确定转子共同叶片频率的方法和装置及操作风轮机的方法

文档序号:5263331阅读:225来源:国知局
专利名称:确定转子共同叶片频率的方法和装置及操作风轮机的方法
技术领域
本发明涉及风轮机的领域,具体地讲,涉及一种确定风轮机的转子的共同 (common)叶片频率的方法、一种操作风轮机的方法和一种确定风轮机的转子的共同叶片频
率的装置。
背景技术
通常,风轮机包括塔架、位于塔架上面的机舱和转子。转子包括轮毂(hub)和叶片, 其中轮毂构造为可围绕特别地对应于机舱的纵向延伸部分的旋转轴线旋转,而叶片固定于轮毂并在相对于纵向轮毂延伸部分横向(特别地,垂直于纵向轮毂延伸部分)的旋转平面中延伸。轮毂连接到构造为用于通过例如另一转子轴产生电能的发电机,且因此构造为用于驱动该发电机。风轮机的转子的叶片可在风轮机的工作或空闲模式期间进行振动。这种振动由叶片频率表征。特别地,叶片频率可以是与叶片的边缘(例如,叶片前缘(面对风向)或后缘 (顺着风向))的振动对应的叶片边缘频率。关于叶片频率的了解可允许检测叶片特性的变化以及允许适配风轮机的工作模式。为了确定一个或多个叶片的叶片边缘频率,可使用可放置在转子的一个叶片或每个叶片中的快速响应传感器(诸如,加速度表或应变仪)测量叶片的振动,并且可从测量的传感器信号推断所述一个叶片或每个叶片的各自叶片边缘频率。另外可知根据使用的转子的叶片的种类对于转子的所有叶片特别地使用预定叶片边缘频率,以便在风轮机的控制器中手动地设置叶片的叶片边缘频率。在这种情况下,可假设对于特定种类的叶片而言特定叶片的叶片边缘频率可以相对比较恒定从而可从预定叶片边缘频率选择各叶片边缘频率。WO 2009/000787 A2公开了一种用于监测风轮机的转子的每个叶片的叶片频率的方法。可测量风轮机的机舱的振动以及叶片的方位角。基于这两个量可确定每个叶片的叶片边缘频率。然而,使用以上详述的技术确定转子的一个或多个叶片的叶片频率(具体地讲, 叶片边缘频率)可导致较差的叶片频率的估计。

发明内容
因此,本发明的目的可在于提供一种确定风轮机的转子的共同叶片频率的方法、 一种操作风轮机的方法和一种确定风轮机的转子的共同叶片频率的装置,这些方法和装置可允许准确确定风轮机的转子的共同叶片频率。为了实现上述目的,提供了根据独立权利要求的确定风轮机的转子的共同叶片频率的方法、操作风轮机的方法和确定风轮机的转子的共同叶片频率的装置。根据本发明的示例性方面,一种确定风轮机的转子的共同叶片频率的方法包括测量表示风轮机的部件的振动的振动量,以及基于测量的振动量确定共同叶片频率。根据本发明的另一示例性方面,一种操作风轮机的方法包括按照如上所述的方法确定共同叶片频率,以及基于确定的共同叶片频率适配风轮机的工作模式。根据本发明的另一示例性方面,一种用于确定风轮机的转子的共同叶片频率的装置包括测量单元,被配置为测量表示风轮机的部件的振动的振动量;以及确定单元,被配置为基于测量的振动量确定共同叶片频率。在本申请的上下文中,术语“共同叶片频率”可特别地表示与风轮机的转子的(特别是构件的)共同振动(common vibration)或振动移动对应的频率。特别地,共同频率可表示转子的(特别是构件的)振动(多个)的基本频率或本征频率和/或可表示转子的(特别是构件的)振动(多个)的基本频率的至少一个谐波频率。共同叶片频率也可表示转子的 (特别是构件的)频率(例如,基本频率和/或谐波频率)的叠加。特别地,共同叶片频率可特别地产生于转子的叶片的共同振动,其中转子的轮毂的振动可忽略不计。特别地,共同叶片频率可特别地表示可产生于转子的叶片的边缘的共同振动的共同叶片边缘频率,其中叶片的边缘可以是叶片的前缘(面对风向)的至少一部分和/或后缘(顺着风向)的至少一部分。特别地,术语“确定共同叶片频率”可特别地表示确定或评估共同叶片频率的频率值。特别地,共同叶片频率的频率值可以是时不变的或者不随时间改变。特别地,术语转子的“构件”可特别地是转子的轮毂和可连接到轮毂的转子的叶片 (特别是不同的叶片)。术语转子的“共同振动”可特别地表示转子的(特别是转子的构件的)振动或振动移动。特别地,转子的构件的共同振动可产生于转子的不同构件的振动之间的相互作用, 其中转子的构件可不必显示出相同的振动特性。术语“振动量”可特别地表示产生于部件的振动的可测量的量。特别地,振动量可表示部件的移位(特别是部件的弯曲)和部件的移动或者部件的加速度。术语风轮机的“工作模式”可特别地表示空闲模式和旋转模式。特别地,空闲模式可特别地表示这样的状态其中风轮机的转子可处于备用模式或关闭模式,且因此转子的轮毂和叶片无法围绕转子的各旋转轴线旋转。特别地,风轮机的旋转模式可特别地表示这样的状态其中风轮机的转子可处于使用中,且因此转子的轮毂和叶片可围绕转子的旋转轴线旋转。根据上述本发明的示例性方面,转子的共同叶片频率的确定可使用这样的方法 由于转子的构件之间的相互作用,转子可进行共同振动。因此,转子的共同振动可影响风轮机的部件的振动,从而可测量风轮机的部件的对应振动量作为共同叶片频率的度量。基于测量的振动量可确定共同叶片频率。相比之下,虽然风轮机的部件的振动可表示转子的构件的每一单独振动,但现有技术方法可使用这样的方法,即转子的每个构件分别按照不同叶片频率振动。假设转子的共同叶片频率而不是转子的构件的多个叶片频率可表示更实际的方法,由此允许提取更准确并且可靠的转子的叶片频率作为用于适配风轮机的工作模式的基础。因此,与现有技术相比可显著改善适配风轮机的工作模式。接下来,将解释确定风轮机的转子的共同叶片频率的方法的另外的示例性实施
5例。然而,这些实施例也适用于操作风轮机的方法和用于确定风轮机的转子的共同叶片频
率的装置。风轮机的部件可以是风轮机的机舱和风轮机的塔架中的至少一个。特别地,常规种类的测量振动量可允许共同叶片频率的简化的确定,因为可能不需要在风轮机中实现另外的测量装备。特别地,根据示例性实施例的方法和装置可结合已经存在的风轮机使用。特别地,振动量可表示以下的至少一项风轮机的部件的移位(例如,特别地沿一个或多个方向的风轮机的塔架的弯曲和/或特别地沿一个或多个方向的机舱的移动)、部件的速度(例如,特别地沿一个或多个方向的机舱或塔架的速度)和风轮机的部件的加速度(例如,特别地沿一个或多个方向的机舱的加速度和/或特别地沿一个或多个方向的塔架的加速度)。特别地,可沿着机舱延伸部分或者相对于机舱延伸部分横向地(特别地,垂直于机舱延伸部分)或者沿这些方向之间的任何方向进行振动量的测量。振动量的测量可包括使用加速度表或应变仪测量振动量。这些被配置用于测量风轮机的部件的移位和/或加速度的常规测量装备可容易地实现于风轮机中而无需风轮机的设计的显著构造修改(如果还未存在的话),由此进一步简化测量振动量的步骤。特别地,加速度表或应变仪可布置在塔架中或布置于塔架(特别地,布置在与塔架的上端部相邻的位置)、布置在风轮机的机舱上或布置于机舱(特别地,布置于与塔架的上端部相邻的底部位置)或者布置在风轮机的轮毂中或布置于轮毂(特别地,布置于与叶片相邻的位置或者布置于与叶片分隔开的位置)。特别地,可在时间段期间在几个时间步长或点测量振动量。该方法可包括测量表示转子的旋转角的旋转角度值的量,其中共同叶片频率的确定另外基于表示旋转角度值的量。术语“旋转角”可特别地表示转子的叶片的旋转平面中定义的转子(的特别是至少一个叶片)的旋转角。特别地,旋转平面可定义为这样的平面 在该平面中,转子的叶片可延伸并围绕旋转轴线旋转。特别地,旋转平面可定义为这样的平面该平面相对于转子的叶片的旋转轴线是横向的(特别地,垂直于该旋转轴线),并特别地在叶片可能相对于垂直于叶片的旋转轴线的平面倾斜并因此可包括非零俯仰角的情况下穿过叶片的至少一个部位的部分。特别地,转子的旋转平面可布置为相对于转子的轮毂的延伸部分和/或机舱延伸部分是横向的(特别地,垂直于它们)。因此,第二测量量可用于确定共同叶片频率,由此提高确定的共同叶片频率的准确性。特别地,可在时间段期间在几个时间步长或点测量表示旋转角度值的量。特别地,可按照球面坐标测量旋转角度量,其中旋转角可定义于特别地由两个坐标方向(例如,笛卡尔坐标方向,诸如彼此垂直的x、y方向)定义的旋转平面中。特别地,通过加入可特别地说明叶片相对于旋转角的原点(origin)的角度偏移位置或者可说明叶片的任意角度位置的(实)数,特别地可组合旋转角度(值)。转子可包括至少两个叶片,其中表示旋转角度值的量的测量包括测量转子的至少一个叶片的方位角的方位角值、转子的转子旋转速度的转子旋转速度值或风轮机的发电机的发电机旋转速度的发电机旋转速度值。因此,可使用方位角感测单元执行方位角值的测量,方位角感测单元可特别地布置于转子的叶片或者布置在转子的叶片中。特别地,方位角感测单元也可用于转子的叶片的俯仰控制。特别地,可为转子的每个叶片提供方位角感测单元。特别地,叶片的方位角可对应于叶片的旋转角,由此提供用于测量表示旋转角度值的量的简单而准确的测量方法。使旋转角度值的测量基于测量发电机旋转速度或转子旋转速度可提供用于确定转子的旋转角度值的另一简单而准确的测量方法。特别地,对发电机旋转速度或转子旋转速度求积分可导致转子轴位置,从该转子轴位置可推断转子的叶片的位置以及因此推断转子(的特别是叶片)的旋转角。特别地,发电机旋转速度可对应于转子旋转速度乘以常数。特别地,可在时间段期间在几个时间步长或点测量方位角值、转子旋转角度值和发电机旋转角度值。共同叶片频率的确定可包括把振动量与和旋转角度量(特别地,与该数字组合的旋转角度量)相关的项的三角函数相乘。特别地,三角函数可包括余弦函数或正弦函数, 其中旋转角度量是自变量。因此,可实现关于特定方向的振动量的调制。共同叶片频率的确定可包括进行振动量的频率分析。特别地,振动量(特别地, 与三角函数相乘的振动量)的快速傅里叶变换或离散快速傅里叶变换(FFT或DFFT)或锁相环(PLL)振荡可用于振动量的进一步频率分析。特别地,FFT或DFFT可用于在频域中确定共同叶片频率。特别地,PLL可用于在时域中确定共同叶片频率。特别地,PLL可使内部振荡器信号与振动量同步。特别地,当PLL可同步时,PLL振荡器频率可等于共同叶片频率或表示一个叶片的叶片(边缘)频率的任何确定的频率量。转子可包括至少两个叶片,其中所述共同叶片频率的确定可包括确定表示每个叶片的振动的各频率量,以及对确定的各频率量求平均数。因此,对于每个叶片可确定可表示各叶片的振动的叶片频率量,且可对这些叶片频率量求平均数(特别地求加权平均数)。 共同叶片频率可基于每个叶片边缘频率量的平均值。因此,可提供非常简单的确定转子的共同叶片频率的技术。特别地,每个叶片的叶片频率量的叠加可用于确定转子的共同叶片频率。特别地, 可使用针对每个叶片频率量的任何系数和符号。转子可包括至少两个叶片,其中所述共同叶片频率的确定可包括确定表示转子的共同振动的频率量。这种测量方法可允许具有低信号处理复杂性的共同叶片频率的直接确定。特别地,确定(各叶片)频率量可基于在振动量的频谱中确定可对应于最大信号的振动量的频率量或值。特别地,术语“振动量的频谱”可特别地表示这样的频谱,其中,横坐标值是频率值并且纵坐标值是振动量或对应于振动量。特别地,确定可对应于最大信号的振动量的频率量可包括使用“最大值的自变量”函数(argMax)。振动量的测量可包括在风轮机的空闲模式下测量振动量。特别地,共同叶片频率可因此对应于转子的拍动(flap)频率。特别地,由于风轮机的转子可能在空闲模式下不旋转,所以振动量的频谱可包括一个(宽)峰,该峰在与共同叶片频率相等或近似的峰的频率范围中具有与最大信号的振动量对应的频率量。因此,可提供准确而简单的共同叶片频率的近似。振动量的测量可包括在(特别是有限或短的)时间段期间测量振动量,其中所述共同叶片频率的确定可包括对位于与频率量和转子的转子旋转频率关联的频率量的振动量求平均数。特别地,术语“转子旋转频率”可特别地表示与设置或预定的转子的旋转速度对应的转子的旋转频率。这里,可假设转子旋转速度可在短时间段内恒定。振动量的各频谱可包括两个(宽)峰,该峰在与共同叶片频率和转子旋转速度关联的峰的频率范围中具有与最大信号的振动量对应的频率量。特别地,这两个峰中的每个峰的峰中心可位于与共同叶片频率加/减转子旋转频率对应的频率量处。对位于与频率量或值和转子的转子旋转频率(值)关联的频率量或值处的信号值求平均数可导致共同叶片频率的良好估计,因为获得的频谱可包括一个峰,该峰的中心频率值可与共同叶片频率关联。因此,可提供非常容易而准确的确定共同叶片频率的方式。特别地,确定频率量可包括以下的至少一项以数字方式比较特别地在峰频率范围中的振动量信号值,以及对于特别地在峰的频率范围中的振动量的频谱拟合函数(例如,高斯函数)并从拟合中提取与峰中心位置对应的频率量。特别地,术语“频率量”可表示频率值。接下来,将解释操作风轮机的方法的另外的示例性实施例。然而,这些实施例也适用于确定风轮机的转子的共同叶片频率的方法和用于确定风轮机的转子的共同叶片频率的装置。特别地,适配风轮机的工作模式可包括以下的至少一项把风轮机设置为关闭模式、把风轮机设置为备用模式和改变转子旋转速度。风轮机的转子可包括至少两个叶片,其中所述共同叶片频率可指示至少一个叶片的质量分布和所述至少一个叶片的形状中的至少一项。特别地,当可能发生所述至少一个叶片的质量分布和/或形状的改变时,共同叶片频率可相应地改变,由此指示所述至少一个叶片中发生的改变。特别地,基于确定的共同叶片频率的所检测改变,可显著改善风轮机的工作模式的适配,因为可提供所述至少一个叶片中的改变的直接测量。特别地,尤其当冰可能形成在转子的至少一个叶片上由此改变所述至少一个叶片的质量分布和/或形状时,确定的共同叶片频率可用于冰检测。特别地,确定的共同叶片频率可用于转子的至少一个叶片的破裂检测。特别地,确定的共同叶片频率可用于估计转子的至少一个叶片的荷载。特别地,确定的共同叶片频率可用于对转子的至少一个叶片分类。 特别地,确定的共同叶片频率可用于叶片修理需要的自动检测。特别地,确定的共同叶片频率可用作单元的输入参数,该单元被配置用于特别地针对转子速度规避因素(avoider)适配(特别是减小)转子的旋转速度。特别地,至少一个上述应用可用于所述操作风轮机的方法。本发明的上述方面和另外方面通过将要在下文描述的实施例的例子而变得清楚, 并且参照实施例的例子对本发明的上述方面和另外方面进行解释。将参照实施例的例子在下文更详细地描述本发明,但本发明不限于所述实施例的例子。


图IA表示风轮机的透视图。图IB表示图IA中的风轮机的机舱的正视图。图IC表示图IA中的风轮机的机舱的俯视图。图2A表示根据本发明的第一示例性实施例用于确定图IA中的风轮机的转子的共同叶片频率的装置。
图2B表示根据本发明的第一示例性实施例用于确定图IA中的风轮机的转子的共同叶片频率的另一装置。图3A表示显示图IA中的风轮机的机舱的加速度的频谱的曲线图。图;3B表示显示图IA中的风轮机的机舱的加速度的另一频谱的曲线图。图4A表示根据本发明的第二示例性实施例用于确定图IA中的风轮机的转子的共同叶片频率的装置。图4B表示根据本发明的第二示例性实施例用于确定图IA中的风轮机的转子的共同叶片频率的另一装置。
具体实施例方式附图中的图解是示意性的。应该注意的是,在不同的附图中,相似或相同的元件提供有相同的标号或者提供有仅在第一数字内与对应标号不同的标号。参照图1A,表示了风轮机100。风轮机100包括塔架102,机舱104安装在塔架102 上。机舱104的前面部分形成为包括轮毂106和三个叶片108a-c的转子105。轮毂106沿机舱104的纵向方向110延伸,且叶片108a-c安装在垂直于机舱104的纵向方向110的平面111中。然而,平面111也可相对于机舱104的纵向方向110倾斜。轮毂105经齿轮箱连接到发电机。发电机和齿轮箱都布置在机舱104内。加速度表112在塔架102上面放置在机舱104内。被配置用于感测叶片108a_C 之一的方位角的方位角传感器放置在叶片108a-c之一中,其中方位角与在旋转平面111内
测量的叶片108a-c的旋转角ΦΟ)
相同。替代地,叶片108a-c中的每一个可包括方位角传感器。利用定义叶片108a-c的旋转平面111并垂直于机舱104的纵向延伸部分和/或沿着y方向110的轮毂延伸部分的笛卡尔坐标轴x、z按照球面坐标测量旋转角我/)。另外,叶片108a-c中的每一个相对于彼此的位置由从旋转角#</.)的零点测量的相数炉定义。例如,叶片108a可包括相位值-=0°,
叶片10 包括相位值ρ =120°和相应地而叶片10 包括相位值-=240°和相应地用于确定转子105的叶片108a-c的共同叶片频率的装置包括加速度表112和安装在叶片108a-c之一内的方位角量传感器。该装置可布置在风轮机100内(特别地,布置在塔架102或机舱104内),或者可位于风轮机100的外部。在下面,将参照图2A-4B解释用于确定风轮机100的叶片108a_C的共同叶片频率的方法和装置218a、2im3、418a、4im3的示例性实施例。参照图2A,将解释相应方法和相应装置218a的第一示例性实施例。在第一步骤中,使用如WO 2009/000787 A2中所述的监测风轮机的叶片频率的方法和用于执行这种方法的监测系统确定叶片108a-c中的每一个的叶片边缘频率。共同叶片频率计算为确定的叶片边缘频率的平均值。如WO 2009/000787 A2中详细所述,通过下面两种技术确定叶片108a_c的叶片边缘频率
沿Χ方向的机舱加速度由加速度表112测量,而旋转角(即,方位角)由方位角传感器感测。方位角的余弦值与测量的沿χ方向的机舱加速度相乘(调制)。通过使用方位角的余弦值,主要监测每个叶片的沿χ方向的振动。基于以下理论实现这一点叶片边缘的频率(沿χ方向)在叶片108a-c处于垂直位置(0或180度)时对具有加速度表112的机舱 104具有最大影响,并且在叶片108a-c处于水平位置(90或270度)时对机舱104几乎没有影响。通过使用分别与0度、120度和240度的叶片108a-c的移位对应的叶片频率(在典型三叶片风轮机中)并且把快速傅里叶变换(FFT)应用于调制的加速度表传感器信号, 监测叶片108a-c中的每一个的叶片边缘频率。另一方面,沿y方向(沿着机舱延伸部分110)的从加速度表112测量的振动用于计算每个叶片边缘频率。这里,当叶片108a-c在整个360度的旋转期间沿y方向振动时,不适合使用方位角的余弦值。但当与叶片108a-c的底部垂直位置中相比塔架102的弯矩荷载在叶片108a-c的顶部垂直位置中更大时,将会适合把感测的振动乘以模拟这
些情况的函数,诸如常数(例如,数字1)与方位角#的余弦值相加然后把这个数除以2
((1+cosine (方位角^ ))/2) 0这个函数在0和360度的范围中给出1和0之间的数字,且由此如以上进一步所述提取每个叶片边缘频率。观察χ方向,假设机舱104的加速度是叶片108a-c中的每一个的边缘谐振频率的度量,它可以由下面的公式描述
其中A、B、C分别表示叶片108a-c,表示叶片边缘加速度,ω表示叶片108a_C的
边缘谐振角频率, 表示时间,而*表示常数。频率/经关系_ = 2π/与角频率ω联系。
叶片108a-c中的边缘振动利用Ip调制(一次/每转调制)耦合到机舱104中。 假设叶片边缘振动大多数与机舱104耦合,当叶片108a-c具有垂直位置时,机舱振动可近似为
其中表示机舱振动,^表示叶片108a/A边缘加速度,aB表示叶片108b/B边
缘加速度,&表示叶片108c/C边缘加速度,#表示转子方位角并且也表示常数。
ax的频谱描述于图3A中。使用FFT或DFFT可获得该频谱。0074] 然后关于个体叶片位置的信号Qx 的调制给出以下定义的三个新信号图;3B表示叶片108a-c/A_C的频谱amA_e。在大约1. 19 Hz以及在大约1. 22 Hz看见信号峰。这里,与位于1. 19 Hz的峰的中心关联的频率值对应于叶片108c/C的叶片频率, 而与位于1. 22 Hz的峰的中心关联的频率对应于叶片108a、b/A、B的叶片频率。应该注意的是,叶片108a、b/A、B的叶片频率近似相同。使用FFT或DFFT可在频域中发现频率峰。然后能够使用滤波器对FFT数据进行平滑处理,并且与最大信号值对应的频率可以是叶片边缘频率。使用锁相环(PPL)也能够在时域中检测频率峰,所述PPL使内部振荡器与amA_e信号同步。当PPL同步时,PPL振荡器频率将会等于叶片边缘频率。通过使用= ■ 1 +々获取提取的叶片边缘频率fA、fB、fc的平均
权利要求
1. 一种确定风轮机(100)的转子(105)的共同叶片频率ifC0_J的方法,该方法包括-测量表示风轮机(100)的部件(102,104)的振动的振动量-基于测量的振动量(αχ (ι,#) t Txif, (/))确定共同叶片频率(fco_j。
2.根据前面权利要求所述的方法,其中所述部件(102,104)是风轮机(100)的机舱 (104)和风轮机(100)的塔架(102)中的至少一个。
3.根据前面权利要求所述的方法,其中所述振动量U、(/,#),T^it))的测量包括-使用加速度表(112)或应变仪测量振动量(αχ {!,φ), LV if))。
4.根据前面权利要求中任一项所述的方法,该方法还包括-测量表示转子(105)的旋转角(Φ )的旋转角度值的量,其中所述共同叶片频率ifc。_J的确定另外基于所述表示旋转角度值的量。
5.根据权利要求4所述的方法,其中所述转子(105)包括至少两个叶片(lOSa-c), 其中表示旋转角度值的量的测量包括测量转子(105)的至少一个叶片(lOSa-c)的方位角(φ )的方位角值、转子(105)的转子旋转速度的转子旋转速度值或发电机的发电机旋转速度的发电机旋转速度值。
6.根据权利要求4或5所述的方法,其中所述共同叶片频率ifcommJ的确定包括-把振动量αχ{β、φ、·)与和旋转角度量相关的项的三角函数相乘。
7.根据前面权利要求中任一项所述的方法,其中所述共同叶片频率的确定包括-进行振动量(.£+ix(/,#) , Tm(t))的频率分析。
8.根据前面权利要求中任一项所述的方法,其中所述转子(10 包括至少两个叶片 (lOSa-c),其中所述共同叶片频率、fc_J的确定包括-确定表示叶片(lOSa-c)中的每一个的振动的各频率量(fA, fB, fc), -对确定的各频率量化,fB, Α)求平均数。
9.根据权利要求1至7中任一项所述的方法,其中所述转子(10 包括至少两个叶片 (lOSa-c),其中所述共同叶片频率ifc_J的确定包括-确定表示所述至少两个叶片(lOSa-c)的共同振动的频率量if—丄
10.根据权利要求9所述的方法,其中所述振动量(αχ{β4),TmH))的测量包括-在风轮机(100)的空闲模式下测量振动量(r s(0 )。
11.根据权利要求1至7中任一项所述的方法,其中所述振动量(U、)的测量包括-在时间段期间测量振动量(UO ), 其中所述共同叶片频率U的确定包括-对位于与频率量if)和转子(105)的转子旋转频率D关联的频率量的振动量求平均数。
12.—种操作风轮机(100)的方法,该方法包括-按照根据权利要求1至11中任一项所述的方法确定风轮机(100)的转子(10 的共同叶片频率ifc_J,-基于确定的共同叶片频率ifc_J适配风轮机(100)的工作模式。
13.根据前面权利要求所述的方法,其中所述风轮机(100)的转子(10 包括至少两个叶片(IOSa-C),其中所述共同频率指示至少一个叶片(IOSa-C)的质量分布和所述至少一个叶片(108a-c)的形状中的至少一项。
14.一种用于确定风轮机(100)的转子(105)的共同叶片频率ifc_J的装置018 218b, 418a, 418b),该装置 018ει,218b, 418a, 418b)包括-测量单元(112),被配置为测量表示风轮机(100)的部件(102,104)的振动的振动确定共同叶片频
全文摘要
本发明涉及确定转子共同叶片频率的方法和装置及操作风轮机的方法。一种确定风轮机(100)的转子(105)的共同叶片频率的方法包括测量表示风轮机(100)的部件(102,104,105,106,108a-c)的振动的振动量,并基于测量的振动量确定共同叶片频率。
文档编号F03D7/00GK102410139SQ20111028126
公开日2012年4月11日 申请日期2011年9月21日 优先权日2010年9月21日
发明者劳尔伯格 H. 申请人:西门子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1