经历任何可能的泄漏,清洗空气往往将泄漏到液体燃料系统100中而非液体燃料泄漏到集管140中,因为清洗空气子系统150压力通常大于静态集管138压力。所以,燃料泄漏的可能性减小,但是空气和燃料相互作用的可能性增大。此状况将在以下更详细讨论。
如上所述,作为燃气轮机操作的预定模式的功能,液体燃料或者清洗空气被传送到集管140。来自集管140的流随后经由燃烧容器空气流文氏管/燃料流集管142和歧管144传送到位于燃烧容器146中的燃料喷嘴148。在清洗空气通过将流限制(即文氏管)放置到流动路径中而流入集管140中的同时,空气流文氏管142可以被偏置以有助于最小化进入燃烧容器146中的清洗空气流。图1图示了被偏置到空气文氏管布置的空气流文氏管/燃料流集管142。在燃料被传送到集管140的时间段期间,燃料流集管142可以被偏置以有助于基本上不受限的燃料流到歧管144。歧管144有助于平衡到喷嘴148的燃料和清洗空气流。燃烧容器146有助于燃料燃烧和能量释放到燃气轮机。
在示例性实施例中,压力安全阀204定位为在液体燃料系统100的高点处经由集管202与集管134流连通,使得可以有助于空气可从系统100的至少一部分去除到故障起动排泄存储箱154。如果液体燃料可能被去除的空气夹带,存储箱154被设计为接收液体燃料。阀204通常偏置在关闭位置中。孔210位于压力安全阀204下游,使得当泵106工作或者阀118打开,并且阀122和126布置为有助于液体燃料流入集管134中时,打开的阀204将不会使过量的燃料流进入存储箱154。对于以下更详细讨论的某些预定操作模式,电磁阀208被促动以将仪表空气子系统156置于与阀204的操作机构流连通。来自子系统156的仪表空气偏置阀204到打开位置。单向阀212被定位和偏置以有助于最小化从存储箱154到集管134的燃料和空气流。
在替代实施例中,自动定时器机构(图1中未示出)可以被设置来在没有操作者动作的情况下,以预定时间间隔周期性地打开阀204以从系统100的至少一部分去除空气。
图1还图示了氮气清洗子系统200的实施例。氮气清洗/空气通气集管228每个都与相关的三通阀220流连通。集管228每个包括一个相关的手动闭塞阀230。集管228和相关的阀230与公共氮气清洗/空气通气收集歧管232流连通。氮气供应子系统234经由手动闭塞阀236与歧管232流连通。故障起动排泄存储箱154经由通气集管238、手动闭塞阀240和单向阀242与歧管232流连通。单向阀242被定位和偏置使得从存储箱154到歧管232的流基本上最小化。
每个液体燃料排泄阀218经由每个排泄集管216与每个集管138流连通。每个阀218还与存储箱154流连通。
在例如从燃气轮机液体燃料模式切换到气体燃料模式之后的预定操作活动期间,液体燃料手动排泄阀218可以被打开以经由排泄集管216从系统100在断流阀126下游的部分排泄液体燃料。在确认液体燃料从系统100的一部分充分排泄后,氮气供应阀236可以被打开到氮气清洗歧管232。当氮气流入歧管232和通气集管238时,阀240可以被打开足够长的时间段以从集管238和歧管232去除空气。当歧管232中压力平衡时,氮气清洗阀230可以被打开以允许氮气流入清洗集管228中。在阀220被偏置以有助于清洗空气流进入集管140,并且燃料集管138与集管228流连通的情况下,氮气可以经由三通阀220流过阀220进入集管138中。氮气压力趋向于将剩余液体燃料偏置向排泄集管216并且经由排泄阀218离开系统100部分进入故障起动排泄存储箱154。在完成氮气清洗活动后,阀218可以被关闭并且在集管228和138中可以维持氮气压力以有助于防止空气泄漏到集管138中。此外,通气阀204可以如上所述被偏置向打开位置达预定时间段,以有助于空气和/或液体燃料从系统100在阀220和集管134与202之间的互连点之间的部分经由氮气清洗活动引起的偏置力去除到存储箱154中。
在此示例性实施例中,氮气清洗/空气通气集管228相对于流分配器排出集管138具有大致向上的斜度。向上斜度有助于传送在如上所述当燃气轮机工作在气体燃料模式中时的时间段期间可能通过三通阀220泄漏的清洗空气。收集歧管232定位为系统100一部分的高点以有助于空气流从阀220经由集管228流向收集歧管232。
氮气清洗子系统200还有助于利用液体燃料重新填充集管138达到并越过三通阀220,即进入集管228,使得空气保留在集管138和阀220中的可能性基本上被最小化。一旦燃料运送子系统102的液体燃料运送泵(图1中未示出)投入使用,阀118被打开并且阀122和126被偏置以传送液体燃料到集管134。液体燃料将经由流分配器136基本上充满集管138。当液体燃料进入集管138时,空气和氮气被偏置向集管228并且经由阀230、歧管232、集管238、阀240和单向阀242被传送到故障起动排泄存储箱154。此外,通气阀204可以被偏置向上述打开布置达预定时间段,以有助于空气和/或氮气从系统100在阀126和集管134与202之间的互连点之间的部分经由液体燃料填充活动引起的偏置力去除到存储箱154中。
某些已知的燃气轮机维护活动包括在燃气轮机处于停机状态下时将空气引入系统100各个腔中,例如在流分配器136和三通阀220之间的集管138中。该空气可能在整个燃气轮机试运转活动期间保留在集管138中,并且促进形成气泡,气泡可能在燃气轮机重起动期间在启动基本稳定的液体燃料流方面引起延迟。子系统200有助于使用上述系统100的液体燃料重新填充方法从集管138去除空气。该方法可以在试运转期间增大操作模式从气体燃料转换到液体燃料的可靠性。
子系统200通过在燃料系统100中存在气泡的可能性减小的情况下允许液体燃料保持直至阀220,而有助于燃气轮机可靠性的潜在提高,由此有助于气体燃料到液体燃料模式的转换。通过在经由子系统200通气的同时以液体燃料填充系统100的方法有助于保持液体燃料到阀220。子系统200通过采用经由向上倾斜的集管228从液体燃料去除清洗空气的方法进一步有助于保持液体燃料直至阀220。系统100可靠性也通过减小含碳微粒的形成而得到增大,其中该形成过程如上所述。
子系统200可以通过采用从温度可能超过93℃(200)区域经由燃料排泄过程和氮气清洗过程去除液体燃料的方法,而减小燃料系统100中含碳微粒形成。氮气清洗过程还有助于从系统100的一部分去除空气,从而大大减小了空气与燃料相互作用的可能性。
子系统200还可以通过使用有助于将液体燃料偏置向故障起动排泄存储箱154的上述重力排泄和氮气清洗过程来提供从系统100的至少一部分去除液体燃料的方法,而有利于可靠性,其中这些过程还有助于减小液体燃料被接收并且随后在气体燃料模式操作期间由燃烧容器146点燃的可能性。
图2是具有氮气清洗子系统400的液体燃料系统300的替代实施例的示意图。液体燃料系统300具有至少一个腔,该腔包括管路、集管和存储箱,它们进一步包括液体燃料运送子系统302、燃料泵吸入集管304、至少一个燃料过滤器305、燃料泵306、燃料泵排出集管308、燃料泵排出压力安全阀集管310、燃料泵排出压力安全阀312、燃料泵排出单向阀314、燃料泵旁通集管316、旁通集管手动闭塞阀318、燃料泵旁通集管单向阀320、液体燃料流控制阀322、控制阀再循环集管324、液体燃料流断流阀326、断流阀再循环集管328、断流阀再循环管线单向阀330、公共再循环集管332、流分配器吸入集管334、包括至少一个非驱动齿轮泵337的流分配器336、至少一个流分配器排出集管338(为清楚起见仅示出了一个)、至少一个燃烧容器供应集管340(为清楚起见仅示出了一个)、至少一个燃烧容器流文氏管342(为清楚起见仅示出了一个)、至少一个燃烧容器液体燃料喷嘴供应歧管344(为清楚起见仅示出了一个)、包括多个液体燃料喷嘴348的至少一个燃烧容器346(为清楚起见仅示出了一个)、和液体燃料清洗空气子系统350。涡轮机舱352以虚线示出。系统300还包括故障起动排泄存储箱354和仪表空气子系统356。
氮气清洗子系统400包括流分配器吸入集管压力安全阀供应集管402、流分配器吸入集管压力安全阀404、电磁阀408、流孔410、单向阀412、至少一个液体燃料排泄集管416(为清楚起见仅示出了一个)、至少一个液体燃料手动排泄阀418(为清楚起见仅示出了一个)、至少一个燃料单向阀420(为清楚起见仅示出了一个)、至少一个空气清洗单向阀422(为清楚起见仅示出了一个)、至少一个氮气清洗/空气通气集管424(为清楚起见仅示出了一个)、至少一个氮气清洗/空气通气集管手动闭塞阀426(为清楚起见仅示出了一个)、公共氮气清洗/空气通气收集歧管428、氮气供应子系统430、氮气供应手动闭塞阀432、通气管线434、通气管手动线闭塞阀436和通气管线单向阀438。
液体燃料从液体燃料运送子系统302流入液体燃料系统300。液体燃料运送子系统302可以包括至少一个存储箱(图2中未示出)和至少一个泵(图2中未示出)。在液体燃料工作期间,至少一个液体燃料运送泵便于液体燃料流动到吸入集管304并且燃料通过过滤器305流动到燃料泵306的入口。燃料泵306将燃料排出到排出集管308,其中压力安全阀312被定位和偏置以在不能实现泵306的设计流情况下有助于充足的流通过泵306来保护泵306,由此有助于保护泵306、泵电机(图2中未示出)和泵306下游的相关管路。安全阀集管310流连接到公共再循环集管332。液体燃料通常从排出集管308通过单向阀314流动到控制阀322。单向阀314被定位并偏置以有助于减小从排出集管308流过泵306的反向液体燃料流,从而有助于防止泵306反向旋转。
泵旁通集管316包括手动闭塞阀318和单向阀320。集管316的目的是有助于作为泵306的替代向系统300供应液体燃料,例如在如下更详细说明的通气时向系统300填充液体燃料。阀318常闭并且可以被打开以便于流动。单向阀320被定位并偏置以便于在泵306工作时减小燃料从泵排出集管308返回到泵吸入管线304的燃料流。
液体燃料流过控制阀322和断流阀326。图1图示了在液体燃料系统300停止工作时燃气轮机(图2中未示出)以天然气点火的模式,即操作中的气体燃料模式下阀322和326的布置。控制阀322和断流阀326被图示为布置成便于液体燃料通过各自的再循环集管324和328流动到公共再循环集管332。集管332随后便于流动到泵吸入集管304。注意当液体燃料系统300停止工作时的再循环流可能很小,因为泵306在这些时间段期间通常停止工作。
当泵306工作并且通过泵306引起进入集管308的液体燃料流以及燃气轮机在气体燃料上工作时,阀322和326可能被偏置以便于基本上全部液体燃料从泵306分别流动到再循环集管324和328,即操作的液体燃料备用模式。通过集管324的流可能大于通过集管328的流。所以,单向阀330定位在集管328中并且被偏置以有助于减小从集管332经由集管328到断流阀326的燃料流。
当系统300在工作并且燃气轮机在液体燃料上工作,即在操作的液体燃料模式时,泵306通常在工作,阀322和326被偏置以有助于到流分配器吸入集管334的流并且液体燃料被引导到流分配器336。流分配器336包括多个非驱动齿轮泵337,它们有助于到每个相关燃烧容器346有基本上相似并且恒定的流分配。
每个齿轮泵337对流提供足够的阻力,以有助于在整个集管334上有基本相似的燃料压力,由此有助于到每个齿轮泵337有基本上相似的吸入压力。此外,每个齿轮泵337经由从集管334通过每个相关齿轮泵337的液体燃料流旋转地供能,并且以预定排出压力在预定流率下排出燃料到每个相关的流分配器排出集管338中。以下讨论包括一个齿轮泵337、一个集管338、一个燃料单向阀420和一个清洗空气单向阀422的后续流通道之一。
在从流分配器336排出时,液体燃料从集管338流动到相关的燃料单向阀420。当系统300工作时,由泵306引起的液体燃料压力大于基本上静态的清洗空气子系统350压力。当系统300工作时,燃料单向阀420被定位和偏置以有助于液体燃料流动到燃烧容器供应集管340并且大大减小进入集管340的清洗空气流。所以,燃料单向阀420被偏置打开并且清洗空气单向阀422被偏置关闭。
当系统300不工作时,清洗空气单向阀422被定位和偏置以有助于清洗空气流动到燃烧容器供应集管340并且大大减小进入集管340中的液体燃料流。来自清洗空气子系统350的清洗空气通常被偏置为比在泵306不工作情况下基本静态的液体燃料系统压力高的基本静态压力。在气体燃料模式操作期间,泵306不工作。所以,清洗空气单向阀422被偏置打开并且燃料单向阀420被偏置关闭,并且清洗空气可以被传送到容器346。清洗空气可以被用于在相关燃烧容器346中液体燃料燃烧结束时便于经由喷嘴348从集管340和歧管344清除液体燃料。清洗空气还可以在操作的气体燃料模式期间有助于经由喷射到喷嘴348中的冷空气冷却喷嘴348。相同的清洗空气被传送到容器346,并且可能渗过单向阀422、与液体燃料相互作用、并且促进含碳微粒沉淀。
在燃气轮机操作从气体燃料模式转换到液体燃料模式期间,泵306投入工作并且集管338中的液体燃料压力增大。当集管338中的液体燃料压力超过清洗空气压力,由燃料单向阀420上的燃料压力引起的偏置力使得单向阀420开始打开并且由燃料进入集管340引起的偏置力使得清洗空气单向阀422开始关闭。当燃料压力在清洗空气压力之上继续增大,单向阀422将趋向于基本上关闭,使得到燃烧容器346的清洗空气流基本上终止并且单向阀420将基本上打开以有助于液体燃料流动到容器346。
在替代实施例中,在燃气轮机气体流模式操作期间,如果液体燃料单向阀420和/或清洗空气单向阀422经历任何可能的泄漏,清洗空气往往将泄漏到液体燃料系统300中而非液体燃料泄漏到集管340中,因为清洗空气子系统350压力通常大于静态集管338压力。所以,经由单向阀420的燃料泄漏的可能性减小,但是空气和燃料相互作用的可能性增大。此状况将在以下更详细讨论。
如上所述,作为燃气轮机操作的预定模式的功能,液体燃料或者清洗空气被传送到集管340。来自集管340的流随后经由燃烧容器空气流文氏管/燃料流集管342和歧管344传送到位于燃烧容器346中的燃料喷嘴348。在清洗空气通过将流限制(即文氏管)放置到流动路径中而流入集管340中的同时,空气流文氏管342可以被偏置以有助于最小化进入燃烧容器346中的清洗空气流。图2图示了被偏置到空气文氏管布置的空气流文氏管/燃料流集管342。在燃料被传送到集管340的时间段期间,燃料流集管342可以被偏置以有助于基本上不受限的燃料流到歧管344。歧管344有助于平衡到喷嘴348的燃料和清洗空气流。燃烧容器346燃料燃烧和能量释放到燃气轮机。
在替代实施例中,压力安全阀404定位为在液体燃料系统300的高点处经由集管402与集管334流连通,使得可以有助于空气可从系统300的至少一部分去除到故障起动排泄存储箱354。如果液体燃料可能被去除的空气夹带,存储箱354被设计为接收液体燃料。阀404通常偏置在关闭位置中。孔410位于压力安全阀404下游,使得当泵306工作或者阀318打开,并且阀322和326布置为有助于液体燃料流入集管334中时,打开的阀404将不会使过量的燃料流进入存储箱354。对于以下更详细讨论的某些预定操作模式,电磁阀408被促动以将仪表空气子系统356置于与阀404的操作机构流连通。来自子系统356的仪表空气偏置阀404到打开位置。单向阀412被定位和偏置以有助于最小化从存储箱354到集管334的燃料和空气流。
在替代实施例中,自动定时器机构(图2中未示出)可以被设置来在没有操作者动作的情况下,以预定时间间隔周期性地打开阀404以从系统300的至少一部分去除空气。
图2还图示了氮气清洗子系统400的实施例。氮气清洗/空气通气集管424每个都与相关的集管338流连通。集管424每个包括一个相关的手动闭塞阀426。集管424和相关的阀426与公共氮气清洗/空气通气收集歧管428流连通。氮气供应子系统430经由手动闭塞阀432与歧管428流连通。故障起动排泄存储箱354经由通气集管434、手动闭塞阀436和单向阀438与歧管428流连通。单向阀438被定位和偏置使得从存储箱414到歧管428的流基本上最小化。氮气子系统430压力小于清洗空气子系统350压力。
每个液体燃料排泄阀418经由每个排泄集管416与每个集管338流连通。每个阀418还与存储箱354流连通。
在例如从燃气轮机液体燃料模式切换到气体燃料模式之后的预定操作活动期间,单向阀420和422下游的清洗空气压力偏置单向阀420关闭而偏置单向阀422打开。液体燃料手动排泄阀418可以被打开以经由排泄集管316从系统300在断流阀326下游的部分排泄液体燃料。在确认液体燃料从系统300的一部分充分排泄后,氮气供应阀432可以被打开到氮气清洗歧管428。当氮气流入歧管428和通气集管434时,阀436可以被打开足够长的时间段以从集管434和歧管428去除空气。当歧管428中压力平衡时,氮气清洗阀426可以被打开以允许氮气流入清洗集管424中。在单向阀420被偏置关闭,并且燃料集管338与集管424流连通的情况下,氮气可以流入集管338中。氮气压力趋向于将剩余液体燃料偏置向排泄集管416并且经由排泄阀418离开系统300部分进入故障起动排泄存储箱354。在完成氮气清洗活动后,阀418可以被关闭并且在集管424和338中可以维持氮气压力以有助于防止空气泄漏到集管338中。此外,通气阀404可以如上所述被偏置向打开位置达预定时间段,以有助于空气和/或液体燃料从系统300在集管424与338的互连点和集管334与402的互连点之间的部分经由氮气清洗活动引起的偏置力去除到存储箱354中。
在替代实施例中,氮气清洗/空气通气集管424相对于流分配器排出集管338具有大致向上的斜度。向上斜度有助于传送在如上所述当燃气轮机工作在气体燃料模式中时的时间段期间可能通过燃料单向阀420泄漏的清洗空气。收集歧管428定位为系统300一部分的高点以有助于空气流从单向阀420经由集管424流向收集歧管428。
氮气清洗子系统400还有助于利用液体燃料重新填充集管338达到燃料单向阀420,使得空气保留在集管338中的可能性基本上被最小化。在泵306不工作的情况下清洗空气子系统350压力大于燃料系统300压力,所以,单向阀420被偏置向关闭布置。一旦燃料运送子系统302的液体燃料运送泵(图2中未示出)投入使用,阀318被打开并且阀322和326被偏置以传送液体燃料到集管334,液体燃料将填充集管338。液体燃料将经由流分配器336基本上充满集管338。当液体燃料进入集管338时,空气和氮气被偏置向集管424并且经由阀426、歧管428、集管434、阀436和单向阀438被传送到故障起动排泄存储箱414。此外,通气阀404可以被偏置向上述打开布置达预定时间段,以有助于空气和/或氮气从系统300在阀326和集管334与402间的互连点之间的部分经由液体燃料填充活动引起的偏置力去除到存储箱354中。
某些已知的燃气轮机维护活动包括在燃气轮机处于停机状态下时将空气引入系统300各个腔中,例如在流分配器336和单向阀420之间的集管338中。该空气可能在整个燃气轮机试运转活动期间保留在集管338中,并且促进形成气泡,气泡可能在燃气轮机重起动期间在启动基本稳定的液体燃料流方面引起延迟。子系统400有助于使用上述系统300的液体燃料重新填充方法从集管338去除空气。该方法可以在试运转期间增大操作模式从气体燃料转换到液体燃料的可靠性。
子系统400通过在燃料系统300中存在气泡的可能性减小的情况下允许液体燃料保持直至阀420,而有助于燃气轮机可靠性的潜在提高,由此有助于气体燃料到液体燃料模式的转换。通过在经由子系统400通气的同时以液体燃料填充系统300的方法有助于保持液体燃料直至阀420。子系统400通过采用经由向上倾斜的集管424从液体燃料去除清洗空气的方法进一步有助于保持液体燃料直至阀420。系统300可靠性也通过减小含碳微粒的形成而得到增大,其中该形成过程如上所述。
子系统400可以通过采用从温度可能超过93℃(200)区域经由燃料排泄过程和氮气清洗过程去除液体燃料的方法,而减小燃料系统300中含碳微粒形成。氮气清洗过程还有助于从系统300的一部分去除空气,从而大大减小了空气与燃料相互作用的可能性。
系统300还可以通过使用有助于将液体燃料偏置向故障起动排泄存储箱354的上述重力排泄和氮气清洗过程来提供从系统300的至少一部分去除液体燃料的方法,而有利于可靠性,其中这些过程还有助于减小液体燃料被接收并且随后在气体燃料模式操作期间由燃烧容器346点燃的可能性。
此处所述的用于氮气清洗子系统的方法和设备有助于燃气轮机燃料系统的操作。更具体而言,如上所述地设计、安装和操作氮气清洗子系统通过最小化由于液体燃料蒸馏液和空气之间的化学相互作用引起的含碳沉淀微粒形成,而有助于燃气轮机燃料系统在多个操作模式中的操作。此外,燃料系统管路和燃烧室的有用工作寿命预期通过氮气清洗子系统得到延长。结果,可以减小或者消除投入使用时燃料系统效率和效果的劣化、维护成本的增大和相关系统损耗。
虽然此处说明和/或图示的方法和设备针对用于燃气轮机燃料系统(并且更具体而言氮气清洗子系统)的方法和设备进行了说明和/或图示,但此处说明和/或图示的方法的实施一般不限于氮气清洗子系统或者燃气轮机燃料系统。相反,此处说明和/或图示的方法可以应用来设计、安装和操作任何系统。
以上详细说明了与燃气轮机燃料系统相关的氮气清洗子系统的示例性实施例。这些方法、设备和系统不限于此处说明的特定实施例,也不限于所设计、安装和操作的特定氮气清洗子系统,相反,设计、安装和操作氮气清洗子系统的方法可以与此处说明的其他方法、设备和系统独立和分开地运用,或者可以用于设计、安装和操作此处未说明的部件。例如,可以使用此处说明的方法设计、安装和操作其他部件。
虽然已经就特定实施例说明了本发明,但本领域技术人员将认识到本发明可以用权利要求的精神和范围内的修改来实施。
部件目录表100 液体燃料系统102 运送子系统104 吸入集管105 燃料过滤器106 燃料泵108 排出集管110 安全阀集管112 压力安全阀114 单向阀116 旁通集管118 闭塞阀120 单向阀122 控制阀124 再循环集管126 断流阀128 再循环集管130 单向阀132 再循环集管134 吸入集管136 流分配器137 齿轮泵138 排出集管140 供应集管142 流集管144 供应歧管146 燃烧容器148 喷嘴150 空气子系统152 涡轮机舱154 排泄存储箱
156 空气子系统200 子系统202 集管204 通气阀208 电磁阀210 流孔212 单向阀216 排泄集管218 排泄阀220 阀222 操纵空气供应源224 阀检测管线226 弹簧228 集管230 闭塞阀232 清洗歧管234 供应子系统236 闭塞阀238 通气集管240 闭塞阀242 单向阀300 液体燃料系统302 运送子系统304 吸入集管305 燃料过滤器306 燃料泵308 排出集管310 安全阀集管312 压力安全阀314 单向阀316 旁通集管318 闭塞阀
320 单向阀322 控制阀324 再循环集管326 断流阀328 再循环集管330 单向阀332 再循环集管334 吸入集管336 流分配器337 齿轮泵338 排出集管340 供应集管342 流集管344 歧管346 燃烧容器348 燃料喷嘴350 空气子系统352 涡轮机舱354 存储箱356 空气子系统400 清洗子系统402 集管404 压力安全阀408 电磁阀410 流孔412 单向阀414 存储箱416 排泄集管418 燃料手动排泄阀420 单向阀422 单向阀424 集管
426 闭塞阀428 歧管430 子系统432 闭塞阀434 通气集管436 闭塞阀438 单向阀
权利要求
1.一种用于双燃料燃气轮机的液体燃料系统(100)的氮气清洗子系统(200),所述燃料系统具有至少一个腔体(152),所述氮气清洗子系统包括耦合到与该腔体流连通的管路的氮气源,所述氮气清洗子系统还包括控制从所述源经由所述管路到所述腔体的氮气流的至少一个阀(204),所述至少一个阀具有打开状态,其中氮气从所述源通过所述管路流入所述腔体中以便于从所述腔体去除液体燃料和空气,使得含碳沉淀微粒的形成减少。
2.根据权利要求1所述的氮气清洗子系统(200),其中所述至少一个阀(204)包括至少一个三通阀(220),所述三通阀包括至少一个检测管线(224)、至少一个弹簧(226)、至少一个操纵空气供应源(222)、至少一个梭阀芯和至少一个流端口,使得所述至少一个检测管线、至少一个弹簧、至少一个操纵空气供应源、至少一个梭阀芯和至少一个流端口引起偏置力,所述偏置力使得有助于燃料、空气和氮气在所述燃料系统(100)的至少一部分内的运送。
3.根据权利要求2所述的氮气清洗子系统(200),其中所述至少一个三通阀(220)还包括与所述管路流连通的至少一个通道,使得有助于燃料、空气和氮气在所述燃料系统(100)的至少一部分内的运送。
4.根据权利要求1所述的氮气清洗子系统(200),其中所述至少一个阀(204)包括多个单向阀(212),所述多个单向阀引起偏置力,所述偏置力使得有助于燃料、空气和氮气在所述燃料系统(100)的至少一部分内的运送。
5.根据权利要求1所述的氮气清洗子系统(200),其中所述至少一个阀(204)和所述管路还包括至少一个氮气清洗管路;氮气清洗歧管(232),其中所述歧管经由所述至少一个氮气清洗管路供应氮气到至少一个燃料管和从此至少一个燃料管接收空气;和至少一个压力安全阀(312)。
6.根据权利要求5所述的氮气清洗子系统(200),其中所述至少一个氮气清洗管路包括所述氮气清洗管路的至少一部分被偏置具有相对于基本水平平面向上的斜度,使得有助于从所述燃料系统(100)的至少一部分去除空气并运送空气到所述氮气清洗歧管(232)。
7.根据权利要求5所述的氮气清洗子系统(200),其中所述至少一个氮气清洗管路包括与所述三通阀(220)流连通的至少一个通道,使得通过使用重力引起的动力从所述燃料系统的至少一部分运送燃料到所述腔体(152)有助于从所述燃料系统(100)的至少一部分去除燃料。
8.根据权利要求5所述的氮气清洗子系统(200),其中所述至少一个氮气清洗管路还包括与所述三通阀(220)和所述氮气源流连通的至少一个通道,使得通过引起动力以将所述燃料系统的至少一部分内的燃料偏置向所述腔体(152)而有助于从所述燃料系统(100)的至少一部分去除燃料,所述腔体包括第一压力,所述氮气源包括第二压力,所述第二压力大于所述第一压力,并且还使得通过引起动力以将所述燃料系统的至少一部分内的空气偏置向所述腔体而有助于从所述燃料系统的至少一部分去除空气,所述腔体包括第三压力,其中所述燃料系统的至少一部分内的空气包括第四压力并且所述氮气源包括第五压力,所述第五压力大于所述第四压力,并且所述第四压力大于所述第三压力。
9.根据权利要求5所述的氮气清洗子系统(200),其中所述至少一个压力安全阀(312)包括常闭偏置和打开偏置以有助于从所述燃料系统(100)的至少一部分去除空气。
10.一种液体燃料系统(100),包括至少一个阀(204)、至少一个管路、至少一个腔体(152)和至少一个泵(106),其中所述至少一个阀和至少一个管路包括氮气清洗子系统(200),所述氮气清洗子系统包括耦合到与所述腔体流连通的所述管路的氮气源,所述氮气清洗子系统还包括控制从所述源经由所述管路到所述腔体的氮气流的至少一个阀,所述至少一个阀具有打开状态,其中氮气从所述源通过所述管路流入所述腔体中以便于从所述腔体去除液体燃料和空气,使得含碳沉淀微粒的形成减少。
全文摘要
提供了一种操作燃料系统(100)的方法。该方法包括使用重力排泄过程从燃料系统的至少一部分去除燃料。该方法还包括引导氮气进入燃料系统的至少一部分中以有助于从燃料系统的至少一部分去除空气和残余燃料,由此减少含碳沉淀微粒的形成。该方法还包括使用通气过程在燃料再填充期间从燃料系统的至少一部分去除空气和氮气,使得燃料系统的至少一部分基本上被燃料填满并且基本上排空空气和氮气。该方法还包括使用通气过程从再填充的燃料系统的至少一部分去除空气。
文档编号F02C7/22GK1963159SQ20061014399
公开日2007年5月16日 申请日期2006年11月7日 优先权日2005年11月7日
发明者K·L·昆克尔, S·W·贝克曼, D·W·史密斯 申请人:通用电气公司