专利名称:气化发电设备的制作方法
技术领域:
本发明涉及气化发电设备,尤其涉及气化炉的预热运转。
背景技术:
通常,在煤气化发电设备中,通过气化炉使煤气化而形成为生成气体,通过产生的生成气体来驱动燃气轮机,从而使与燃气轮机连接的发电机发电。在煤气化发电设备的起动运转时,在气化炉中使轻油或天然气等起动用燃料燃烧来进行起动,从而因由起动用燃料生成的生成气体中含有的硫成分而使构成气化炉的壁、节煤器、蒸发器等发生酸露点腐蚀,或将生成气体中的尘埃固接,为了防止该情况,将气化炉内预热(升温)至露点温度以上。在专利文献I中公开如下技术利用作为预热气体的惰性气体对气化炉内进行预热,并使由废热回收锅炉加热后的供水(以下,称为“高温水”。)向气化炉循环而对气化炉的壁、节煤器、蒸发器从内部预热,从而缩短气化炉的预热运转时间。在先技术文献专利文献专利文献I日本专利第3676022号公报发明的概要发明要解决的课题然而,专利文献I所记载的发明在气化炉的预热时,在气化炉的壁、节煤器、蒸发器内的水的压力低的情况下,因朝着向气化炉的壁、节煤器、蒸发器供给水的锅炉水循环路供给高温水,从而可能在锅炉水循环路内发生溢流现象(减压沸腾)而产生锈蚀或过大的流速。为了防止锈蚀或过大的流速的产生,需要对向锅炉水循环路供给的高温水的流量设 置上限,从而存在无法缩短气化炉的预热时间且无法提高煤气化发电设备的运用性的问题。
发明内容
本发明鉴于这样的情况而提出,其目的在于提供一种能够缩短气化炉的预热时间的气化发电设备。为了解决上述课题,本发明的气化发电设备采用以下的手段。本发明涉及的气化发电设备具备气化炉,其具有供与炉内进行热交换的流体流通的流体流通路,并使燃料气化而产生生成气体;气体精制设备,其从该气化炉产生的生成气体除去杂质;燃气轮机,其由通过该气体精制设备精制后的气体进行驱动;热交换器,其通过从该燃气轮机导出的排气对流体进行加热,其中,在对所述气化炉进行预热时,向被导入了由加压气体加压后的流体的所述流体流通路供给由所述热交换器加热后的流体。其结果是,在气化炉的预热时,通过将加压后的流体和加热后的流体向流体流通路供给,能够防止在流体流通路中产生的溢流现象,从而能够在不降低加热的流体的供给量的情况下向流体流通路进行供给。因此,能够缩短气化炉的预热时间,从而能够提高气化发电设备的运用性。在气化发电设备的起动运转时,向燃气轮机另行供给起动用燃料。由此,燃气轮机开始起动运转,但在本发明中,在进行气化炉的预热时,将加压后的流体和加热后的流体向流体流通路供给,因此能够实现气化炉的预热时间的缩短,能够提前在气化炉中产生生成气体而向燃气轮机供给。因此,能够减少燃气轮机的起动用燃料的消耗,从而能够实现气化发电设备的起动运转时的成本削减。根据本发明的第一方式涉及的气化发电设备,所述加压后的流体被加压成所述加热后的流体的饱 和压力以上。通过将经由气体区域加压成饱和压力以上的流体向流体流通路供给,从而加压后的流体与加热后的流体合流,能够防止流体流通路内的流体成为过大流速。因此,不需要限制加热后的流体的供给量,能够提高供给量的上限。因此,能够缩短气化炉的预热时间而提高气化发电设备的运用性。根据本发明的第二方式涉及的气化发电设备,所述流体流通路具有流体区域和气体区域,所述加压气体向所述气体区域供给。通过向流体流通路的气体区域供给加压气体来对流体流通路的流体区域的流体进行加压,从而能够防止加压后的流体与加热后的流体合流时流体流通路内的流体成为过大流速的情况。因此,不需要限制加热后的流体的供给量,能够提高供给量的上限。因而,能够缩短气化炉的预热时间,从而提高气化发电设备的运用性。本发明的第三方式涉及的气化发电设备,所述加压气体为非冷凝性气体。使用非冷凝性气体对向加热后的流体合流的流体进行加压。另外,非冷凝性气体不会冷凝而泄水化。因此,能够在将向流体流通路引导的流体维持为饱和压力以上的状态下对气化炉进行预热。因此,能够缩短气化炉的预热时间,从而提高气化发电设备的运用性。发明效果在气化炉的预热时,将加压后的流体和加热后的流体向流体流通路供给,因此能够防止在流体流通路中产生的溢流现象。因此,能够在不降低加热后的流体的供给量的情况下将加热后的流体向流体流通路供给,因此能够实现气化炉的预热时间的缩短。并且,通过缩短气化炉的预热时间,能够提高气化发电设备的运用性,并能够提前在气化炉中产生生成气体而向燃气轮机供给。因此,能够减少燃气轮机的起动用燃料的消耗,从而能够实现气化发电设备的起动运转时的成本削减。
图I是本发明的一实施方式涉及的煤气化复合发电设备的简要结构图。图2是图I所示的煤气化炉的预热系统的简要结构图。
具体实施例方式图I中示出本发明的一实施方式涉及的煤气化复合发电设备的简要结构图。如图I所示,以煤为燃料的煤气化复合发电设备(IGCC :IntegratedCoalGasification Combined Cycle) 100主要具备使煤(燃料)气化的煤气化炉(气化炉)101 ;从由煤气化炉101气化后的生成气体除去尘埃及硫成分的气体精制设备(未图示);使由气体精制设备精制后的精制气体燃烧来驱动的燃气轮机106 ;对从燃气轮机106导出的排出气体(排气)的热量进行回收的废热回收锅炉(热交换器)107;被导入由废热回收锅炉107产生的蒸气的蒸气轮机109 ;由燃气轮机106及蒸气轮机109驱动的发电机(未图示)。煤气化炉101是使从未图示的煤供给路径供给的作为燃料的煤气化而产生生成气体的装置。另外,煤气化炉101使水(流体)在设置于壁部的水管154(参照图2)等中流动来产生蒸气。在该例子中,煤气化炉101为具有煤气化炉循环水泵103(在图I中仅示出一台。)的所谓强制循环型锅炉。煤气化炉101具备为了从下方向上方导入生成的生成气体而形成在煤气化炉101的上游侧的煤气化部(未图示);与煤气化炉101的下游侧连接,将生成气体从上游侧向下游侧顺次引导的蒸发器151、过热器(未图示)、节煤器153。生成气体在通过蒸发器151、过热器、节煤器153时,在蒸发器151、过热器、节煤器153中分别进行热交换。煤气化·部与蒸发器151、过热器、节煤器153 —起收纳在煤气化炉压力容器102内。由此,防止生成气体向煤气化炉压力容器102外流出的情况。在煤气化部从下方设有燃烧器(未图示)及减压器(未图示)。燃烧器使煤及炭的一部分燃烧。燃烧器采用射流床,但也可以为流动床式或固定床式。在燃烧器及减压器上分别设有燃烧器燃烧嘴(未图示)及减压器燃烧嘴(未图示)。从煤供给路径向上述的燃烧嘴供给煤。向燃烧器燃烧嘴供给由后述的燃气轮机106的压缩机(未图示)压缩后的空气。即,本实施方式的煤气化复合发电设备(气化发电设备)100为所谓的吹气。在此,从燃气轮机106的压缩机供给的空气作为气化剂使用。减压器通过从燃烧器引导来的高温的气体而使煤气化。由此,从煤生成一氧化碳或氢等可燃性的生成气体。煤气化反应是使煤及炭中的碳与高温气体中的二氧化碳及水分反应而生成一氧化碳和氢的吸热反应。从煤气化炉循环水泵103向蒸发器151供给水。供给到蒸发器151的水通过与从减压器导入的高温的生成气体进行热交换而成为蒸气,并被向作为气水分离器且具有气体区域及水区域(流体区域)的煤气化炉锅筒152引导。将煤气化炉锅筒152内的具有水的范围称为水区域,将不具有水的范围称为气体区域。将在煤气化炉锅筒152内通过分离出水分而产生的蒸气向过热器引导。引导到过热器的蒸气通过与高温的生成气体进行热交换而成为过热蒸气,并被向蒸气轮机109引导。向节煤器153供给通过高压供水泵113升压后的水。供给到节煤器153的水与通过向蒸发器151及过热器提供热量而温度降低了的生成气体进行热交换,由此温度上升。温度上升了的水被向煤气化炉锅筒152引导。在通过蒸发器151、过热器、节煤器153而温度下降了的生成气体中含有作为杂质的尘埃、硫化氢或硫化羰这样的硫化合物,将含有尘埃及硫化合物的生成气体从煤气化炉101向气体精制设备引导。气体精制设备具备脱尘装置104和脱硫装置105。脱尘装置104是除去作为生成气体中的杂质的尘埃的装置。脱硫装置105是除去作为生成气体中的杂质的硫化合物的装置。生成气体通过脱尘装置104及脱硫装置105进行脱尘和脱硫,从而成为被精制后的清洁的精制气体而被向燃气轮机106引导。被引导到燃气轮机106的精制气体首先向在燃气轮机106上设置的燃烧器(未图示)输送。燃气轮机106具备燃烧器、由通过燃烧器进行燃烧后的废气驱动的涡轮(未图示)、向燃烧器送出高压的空气的压缩机(未图示)。在燃烧器中,被引导来的精制气体和空气燃烧而排出废气(排气)。从燃烧器排出后的废气被向涡轮引导,而对涡轮进行旋转驱动。通过涡轮由废气进行旋转驱动,与涡轮连接的旋转轴(未图示)进行旋转。在旋转的旋转轴上连接有压缩机,压缩机通过旋转轴旋转而进行旋转驱动,对空气进行压缩。由压缩机压缩后的空气被向燃烧器和煤气化炉101引导。并且,由于在旋转轴上连接有发电机,因此通过使旋转轴旋转,驱动发电机而进行发电。 对燃气轮机106进行旋转驱动的废气被向废热回收锅炉107引导。废热回收锅炉107是通过从燃气轮机106引导来的废气的热量来产生过热蒸气的装置。在废热回收锅炉107中被回收了热量的废气从烟囱108向煤气化复合发电设备100外排出。在废热回收锅炉107中产生的过热蒸气被向蒸气轮机109引导。另外,从上述的煤气化炉锅筒152及过热器向蒸气轮机109引导过热蒸气。蒸气轮机109与燃气轮机106连接于相同旋转轴,成为所谓的一轴式的组合系统。需要说明的是,不局限于一轴式的组合系统,也可以为不同轴式的组合系统。由燃气轮机106驱动的旋转轴通过向蒸气轮机109引导蒸气而驱动力进一步增力口。因此,与旋转轴连接的发电机的发电量增加。对蒸气轮机109进行旋转驱动后的蒸气被向凝汽器111引导。被引导到凝汽器111的蒸气被海水冷却而返回水(冷凝水)。冷凝水通过低压供水泵112向废热回收锅炉107供给,并通过被引导到废热回收锅炉107的废气而成为高温的水。高温的水的一部分通过高压供水泵113被作为升温供水(加热流体)135而向后述的锅炉水循环路径131 (参照图2)供给,剩余的部分被再次向废热回收锅炉107内引导而成为过热蒸气。接着,利用图2,对煤气化炉的预热的方法进行说明。在图2中示出煤气化炉的预热系统。煤气化炉101的预热系统具备从煤气化炉锅筒152向在煤气化炉101的壁部设置的水管154引导水的锅炉水循环路径(流体流通路)131 ;将在煤气化炉锅筒152中产生的蒸气向未图示的过热器引导的过热器入口管134 ;将从锅炉水循环路径131的一部分分支出的水向节煤器153引导的节煤器循环路径132 ;将从锅炉水循环路径131的一部分进一步分支出的水向蒸发器151引导的蒸发器循环路径133。另外,从上述的废热回收锅炉107(参照图I)的一部分引导来的例如被加热成约100°C的暖气用的供水(以下,称为“升温供水”。)135向与煤气化炉锅筒152连接的锅炉水循环路径131合流。合流了升温供水(加热流体)135后的锅炉水循环路径131内的水由煤气化炉循环水泵103升压。升压后的水经由锅炉水循环路径131、从锅炉水循环路径131分支出的节煤器循环路径132及蒸发器循环路径133向在煤气化炉101上设置的水管154、节煤器153、蒸发器151供给。需要说明的是,与煤气化炉锅筒152连接的过热器入口管134将通过使煤气化炉锅筒152内的水气水分离而产生的饱和蒸气向过热器供给。煤气化复合发电设备100(参照图I)在停止起动的情况下,锅炉水循环路径131内的水的压力成为低压。因此,在煤气化复合发电设备100的起动运转时,使温度为100°C的升温供水135向从煤气化炉锅筒152导出的低压的锅炉水循环路径131内的水合流的情况下,在锅炉水循环路径131内会产生溢流现象。在此,通过气体供给路径136将通过在煤气化复合发电设备100内设置的空气分离装置110而从空气产生的氮气(加压气体)向积存有低温的水(大气温度 约80°C左右)的煤气化炉锅筒152内的气体区域供给。通过使氮气成为高压并将其向煤气化炉锅筒152内的气体区域引导,由此煤气化炉锅筒152内从约4MPa被加压成lOMPa。
通过将煤气化炉锅筒152内加压,煤气化炉锅筒152内的水成为比升温供水135的饱和压力高的高压。由此,即使在将煤气化炉锅筒152内的被加压了的低温的水(加压流体)向锅炉水循环路径131导出,并与高温的升温供水135合流的情况下,也能够防止在锅炉水循环路径131内产生溢流现象的情况。通过这样抑制溢流现象,能够在不减少向锅炉水循环路径131合流的升温供水135的流量的情况下从锅炉水循环路径131向节煤器循环路径13、蒸发器循环路径133供给温度上升了的水(约250°C 350°C左右),并且,通过从锅炉水循环路径131、节煤器循环路径132、蒸发器循环路径133向水管154、节煤器153、蒸发器151供给温度上升了的水,从而能够从内部对煤气化炉101进行预热。接着,对煤气化复合发电设备的起动运转的方法进行说明。燃气轮机106 (参照图I)通过向燃气轮机106的燃烧器供给石油等起动用燃料,并使供给到燃烧器的起动用燃料燃烧而产生的废气来进行起动。从燃气轮机106的燃烧器导出的废气向废热回收锅炉107供给,对从未图示的供水路径供给的水进行加热而产生高温的水和蒸气。在废热回收锅炉107中产生的蒸气被向蒸气轮机109引导。由此,使蒸气轮机109起动。在废热回收锅炉107中产生的高温的水的一部分被从废热回收锅炉107取出而由高压供水泵113升压。升压后的高温的水作为升温供水135而向锅炉水循环路径131 (参照图2)供给,通过向锅炉水循环路径131供给的升温供水135和由煤气化炉锅筒152加压后的水,如上述那样将煤气化炉101预热。如以上那样,通过将煤气化复合发电设备100的各设备预热,从而使煤气化复合发电设备100起动。如以上那样,根据本实施方式涉及的煤气化复合发电设备,起到以下的作用效果。在煤气化炉(气化炉)101的预热时,向煤气化炉锅筒152内的气体区域供给氮气(加压气体),并将加压成升温供水(加热流体)135的饱和压力以上的低温的水(加压流体)和升温供水135向锅炉水循环路径(流体流通路)131供给。由此,能够防止加压后的水与升温供水135向锅炉水循环路径131合流时产生的溢流现象及过大流速。因此,能够在不使升温供水135的供给量降低的情况下向锅炉水循环路径131进行供给。因而,能够实现煤气化炉101的预热时间的缩短,能够使煤气化复合发电设备(气化发电设备)100的运用性提高,并且能够提前在煤气化炉101中产生生成气体而向燃气轮机106供给,因此能够降低燃气轮机106的起动用燃料的消耗,从而能够实现煤气化复合发电设备100的起动运转时的成本削减。另外,对向升温供水135合流的水进行加压的氮气(非冷凝性气体)不会冷凝而泄水化,因此能够在将向锅炉水循环路径131引导的水维持为升温供水135的饱和压力以上的状态下对煤气化炉101进行预热。因而,能够缩短煤气化炉101的预热时间,从而提高煤气化复合发电设备100的运用性。需要说明的是,在本实施方式中,使用氮气进行了说明,但本发明没有限定于此,也可以使用非冷凝性且非腐蚀性的气体。另外,说明了氮气使用由空气分离装置110分离出的氮气的情况,但也可以另行设置产生氮气的设备。
并且,说明了将氮气向煤气化炉锅筒152供给的情况,但也可以向从锅炉水循环路径131、节煤器循环路径132、蒸发器循环路径133经由水管154、节煤器153、蒸发器151而直至煤气化炉锅筒152的路径、以及从煤气化炉锅筒152经由过热器入口管134而直至蒸气轮机109的路径上的具有气体区域的部分供给。符号说明100煤气化复合发电设备(气化发电设备)101煤气化炉(气化炉)IO2煤气化炉压力容器103煤气化炉循环水泵104脱尘装置105脱硫装置106燃气轮机107废热回收锅炉(热交换器)108 烟囱109蒸气轮机110空气分离装置111凝汽器112低压供水泵113高压供水泵131锅炉水循环路(流体流通路)132节煤器循环路径133蒸发器循环路径134过热器入口管135升温供水(加热流体)136气体供给路径151蒸发器152煤气化炉锅筒153节煤器
154 水管
权利要求
1.一种气化发电设备,其中, 具备 气化炉,其具有使与炉内进行热交换的流体流通的流体流通路,并使燃料气化而产生生成气体; 气体精制设备,其从该气化炉产生的生成气体中除去杂质; 燃气轮机,其由通过该气体精制设备精制后的气体来驱动; 热交换器,其利用从该燃气轮机导出的排气对流体进行加热, 在对所述气化炉进行预热时,向被导入由加压气体加压后的流体的所述流体流通路供给由所述热交换器加热后的流体。
2.根据权利要求I所述的气化发电设备,其中, 所述加压后的流体被加压成所述加热后的流体的饱和压力以上。
3.根据权利要求I或2所述的气化发电设备,其中, 所述流体流通路具有流体区域和气体区域, 所述加压气体向所述气体区域供给。
4.根据权利要求I至3中任一项所述的气化发电设备,其中, 所述加压气体为非冷凝性气体。
全文摘要
本发明提供一种气化发电设备,其具备气化炉(101),其具有供与炉内进行热交换的流体流通的流体流通路(131),并使燃料气化而产生生成气体;气体精制设备,其除去由气化炉(101)产生的生成气体中含有的杂质;燃气轮机,其由通过气体精制设备精制后的气体进行驱动;热交换器,其通过从燃气轮机导出的排气对流体进行加热,其中,在对气化炉(101)进行预热时,将由热交换器加热后的流体通过加压气体进行加压而向流体流通路(131)供给。
文档编号F02C3/28GK102906394SQ20118002108
公开日2013年1月30日 申请日期2011年5月19日 优先权日2010年5月20日
发明者羽有健太, 柴田泰成, 北川雄一郎, 品田治 申请人:三菱重工业株式会社