风力涡轮机叶片的制作方法

文档序号:5176805阅读:194来源:国知局
专利名称:风力涡轮机叶片的制作方法
风力涡轮机叶片
本发明涉及一种风力涡轮机叶片,更特别地,涉及一种风力涡轮机叶片的改进表面涂层。
在风力涡轮机叶片表面上的涂层暴露在磨损、UV、潮湿、腐蚀、周期性应力和 低度温度波动的恶劣环境中,其需要高性能材料。
该涂层需要在至多20年的期间保持性能,相比大多数民用/车辆应用场合,它 们应该具有更高性能和不同规格等级,另外相比于一般用于航天领域的产品,它们需要 显著较低的成本。
风力涡轮机叶片通常由玻璃纤维增强聚合物组合物来制成。它们可由玻璃纤维 组合物、聚酯、乙烯基酯或者碳黑和木材与玻璃纤维在环氧基体中来形成。可使用环氧 基组合物,因为它们相比于其他树脂体系,带来了环境、生产和成本优点的组合。碳纤 维增强的支撑翼梁可被引入到叶片中作为成本控制手段,来降低重量并增强硬度。
风力涡轮机叶片具有复杂的表面拓扑形状,来最优化转子的空气动力学效率, 从而保持发电机处于其速度和转矩限制之内,并保持转子和塔处于它们的强度限制之 内,同时降低噪音和阻力。因此,传统上施涂到风力涡轮机叶片上的表面涂层集中在油 漆组合物和模内涂料上。所述涂料可以相当快地施涂。
风力涡轮机叶片通常使用凝胶漆来进行涂敷,或者通过油漆来涂敷。凝胶漆在 叶片制造中直接施涂到模子上,其配方为与基质层相容的化学骨架,其通常为聚酯、乙 烯基酯或者环氧树脂。着色面漆通常使用各种交联聚氨酯漆来完成,通常其以双组分提 供(一种多元醇和,或聚酯树脂基底,和脂肪族异氰酸酯固化剂)。在试图之前,将其进 行混合,化学反应产生了交联的聚氨酯聚合物。一些叶片使用施涂到模子上的凝胶漆和 在脱模后施涂到叶片上的油漆的组合。这给予了表面以额外的使用寿命。
—些风力涡轮机叶片,在它们的叶片前缘上用耐冲击条带予以胶贴,其通常用 于较老的叶片上来进行修补。
目前的技术缺点如下
对于所谓“模内”技术,诸如凝胶漆,如果不是不可能,要达到完美的表面脱 模是十分困难的。实际上,在混合质量、粘度、湿度、基质条件和操作技巧方面的任何 小偏差都会导致在脱模时大量的外观缺陷,以及在使用中出现一些粘附问题。事实上, 大量的时间和劳力(大约三分之一的劳力用来制造叶片)在使用之前被花费在修补这些 叶片表面上的缺陷,以及花费在填补由模子而得的生产接头上,从而导致叶片成本的增 加。这些问题,和表面上出现缺陷的概率仅仅随着叶片尺寸的增加而增加。
涂敷作为一个工艺,特别是喷涂,是非常浪费的工艺过程,其需要大量熟练操 作工来确保一致的涂层。而且,涂敷表面倾向于缺乏内聚强度和耐久性。用于风力涡轮 机叶片的聚氨酯涂层体系是溶剂基的,当其喷涂大量的危险有机溶剂(一般50Wt%)的时 候,会被释放到大气中。聚氨酯的喷涂也是潜在的危险操作,不仅对于劳动者也对于环 境,因为固化剂中的异氰酸酯组分是一种敏化剂,应极其注意来防止异氰酸酯气体被参 与喷涂操作的操作者吸入。
本发明人已经发现,用于涡轮机叶片的油漆型涂料倾向于不足以耐久来保护风 力涡轮机叶片。而且,油漆处理对平整任意不规则度效果不佳,从而导致模内缺陷。因 此,在施涂油漆表面涂层之前,油漆处理需要进行大量的叶片表面准备。如果油漆施涂 太薄,则叶片表面缺陷会导致油漆层上的小缺陷,其会显著地降低叶片的预期寿命。另外,人们发 现,尽管脂肪族聚氨酯是可用于涂敷风力涡轮机的最高性能油 漆,但所述涂层通常要在稍稍超过5年使用期(取决于工作条件)之后进行修补。这是 极其昂贵的,并增加了叶片使用寿命的额外成本,因为风力涡轮机叶片的必需工作寿命 是20年。根据本发明,提供了一种至少50%表面覆盖有自粘合热塑性薄膜的风力涡轮机 叶片。通过将自粘合热塑性薄膜施涂到叶片上,就不需要凝胶漆或者油漆了。据估 计,热塑性薄膜需要与凝胶漆和/或油漆相同的时间来进行施涂。然而,一旦施涂它之 后并不需要任何进一步的处理,由此显著降低了对叶片进行精饰所要包括的工作。为了 降低成本,优选不对热塑性薄膜施涂其他涂层(油漆或其他)。而且,在施涂薄膜之前, 需要进行的准备工作更少,诸如平整叶片表面。薄膜具有双重目的,保护叶片,并且可 用来覆盖在叶片表面的任何小缺陷,诸如气孔。同时,薄膜的厚度在其施加到叶片之前 得到精确的控制,来确保制成具有均一厚度的表面。薄膜制造工艺允许薄膜组成得到精 确控制,甚至在薄膜厚度范围内变化。因此,由于涂层制造/施涂工艺的可变性引起 的,在叶片使用周期内具有可变的或者低劣的耐候性能的可能性,几乎被完全消除。将薄膜施涂到大部分的风力涡轮机叶片上,叶片剩余部分通过常规技术加以涂 敷,由此可以得到一些优点。然而,优选地,用薄膜覆盖实质上全部叶片。热塑性薄 膜可以是脂族聚氨酯、乙烯基树脂、丙烯酸或者氟化热塑性材料诸如,聚偏二氟乙烯 (PVDF)、四氟乙烯(TFE)、六氟丙烯(HFP)、PVDF+HFP 共聚物、THV(PVDF, HFP, TFE)、聚氟乙烯(PVF)、FEP (TFE, HFP)、全氟化烷氧化物或者PFA (TFE,PFVE)、三 氟氯乙烯(CTFE)、CTFE+VF2( 二氟乙烯)/HFP、或者两种或者多种任意这些的组合。 特别优选氟化聚合物,因为它们是拒水剂和防污剂。热塑性薄膜优选自支撑热塑性薄片。S卩,该薄膜被预成形为片材,在施涂到叶 片之前,其自身具有结构完整性。薄膜的完整性使得薄膜施涂到叶片上变得容易,并降 低了在薄膜施涂过程中薄膜被损坏的可能性。优选,一旦施涂到叶片上就暴露在大气中的薄膜的上表面是耐磨的和有回弹性 的。由此,至少薄膜表面优选由高密度热塑性材料来形成。表面之下的热塑性材料可具 有低密度,以节省成本。热塑性薄膜可以是单层的,但是优选由双层结构来形成,其中外层(或表面) 相比于内层,具有提高的耐UV、耐腐蚀、脱污垢和耐候性能(接下去将统称为“耐候 性”)。这允许相对昂贵的耐候材料集中在最有效的薄膜外表面。对于双层结构,相比 于外层,内层优选具有提高的粘接性质。当在热塑性薄膜使用氟化聚合物时,其可以降 低薄膜的粘接性质,因此优选地,相比于内层,任何氟化聚合物都更多地集中在表面。 这促进了薄膜对叶片的粘接。优选地,外层由高密度热塑性材料形成。这有助于给最终叶片产品以耐点冲击性能和高度的耐候性。人们也观察到,这为涂层提供了具有一定柔韧性的强度,有助于 提供在叶片整个表面上平整的涂层。术语“高密度”,意味着,热塑性材料具有至少 l.lg/cc的密度,其根据IS01183来进行测定。优选地,表面密度为1.3到3g/CC,更优选 从1.7到1.9g/CC。人们发现,高密度热塑性材料允许使用高耐用性的,相对薄的薄膜, 而不会给叶片增加过多重量。在3g/CC以上,人们发现薄膜变得更加难以处理和施涂。 高密度聚合物通常不适合通过涂敷方法进行施涂。
同时优选地,热塑性薄膜通过挤出方式来形成。当薄膜包含双层结构时,薄膜 可通过共挤出来形成。为了便于制造,薄膜也可在挤出时,一面涂有粘接剂。特别优选 挤出,因为其允许制备轴向取向的薄膜。可通过波哦挤出来提供的轴向取向的程度,有 助于提供具有增强耐久性的热塑性薄膜。
优选地,热塑性薄膜,特别是外层(如果使用了双层结构),具有20g/10minS 或者更低的熔体流动速率(ASTM D 1238,230°C, 2.16kg)。优选地,熔体流动速率在 lg/ΙΟη ι和15g/10mta之间,最优选大约8g/10mte。高熔体流动速率热塑性材料,诸如 蜡,并不适合用在本发明中。所述热塑性材料并不提供在风力涡轮机叶片上足够耐用的 磨损面。
热塑性薄膜优选具有至少20的肖氏D硬度Qmm厚;ASTM D 2240)。更优选 硬度为40到100,最优选大约60。表面层硬度有助于保护叶片表面对抗任何冲击或者点 损坏,例如,在制造后的运输期间。
要达到外层具有提高的耐受性能,并且内层具有提高的粘接性能的一种方式, 是内层和外层由聚偏二氟乙烯(PVDF)和聚甲基丙烯酸甲酯(PMMA)来制成,其中在外 层中PVDF比PMMA更多,而内层中PMMA比PVDF更多。
双层可以单独制造,然后融合或者粘合到一起。然而,优选地,双层通过共挤 出来制造。这特别适合于PVDF和PMMA组合物,因为其非常适合进行共挤出。
热塑性薄膜优选包含颜料、和/或填料,来给予薄膜以所需要的颜色。正如大 多数风力涡轮机叶片被要求是白色,该着色通常可通过将合适表面涂敷等级的金红石二 氧化钛加入来达到。薄膜的不透明度可通过观察其辐射传输性能来测定。特别地,可以 测定可见光传输的程度。0%不透明度显示薄膜是完全透明,可传输全部光。100%不透 明度显示,薄膜完全不透明,光线无法传输。
该薄膜优选含有一定量的UV吸收剂,其用量水平为0.1%到5%,基于薄膜重 量。UV吸收剂的目的在于阻止破坏性UV辐射通过薄膜并进入粘接层。UV吸收剂可以 单独使用或者可以组合使用两种不同类型的UV吸收剂来获得最优化的结果。所述组合的 例子为,二苯甲酮和位阻胺光稳定剂,其可以协同方式共同起作用。另一种合适的用于 热塑性薄膜的UV吸收剂是纳米二氧化钛,其包含表面改性的无机氧化物颗粒。这在所 述薄膜中是极其有效的,并且具有额外好处,即其在聚合物中完全稳定,不会产生“迁 移”效果。所述迁移效果在薄膜制造中会挥发,导致在挤出模上的结垢效应(plate-out effect),或者使用中的迁移效应,其可以导致降低的耐候性甚至薄膜的去粘合现象。所 述纳米二氧化钛在薄膜中用量在薄膜重量的0.1%和8%之间(除了粘接剂)。
薄膜材料组成的所有百分比都基于除了粘接层的薄膜的重量百分比。
对于风力涡轮机叶片,希望叶片不具有高光泽和/或高的反射系数,因为这会导致在叶片使用中,成品无法接受麻烦事。因此,优选地,通过表面处理薄膜来最小化 该效应,例如,通过在其挤出时,将冷轧机施涂到薄膜上,和/或通过往薄膜中加入消 光剂。合适的消光剂是具有控制颗粒尺寸的光稳定丙烯酸树脂。热塑性薄膜的厚度(除了粘接剂),优选地,低于300μιη,优选在50和150μιη 厚之间。人们发现,这样厚度的薄膜是足够耐用的。当将薄膜施涂到叶片上时,必须小心,以避免在薄膜和叶片之间出现气泡。薄 膜可以因此是多孔的,使得其可透过空气但不透过水,因为这有助于防止在制造过程中 气泡的形成。粘接剂优选是压敏粘接剂,诸如橡胶、丙烯酸类、改性丙烯酸类(增粘剂改性 的)或者硅氧烷胶。优选地,粘接剂不需要热激活,并且在5和35°C之间可以施涂。可 以施涂光-激活粘接剂(包括引发剂),其可以通过在施涂薄膜之后,暴露在辐射下来进 行固化。本发明也可延伸到制造风力涡轮机叶片的方法,其包括模制叶片主体,并将热 塑性薄膜粘接到至少50%的主体表面。

本发明同时也延伸到修补风力涡轮机叶片的方法,其通过将热塑性薄膜粘接到 至少50%的主体表面来进行。在此公开的涉及风力涡轮机叶片制造的任何步骤均等价应 用于风力涡轮机叶片的修理中。风力涡轮机叶片可通过暴露在气候中或者通过风生的碎片的冲击,而且变得破 旧,其有必要修补叶片。当进行修补时,用热塑性薄膜来处理传统叶片是可能的。备选 地,修补步骤包括,根据本发明的修补叶片,其通过除去已有的热塑性薄膜,用新的根 据本发明的薄膜的热塑性薄膜来代替它。薄膜优选以在叶片主体上从叶片前缘到后缘之间连续的条的形式来施涂。薄膜 也优选以条方向的方式加以施涂,使得薄膜施涂时的曲率复杂度显著减少。一个条的边缘可以与相邻条的边缘搭接。备选地,相邻条的边缘不搭接,而接 头处用另外的热塑性薄膜的条进行覆盖,用丙烯酸类或者环氧粘接剂进行涂敷,用PVDF 油漆进行涂敷或者热焊接在一起。优选地,任何表面涂敷被限制在接缝的紧邻区域,或 者在薄膜条的接头处。同样的考虑也使用在前缘和后缘,其中相邻条可搭接或者接头用另外的沿着边 缘延伸的热塑性薄膜条进行覆盖。令人吃惊地,本发明人发现,以条的形式来施涂热塑性薄膜并不会影响成品涡 轮机叶片的性能。之前推测的是,接缝和搭接会导致表面不规则度并且增加阻力和/或 噪音。本发明的热塑性薄膜足够薄,自支撑片状薄膜足够具有回弹性,因此这些劣势均 为观察到。更合适地,该薄膜增加了涡轮机叶片的耐久性,并提供了平整和有效的叶片表面。该方法优选包括在其施涂到叶片主体之前或者之中,短暂加热热塑性薄膜。这 优选通过吹送热空气到薄膜上来完成。这增加了薄膜的柔韧性,允许其更容易地施涂到 叶片表面。考虑到薄膜的自粘合特性,优选地,一旦薄膜已经施涂到叶片表面,就不需 要对薄膜进行加热。薄膜可以“干燥”施涂到叶片表面,或者“湿式”应用水或其他和合适液体来CN 102027230 A说明书5/7页施涂,以便允许薄膜更容易地定位,而不会有折缝或者截留空气。
薄膜可以许多段的形式提供,各个特定适合与叶片的适当部分。优选地,然 而,薄膜从卷中来施涂。在这情况下,在其施涂到叶片主体之前,薄膜可以进行修剪。 这特别有用,例如,在叶片根部附近,其具有复杂的外形。
热塑性薄膜可以施涂到叶片的全长模子上。然而,叶片由复数个模子组合而成 也是有可能的,正如在我们的较早申请GB0717690.2中所公开的。在这种情况下,热 塑性薄膜可在单个模子组合成为成品叶片之前,施涂到单个模子上,也可在施涂薄膜之 前,组装模子。
根据本发明的第三方面,提供了一种双层热塑性薄膜,其包含上层和下层,其 中
上层包含
(a) 50%到85%的聚偏二氟乙烯(PVDF),其中至多30%的PVDF用六氟丙烯 (HFP)替代;
(b) 10%到45%聚甲基丙烯酸甲酯(PMMA);
(c)任选的至多8 % UV稳定剂和/或吸收剂;
(d)任选的至多10%的消光剂;和
(e)任选的至多40 %的无机颜料;
下层包含
(f) 10%到45%的(PVDF)聚合物,其中至多30%的PVDF可用六氟丙烯(HFP) 来代替;
(g) 50 % 到 85 % 的 PMMA ;
(h)任选的至多8 % UV稳定剂和/或吸收剂;
⑴任选的至多10%的消光剂;和
(j)任选的至多40 %的无机颜料;
其中,当用相对于薄膜表面60度角度的反射计进行测定时,薄膜具有低于30% 的初始光泽度。
优选地,组分(a)和(f)是PVDF和六氟丙烯以上述量的共聚物。S卩,这些组 分是包含有各所述聚合物单体的共聚物。
优选地,上层厚度处于40和240微米之间,更优选在60和200微米之间,下层 厚度为2和60微米之间,更优选在10和40微米之间,最优选在2和20微米之间。在 一优选实施方案中,上层在60和240微米之间,下层在2和10微米之间。
优选地,UV稳定剂基于超细“纳米” 二氧化钛材料,其含有表面改性的无机氧 化物颗粒。
优选地,PVDF包含至多30% HFP或者是70% PVDF和30% HFP的共聚物。
优选地,薄膜进一步在下层包含粘接剂。
优选地,薄膜具有60%或者更大的不透明度,更优选80%或者更大。对于薄 膜,不透明是有优势的,因为其传输非常少的光,并且因此反射、散射或者吸收其大部 分。这有助于使得风力涡轮机叶片较不显眼。
应该理解的是,上述制造或者修补的方法中的任何优选特性均可与上述体积的9叶片的优选特性组合施涂。而且,任何在此公开的关于本发明薄膜的特性均可以与任何 叶片的优选特性组合施涂。在第四方面,本发明同时包括上述薄膜作为风力涡轮机叶片覆盖物的用途。优 选地,薄膜如此排列,使得上层对应于叶片的表层,并在施涂中暴露在大气中。现在根据附图来描述本发明的风力涡轮机叶片的一个实施例,其中

图1是整个叶片的平面示意图;图2是相邻条接头第一个实施例的横截面;图3是相邻条接头的第二个实施例的横截面;

图4A-E显示了许多不同的可以使用的条的结构;图5A-E显示了与图4A-E相同的结构,但还包括边缘保护条;图6是薄膜和基础叶片的实施例的横截面;以及图7是第二实施例的薄膜和基础叶片的横截面。在图1中显示了风力涡轮机叶片。叶片的基础主体根据常规方法来形成,其中 制成各半的全长模子,然后将两个半部在蛤壳形结构中合并在一起。备选地,叶片可具 有如我们较早申请GB0717690.2中所述的模件结构。本发明仅仅关注于表面涂层。如图1所示,叶片用许多自粘合的热塑性材料6 和粘接剂4的条来进行覆盖。各条从前缘2延伸到后缘3。叶片对侧与此相对应。在这 些前缘和后缘2,3上,在一侧的条可以与对应侧的条轻微搭接,或者提供另一个细条沿 着边缘以与下图2、3所述相同的方式覆盖条间的接头。如图1所示,各条与相邻条搭接。在图3中显示了二者之间的接头的更多细节。 在各条下表面提供了粘接剂4,并粘附到基础叶片表面5上。在搭接部分,条1粘附到相 邻热塑性薄膜6表面上,如图所示。在图2中显示了备选方式,其中相邻条1,1彼此邻 接,带有粘接剂8的另一条7沿着接头进行,其具有相同或者相似材料。材料厚度应使 得搭接部分或者另一细条不会对叶片性能产生显著影响。作为备选,图3显示的接头可 以被油漆,例如,用PVDF油漆和,实际上,这是目前优选的。在卷上提供条1。条可具有衬底材料来覆盖粘接剂,其在将条施涂到叶片表面之 前应被剥离。然而,没有衬底材料是必需的,如果薄膜1的上表米安是由不会粘附粘接 剂的材料制成。如果有必要,展开一个适当量,并修剪成正确的形状。然后将热空气吹 送到条上,来使其柔韧,然后将条施涂到叶片表面。首先在接近边缘之一 23的地方将条 进行粘附,并沿着叶片逐渐粘附,在逐渐粘附薄膜过程中,操作者应该小心地确保没有 空气被截留。图4A-E显示了各种可施涂到叶片上的条的结构。叶片可以在两侧都具有同样 结构的条,或者可以不同。条可以延伸穿过叶片(图4A),沿着叶片(图4B)或者对角 线形式沿着叶片(图4C)。备选地,叶片根部一端,其具有最大曲率,可以提供与其他 叶片部分不同结构的条。在图4D中,叶片根部端用许多三角形条来进行覆盖,其收敛 邻接到根部端。这些条提供了与叶片曲率最大程度的一致性,该实施例将对相对不柔韧 材料最有用处。然而,在图4D的实施例中,条或者需要进行预先切割,或者它们从卷 中提供,都需要相当量的修剪,在实践中,该实施例将更难以进行制造。作为折衷,图 4E中的实施例提供了合理的在弯曲区域的良好贴合度,但是条可以从卷中提供,仅需要相对少的修剪。
图5A到5E的实施例与对应的图4中显示的相似。唯一的区别在于,在前缘提 供了保护性条1A。这延伸到叶片的两侧,因此在最需要的前缘提供了良好的耐候性能。
目前优选的是,对于图5A中显示的结构,其在前缘具有耐候性条1A,条1的横 向排列确保了相邻条之间的接缝基本上沿着叶片移动的方向展开,由此最小化了任何的 紊流现象。
热塑性薄膜和粘接剂的特性根据图6和图7进行进一步详细描述。图6是贯穿 叶片表面的横截面,第一薄膜由粘接剂4层和热塑性薄膜6组成,所述热塑性薄膜具有单 一层。图7与之相同,除了热塑性薄膜6被分成上层9和下层10。
在所有情况下,热塑性薄膜6优选为50和300微米之间的厚度。
对于图4的单层,热塑性薄膜优选由45.9%的聚偏二氟乙烯、25.5% PMMA、 1.5% UV稳定剂和吸收剂、1.5%消光剂和25.6%无机颜料组成。
对于图5的双层,上层优选由52.8%的聚偏二氟乙烯(其中15%是HFP)、22% PMMA、1.5% UV稳定剂和吸收剂、1.5%消光剂和22.2%无机颜料组成,来给予足够的 颜色和不透明度。下层优选由22%的聚偏二氟乙烯(其中15%是HFP)、52.8% PMMA, 1.5% UV稳定剂和吸收剂、1.5%消光剂和22.2%无机颜料,来给予足够的颜色和不透明度。
对于图5的双层结构,上层厚度在5和295微米之间,下层厚度在5和295微米 之间。对于上层,优选厚度为40和240微米之间,下层优选厚度为10和60微米之间。
薄膜可使用本领域熟知的挤出机来进行挤出(在图4的实施例的情况下)或者共 挤出(在图5实施例的情况下)例如,用于制造UPVC窗户的共挤出机。然后将挤出的 材料进行二次表面处理,诸如冷轧,来制造所需的上表面的无反射外观。在薄膜卷到卷 中准备进行运输之前,该薄膜也可接着通过二次处理来在下表面涂敷上粘接剂。
权利要求
1.一种风力涡轮机叶片,其至少50%的表面覆盖有自粘合的热塑性薄膜。
2.权利要求1的风力涡轮机叶片,其中热塑性薄膜包含脂肪族聚氨酯、乙烯基树脂、 丙烯酸类或氟化热塑性材料的至少一种。
3.权利要求1或2的风力涡轮机叶片,其中基本上全部叶片都覆盖有薄膜覆盖物。
4.前述任一项权利要求的风力涡轮机叶片,其中热塑性薄膜包含双层结构,其外层 相比于内层具有提高的耐候性能。
5.权利要求4的风力涡轮机叶片,其中内层相比于外层具有提高的粘接性能。
6.权利要求4或5的风力涡轮机叶片,其中内层和外层包括聚偏二氟乙烯(PVDF) 和聚甲基丙烯酸甲酯(PMMA),其中在外层中PVDF比PMMA更多,内层中PMMA比 PVDF更多。
7.权利要求4到6的风力涡轮机叶片,其中层是共挤出的。
8.前述任一项权利要求的风力涡轮机叶片,其中当在相对于薄膜表面为60度角度用 反射计进行测定时,热塑性薄膜具有低于30%的初始光泽度。
9.前述任一项权利要求的风力涡轮机叶片,其中热塑性薄膜的厚度低于300μ m,优 选在50和150 μ m厚度之间。
10.前述任一项权利要求的风力涡轮机叶片,其中热塑性薄膜是多孔的,由此可透过 空气但不透过水。
11.前述任一项权利要求的风力涡轮机叶片,其中粘接剂是丙烯酸类或者硅氧烷基粘 接剂。
12.权利要求4到11任一项的风力涡轮机叶片,其中外层与大气接触。
13.权利要求12的风力涡轮机叶片,其中外层由高密度热塑性材料来形成。
14.权利要求13的风力涡轮机叶片,其中外层由热塑性材料来形成,其至少具有 l.lg/cc的密度,优选为1.5到3g/cc0
15.权利要求12或13的风力涡轮机叶片,其中外层具有至少50的肖氏D硬度(ASTM D2240, 2mm 厚度)。
16.前述任一项权利要求的风力涡轮机叶片,其中薄膜在粘附到叶片之前通过挤出来 预成形。
17.前述任一项权利要求的风力涡轮机叶片,其中热塑性薄膜包含基本上轴向取向的 聚合物。
18.前述任一项权利要求的风力涡轮机叶片,其中热塑性薄膜包含具有低于 20g/10min的熔体流动速率(ASTM D 1238,230°C, 2.16kg)的热塑料聚合物,优选为 lg/10min 到 15g/10min。
19.一种制造风力涡轮机叶片的方法,其包括模制叶片主体,并将热塑性薄膜粘接到 至少50%的主体表面。
20.一种修补风力涡轮机叶片的方法,其包括将热塑性薄膜粘接到破损叶片主体的至 少50%表面。
21.权利要求19或20的制造或修补方法,其中薄膜以从叶片前缘到后缘之间运行的 许多条的形式来施涂。
22.权利要求19到21任一项的制造或修补方法,其中薄膜以许多条的形式来施涂,其排列使得各条的曲率复杂度降低。
23.权利要求21或22的制造或修补方法,其中一条的边缘与相邻条的边缘相搭接。
24.权利要求21或22的制造或修补方法,其中相邻条的边缘不搭接,接头用另一热塑性薄膜条覆盖。
25.权利要求21或22的制造或修补方法,其中相邻条的边缘不搭接,接头用PVDF 油漆进行涂敷。
26.权利要求19到25任一项的制造或修补方法,其中热塑性薄膜在施涂到叶片主体 之前和/或之中,进行短暂加热。
27.权利要求19到26任一项的制造或修补方法,其中热塑性薄膜在施涂到叶片主体 之前,用合适的液体短暂湿润叶片主体。
28.权利要求19到27任一项的制造或修补方法,其中薄膜在施涂到叶片主体之前进 行修剪。
29.根据权利要求19到28任一项的制造或修补方法,用于制造权利要求1到18任一 项的叶片。
30.—种双层热塑性薄膜,其包含表面层和下层,其中 表面层包含(a)50%到85%的聚偏二氟乙烯(PVDF),其中至多30%的聚偏二氟乙烯用六氟丙烯 (HFP)替代;(b)10%到45%的聚甲基丙烯酸甲酯(PMMA); (C)任选的至多8%的UV稳定剂和/或吸收剂;(d)任选的至多10%的消光剂;和(e)任选的至多40%的无机颜料; 下层包含(f)10%到45%的聚偏二氟乙烯(PVDF)聚合物,其中至多30%的聚偏二氟乙烯可用 六氟丙烯(HFP)来代替;(g)50%到 85% 的 PMMA ;(h)任选的至多8%的UV稳定剂/吸收剂;(i)任选的至多10%的消光剂;和 (j)任选的至多40%的无机颜料;其中,当在60度角度用反射计进行测定时,薄膜具有低于30%的初始光泽度。
31.权利要求30的双层热塑性薄膜,其中表面层包含50%到85%的聚偏二氟乙烯(PVDF)和六氟丙烯(HFP)的共聚物,其中 六氟丙烯(HFP)占共聚物的至多30%,并且下层包含10%到45%的聚偏二氟乙烯(PVDF)和六氟丙烯(HFP)的共聚物,其中六 氟丙烯(HFP)占共聚物的至多30%。
32.权利要求30或31的双层热塑性薄膜,其在下层进一步包含压敏粘接剂。
33.权利要求30到32任一项的双层薄膜,其中上层厚度在60和240微米之间,下层 厚度在2和10微米之间。
34.权利要求30到33任一项的双层薄膜,其中UV稳定剂基于超细“纳米”二氧化钛材料,其含有表面改性的无机氧化物颗粒。
35.权利要求30到34任一项的双层薄膜,其中在至少一层中具有至少0.5%的消光剂。
36.权利要求30到35任一项的双层薄膜,其中薄膜具有60%或更大的不透明度。
37.权利要求30到36任一项的双层薄膜,其中粘接剂不需要热激活,并且能够在5 和35°C之间进行施涂。
38.使用权利要求30到37任一项的双层薄膜来提供在风力涡轮机叶片表面上的薄
全文摘要
公开了一种风力涡轮机叶片,其至少50%的表面覆盖有自粘合的热塑性薄膜。同时公开了一种制造或修补所述风力涡轮机叶片的方法。还公开了一种适合用于覆盖风力涡轮机叶片表面的双层热塑性薄膜。该薄膜包含表面层和下层。表面层包含50%到85%的聚偏二氟乙烯(PVDF),其中至多30%的PVDF用六氟丙烯(HFP)替代;和10%到45%聚甲基丙烯酸甲酯(PMMA)。下层包含10%到45%的(PVDF)聚合物,其中至多30%的PVDF可用六氟丙烯(HFP)来代替;和50%到85%的PMMA。任选地,表面层和/或下层包含至多8%UV稳定剂和/或吸收剂;至多10%的消光剂;和至多40%的无机颜料。当用相对于薄膜表面60度角度的反射计进行测定时,该薄膜具有低于30%的初始光泽度。
文档编号F03D1/06GK102027230SQ200980114985
公开日2011年4月20日 申请日期2009年3月30日 优先权日2008年3月28日
发明者P·路德林 申请人:刀具动力学有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1