车辆的控制装置以及车辆的控制方法
【专利摘要】在具备发动机、能够电加热的催化剂装置(EHC)和在车速小于阈值车速的大致停车状态下产生与发动机动力相应的电力的第1电动发电机(MG)的车辆中,ECU(200)基于加速踏板操作量A以及车速V,对是否在大致停车状态下进行了大加速器操作进行判定(211)。在判定为在大致停车状态下进行了大加速器操作的情况下,ECU(200)启动通电定时器,进行EHC通电直到通电定时器达到基准通电时间α,在通电定时器达到基准通电时间α后停止EHC通电(220)。
【专利说明】车辆的控制装置以及车辆的控制方法
【技术领域】
[0001]本发明涉及具备净化发动机的排气的电加热式催化剂(Electrical HeatedCatalyst,以下也称作“EHC”)的车辆的控制。
【背景技术】
[0002]通常,在具备发动机的车辆中,具备对发动机的排气进行净化的催化剂。若该催化剂没有达到活性温度,则无法充分地净化排气。因此,以往,提出了构成为能够通过电加热器等来对催化剂进行电加热的EHC的方案。
[0003]在日本特开2009-35226号公报(专利文献I)中公开了以下技术:在具有发动机、EHC、电动发电机以及电池的混合动力车辆中,在基于车辆的要求驱动力和电池剩余容量而判断为需要发动机的运行时,基于车辆的要求驱动力、电池剩余容量和发动机各部分的温度状态,向EHC供给电力来对EHC加热。
[0004]在先技术文献
[0005]专利文献1:日本特开2009-35226号公报
[0006]专利文献2:日本特开2009-286337号公报
[0007]专利文献3:日本特开平10-238381号公报
[0008]专利文献4:日本特开2002-285878号公报
【发明内容】
[0009]发明要解决的问题
[0010]然而,在具备在车辆起步时等利用发动机的动力来发电的发电机的车辆中,通常将发电机发电产生的电力用来对电池充电。但是,在发动机的动力根据由用户进行的比通常幅度大的加速器操作而发生了剧增的情况下,发电机的发电电力也会激增,可能会超过电池能够接受的电力。另一方面,若为了抑制发电机的发电电力而对发动机的动力进行限制,则会产生无法发挥用户所要求的驱动力这一问题。
[0011]本发明是为了解决上述问题而完成的发明,其目的在于,在具备发动机、EHC (能够电加热的催化剂装置)以及能够产生与发动机动力相应的电力的旋转电机的车辆中,能够对车辆的动力性能的恶化进行抑制。
[0012]用于解决问题的手段
[0013]本发明涉及的控制装置对具备发动机、能够电加热的催化剂装置以及第I旋转电机的车辆进行控制,所述催化剂装置对发动机的排气进行净化。第I旋转电机在车速小于第I车速的低速状态下产生与发动机的动力相应的电力。控制装置具备:切换装置,其对第I旋转电机与催化剂装置的电连接状态进行切换;和通电控制部,其通过控制切换装置来控制催化剂装置的通电。当车辆在上坡路上起步时、或者当在低速状态下进行了加速器操作量超过阈值操作量的大加速器操作时,通电控制部使催化剂装置通电预定时间。
[0014]优选当车辆在上坡路上起步时、或者当在低速状态下进行了大加速器操作时,通电控制部推定对催化剂装置通电了基准时间时的催化剂温度,在催化剂温度小于允许温度的情况下使催化剂装置通电,在催化剂温度超过所述允许温度的情况下不使催化剂装置通电。
[0015]优选车辆还具备第2旋转电机,该第2旋转电机连接于驱动轴,其转速与车速成比例。基准时间是预测为车速从小于第I车速到达到第2车速所需要的时间。第2车速被设定为如下车速值,所述车速值是推定为即使不将第I旋转电机的发电电力通到催化剂装置也能够用第2旋转电机来消耗第I旋转电机的发电电力的值。
[0016]优选车辆还具备能够在与第I旋转电机之间授受电力的蓄电装置。当车辆在上坡路上起步且蓄电装置能够接受的电力值小于阈值电力值时、或者当在低速状态下进行了大加速器操作且蓄电装置能够接受的电力值小于阈值电力值时,通电控制部使催化剂装置通电。
[0017]优选车辆还具备行星齿轮装置,该行星齿轮装置包括:齿圈,其连接于驱动轴;太阳轮,其连接于第I旋转电机;小齿轮,其与太阳轮以及齿圈接合;以及齿齿轮架,其连接于发动机,并支承小齿轮以使得小齿轮能够自转。
[0018]本发明的其他方式涉及的控制方法是具备发动机、能够电加热的催化剂装置、连接于发动机的第I旋转电机以及对第I旋转电机与催化剂装置的连接状态进行切换的切换装置的车辆的控制装置进行的控制方法,所述催化剂装置对发动机的排气进行净化。第I旋转电机在车速小于第I车速的低速状态下产生与发动机的动力相应的电力。控制方法包括:判定步骤,判定车辆是否在上坡路上起步或者是否在低速状态下进行了加速器操作量超过阈值操作量的大加速器操作;和控制步骤,当车辆在上坡路上起步时、或者当在低速状态下进行了大加速器操作时,控制切换装置以使催化剂装置通电预定时间。
[0019]发明效果
[0020]根据本发明,能够在具备发动机、EHC和能够产生与发动机的动力相应的电力的旋转电机的车辆中对车辆的动力性能的恶化进行抑制。
【专利附图】
【附图说明】
[0021]图1是车辆的整体框图。
[0022]图2是表示在大致停车状态下的列线图。
[0023]图3是表示发动机转速Ne与发动机转矩Te的关系的图。
[0024]图4是E⑶的功能框图。
[0025]图5是表示E⑶的处理顺序的流程图。
【具体实施方式】
[0026]以下,参照附图对本发明的实施例进行详细说明。此外,对图中相同或者相当部分标注相同附图标记而不重复其说明。
[0027]图1是本发明实施例的车辆I的整体框图。车辆I具备发动机10、电动发电机(Motor Generator,以下称作“MG”)20、动力分配装置40、减速器50、功率控制单元(PowerControl Unit,以下称作“PQJ”)60、电池70、驱动轮80和电子控制单元(ElectronicControl Unit,以下称作 “ECU”)200。[0028]发动机10是通过在使吸入到燃烧室的空气与燃料的混合气体燃烧时所产生的燃烧能来产生使曲轴旋转的驱动力的发动机。发动机10的点火正时、燃料喷射量和吸入空气量等根据来自ECU200的控制信号进行控制。
[0029]MG20包括第1MG21和第2MG22。第1MG21和第2MG22是交流的旋转电机,例如是三相交流同步电动机。此外,在以下的说明中,在不需要对第1MG21和第2MG22进行区别说明的情况下,不对其进行区别而记述为MG20。
[0030]车辆I是利用从发动机10和第2MG21中的至少一方输出的驱动力来行驶的混合动力车辆。发动机10所产生的驱动力由动力分配装置40分配到2条路径。S卩,一方是经由减速器50向驱动轮80传递的路径,另一方是向第1MG21传递的路径。
[0031]动力分配装置40包括具备太阳轮、小齿轮、齿轮架和齿圈的行星齿轮。小齿轮与太阳轮和齿圈接合。齿轮架支承小齿轮以使得小齿轮能够自转,并且,齿轮架连接于发动机10的曲轴。太阳轮连接于第1MG21的旋转轴。齿圈连接于第2MG22的旋转轴和减速器50。这样,发动机10、第1MG21以及第2MG21经由包括行星齿轮的动力分配装置40而连接,从而发动机转速Ne、第IMG转速Nml以及第2MG转速Nm2在列线图中成为以直线相连的关系(参照后述图2)。
[0032]P⑶60和电池70通过正极线PLl以及负极线GLl而连接。P⑶60根据来自E⑶200的控制信号而工作,对从电池70供给到MG20的电力或者从MG20供给到电池70的电力进行控制。电池70储存用于驱动MG20的电力。电池70代表性地包括镍氢或锂离子等的直流二次电池。电池70的输出电压例如是200伏左右。此外,也可以代替电池70而使用大
容量电容器。
[0033]从发动机10排出的排气通过设置于车辆I的地板下的排气通路130而排出到大气中。排气通路130从发动机10延伸到车辆I的后端部。
[0034]在排气通路130的中途设置有EHC (电加热式催化剂)140。EHC140构成为包括:催化剂,其净化排气;和加热器,其构成为能够对催化剂进行电加热。此外,能够对EHC140应用各种公知的结构。
[0035]P⑶60和EHC140通过正极线PL2以及负极线GL2而连接。来自电池70的电力以及由MG20发电产生的电力经由P⑶60向EHC140供给。在正极线PL2以及负极线GL2设置有EHC电源100。此外,电池70与EHC140的连接关系不限于图1所示的关系。
[0036]EHC电源100在内部具备继电器,基于来自E⑶200的控制信号对EHC140与POT60的电连接状态进行切换。当EHC电源100内部的继电器闭合时,EHC140与K:U60连接,EHC140内的加热器被通电(以下也称作“EHC通电”)。通过该EHC通电来对EHC140内的催化剂进行预热。当EHC电源100内部的继电器断开时,EHC140与P⑶60的连接被切断,EHC通电停止。这样,通过E⑶200控制EHC电源100来控制EHC140内的加热器的通电量。
[0037]车辆I还具备监视单元151、电流传感器152、电压传感器153、转速传感器154、分解器(resolver) 155、156、车速传感器157、加速踏板位置传感器158和加速度传感器159。
[0038]监视单元151监视电池70的状态(电池电流lb、电池电压Vb、电池温度Tb等)。电流传感器152检测在EHC140中流动的电流Ic。电压传感器153检测施加于EHC140的电压Vc0转速传感器154检测发动机转速Ne。分解器155、156分别检测第I MG21的转速Nml和第2 MG22的转速Nm2。车速传感器157检测车速V。加速踏板位置传感器158检测用户的加速踏板操作量A。加速度传感器159检测作用于车辆I的加速度(包括重力加速度)G。这些单元以及传感器的检测结果向E⑶200输入。
[0039]ECU200内置有未图示的CPU (Central Processing Unit)以及存储器,基于存储在存储器中的映射和程序以及各传感器的检测结果来执行预定的运算处理,并利用该运算处理的结果来控制各设备以使得车辆I成为所希望的状态。
[0040]E⑶200根据电池温度Tb等来设定电池70能够接受的电力值Win (单位为瓦特),并对电池70的实际接受电力进行控制以使得其不超过能够接受的电力值Win。由此,电池70的劣化受到抑制。
[0041]图2表示在大致停车状态下的列线图。所谓大致停车状态,是指车速V的绝对值大致为零(例如lkm/h以下)的状态。如上所述,发动机转速Ne、第IMG转速Nml、第2MG转速Nm2在列线图中成为以直线相连的关系。此外,由于第2MG30与驱动轮80同步旋转,所以第2MG转速Nm2与车速V成比例。
[0042]在大致停车状态下,车辆驱动转矩(使驱动轮80旋转的转矩)通过第2MG转矩Tm2(从第2MG22向驱动轮80传递的转矩)和发动机直行转矩T印(从发动机10经由动力分配装置40向驱动轮80传递的转矩)来确定。
[0043]图3是表示发动机转速Ne与发动机转矩Te的关系的图。如图3所示,在发动机转速Ne比较低的区域中,发动机转矩Te具有根据发动机转速Ne而增加的倾向。上述发动机直行转矩Tep与发动机转矩Te成比例。因此,通过使发动机转速Ne上升,能够使发动机直行转矩Tep增加(使车辆驱动转矩增加)。
[0044]返回图2,当在大致停车状态(第2MG转速Nm2大致是零的状态)下使发动机转速Ne增加时,从列线图的关系可知,第1MG20也根据发动机转速Ne而向正方向增加。此时,在第1MG21中产生与发动机转速Ne相应的电力。
[0045]因此,在通常的加速器操作中,发动机转速Ne的增加量比较小,第IMG转速Nml的增加量(即第1MG21的发电电力)也比较小(参照图2的箭头Al、BI)。
[0046]另一方面,当进行比通常幅度大的加速器操作(例如超过了 70%的加速器操作,以下称作“大加速器操作”)时,发动机转速Ne的增加量变为较大,第IMG转速Nml的增加量(即第1MG21的发电电力)也变为较大(参照图2的箭头A2、B2)。即,当在大致停车状态下进行大加速器操作时,第1MG21的发电电力会发生剧增。虽然需要将如此剧增的第1MG21的发电电力在某处消耗掉,但在大致停车状态下第2MG转速Nm2大致为零,无法期待通过第2MG22来进行电力消耗(消耗电力=转速X转矩,因此,在转速大致为零时,即使增大转矩消耗电力也几乎不会变大)。因此,优选将第1MG21的发电电力用来对电池70充电。
[0047]但是,如上所述,电池70的接受电力被限制为小于能够接受的电力值Win。因此,在第1MG21的发电电力超过电池70能够接受的电力值Win的情况下(更加严格地说,在第1MG21的发电电力超过电池70能够接受的电力值Win和在第1MG21发电时产生的损失的合计值的情况下),会产生电池70也不能接受的剩余电力。若为了消除该剩余电力(将第1MG21的发电电力抑制为能够接受的电力值Win与第1MG21的发电损失的合计值以下)而抑制发动机转速Ne的增加(发动机转矩Te的上升),则会产生无法输出用户所要求的车辆驱动转矩这一问题。
[0048]因此,本实施例的ECU200在上坡路上起步(在大致停车状态下进行大加速器操作的典型模式)或者检测到在大致停车状态下进行了大加速器操作的情况下,闭合EHC电源100内部的继电器来进行EHC通电。由此,即使产生了剩余电力,也能够通过EHC140来消耗该剩余电力。因此,与不进行EHC通电的情况相比,不需要抑制发动机转速Ne的增加(发动机转矩Te的上升),能够抑制车辆的动力性能(从大致停车状态起步的性能)的恶化。该方面是本发明最具特征的方面。
[0049]以下,例示性地对“检测到在大致停车状态下进行了大加速器操作的情况下”进行EHC通电的情况进行说明。此外,在上坡路上起步是在大致停车状态下进行大加速器操作的典型模式,因此,虽然“检测到在大致停车状态下进行了大加速器操作的情况”也可以包括“在上坡路上起步的情况”,但在想要进行进一步特定为“在上坡路上起步”的情况下,只要附带性地加上“是上坡路”这一条件即可。对于是否为上坡路,例如基于来自加速度传感器159的加速度G进行判定即可。另外,也可以代替“检测到在大致停车状态下进行了大加速器操作的情况”而在“检测到在上坡路上起步的情况”下进行EHC通电。对于是否为在上坡路上起步,例如能够基于加速度G、加速踏板操作量A以及车速V来进行判定。
[0050]图4是E⑶200的功能框图。图4所示的各功能框可以通过硬件来实现,也可以通过软件来实现。
[0051]E⑶200包括判定部210和EHC通电控制部220。判定部210包括第I判定部211和第2判定部212。
[0052]第I判定部211基于加速踏板操作量A以及车速V,对是否在大致停车状态下进行了大加速器操作进行判定(检测)。在车速V小于阈值车速VO (例如lkm/h)、且加速踏板操作量A超过阈值操作量AO (例如70%)的情况下,判定部210判定为在大致停车状态下进行了大加速器操作。
[0053]在由第I判定部211判定为在大致停车状态下进行了大加速器操作的情况下,第2判定部212以EHC通电的履历(电流Ic以及电压Vc的履历(历史记录))为参考来推定进行了基准通电时间α的EHC通电时的催化剂温度Tc,对催化剂温度Tc是否小于允许上限温度Tmax进行判定(预测)。在此,基准通电时间α是预测为车速V从小于阈值车速VO到达到基准车速所需要的时间。基准车速是能够期待即使不进行EHC通电也能够用第2MG22消耗第1MG21的发电电力的车速。即,若从车辆起步时开始经过基准通电时间α,则能够期待即使不进行EHC通电也能够用第2MG22消耗第1MG21的发电电力。此外,基准通电时间α可以为预先通过实验等求出的固定值,也可以为与加速踏板操作量A和/或车速V相应的可变值。
[0054]EHC通电控制部220基于判定部210的判定结果来控制EHC通电。在判定为在大致停车状态下进行了大加速器操作的情况下,EHC通电控制部220以预测为催化剂温度Tc小于允许上限温度Tmax为条件,启动通电定时器(开始计测经过时间)。并且,EHC通电控制部220进行EHC通电直到通电定时器达到基准通电时间α,在通电定时器达到基准通电时间α后停止EHC通电,并复位通电定时器。
[0055]图5是表示用于实现上述功能的E⑶200的处理顺序的流程图。该流程以预定周期反复执行。
[0056]在步骤(以下,将步骤省略为“S”)10中,E⑶200对通电定时器是否为启动中进行判定。[0057]在SlO中判定为通电定时器不为启动中的情况下(在SlO中为“否”),E⑶200在Sll中对是否车速V小于阈值车速VO且加速器踏板操作量A超过阈值操作量AO (是否在大致停车状态下进行了大加速器操作)进行判定。
[0058]在不是V〈V0且Α>Α0的情况下(在Sll中为“否”),E⑶200使处理结束。
[0059]另一方面,在是V〈V0且Α>Α0的情况下(在Sll中为“是”),E⑶200在S12中设定上述的基准通电时间α,在S13中推定上述的催化剂温度Tc,在S14中判定催化剂温度Tc是否小于允许上限温度Tmax。
[0060]在催化剂温度Tc超过允许上限温度Tmax的情况下(在S14中为“否”),E⑶200使
处理结束。
[0061]在催化剂温度Tc小于允许上限温度Tmax的情况下(在S14中为“是”),E⑶200启动通电定时器。
[0062]在SlO中判定为通电定时器为启动中的情况下(在SlO中为“是”),E⑶200在S16中对通电定时器是否达到了基准通电时间α进行判定。
[0063]在通电定时器未达到基准通电时间α的情况下(在S16中为“否”),Ε⑶200在S17中进行EHC通电。
[0064]在通电定时器达到了基准通电时间α的情况下(在S16中为“是”),Ε⑶200在S18中停止EHC通电。然后,E⑶200在S19中复位通电定时器。
[0065]如上所述,本实施例的E⑶200在第1MG21的发电电力剧增的、上坡路上起步时或者大致停车状态下进行大加速器操作时进行EHC通电。由此,即使第1MG21的发电电力剧增而产生了超过电池70能够接受的电力值Win的剩余电力,也能够将该剩余电力作为EHC140的加热能来进行消耗。因此,与不进行EHC通电的情况相比,不需要抑制发动机转速Ne的增加(发动机转矩Te的上升),能够抑制车辆的动力性能(从大致停车状态的起步性能)的恶化。
[0066]进一步,在上坡路上起步时和/或在大致停车状态下进行大加速器操作时会产生大量的排气,因此要求EHC140具有高的净化性能,在本实施例中,利用剩余电力对EHC140进行加热,因此,在催化剂温度下降了的情况下也能够使催化剂温度尽早上升到活性温度。因此,也能够谋求提高车辆起步时的排气的净化性能。
[0067]此外,在本实施例中,对在“在上坡路上起步时或者在大致停车状态下进行大加速器操作时”的情况下进行EHC通电的情况进行了说明,但也可以为:在“在上坡路上起步时或者在大致停车状态下进行大加速器操作时”的情况的基础上,在“电池70能够接受的电力值Win小于阈值的情况”下进行EHC通电。由此,能够在产生剩余电力的可能性更高的情况下进行EHC通电。
[0068]另外,在本实施例中,将本发明应用于通常的混合动力车辆,但也可以将本发明应用于能够用外部电源的电力对电池70充电的插电型混合动力车辆。在这样的插电型混合动力车辆中,与通常的混合动力车辆相比,发动机停止状态具有持续更长的倾向而更需要进行催化剂预热,因此本发明的应用尤其有效。
[0069]应该认为,在此公开的实施例在所有方面都是例示而不是限制性的内容。本发明的范围不是通过上述说明而是通过权利要求书来表示,意在包含与权利要求书等同的含义以及范围内的所有变更。[0070]附图标记说明
[0071]I车辆,10发动机,20MG,21第1MG,22第2MG,40动力分配装置,50减速器,60PCU,70电池,80驱动轮,100电源,130排气通路,140EHC, 151监视单元,152电流传感器,153电压传感器,154转速传感器,155、156分解器,157车速传感器,158加速器踏板位置传感器,159加速度传感器,200ECU, 210判定部,211第I判定部,212第2判定部,220通电控制部。
【权利要求】
1.一种车辆的控制装置,所述车辆具备发动机(10)、能够电加热的催化剂装置(140)以及第I旋转电机(21 ),所述催化剂装置对所述发动机的排气进行净化,所述第I旋转电机在车速小于第I车速的低速状态下产生与所述发动机的动力相应的电力, 所述控制装置具备: 切换装置(100),其对所述第I旋转电机与所述催化剂装置的电连接状态进行切换;和 通电控制部(200 ),其通过控制所述切换装置来控制所述催化剂装置的通电, 当所述车辆在上坡路上起步时、或者当在所述低速状态下进行了加速器操作量超过阈值操作量的大加速器操作时,所述通电控制部使所述催化剂装置通电预定时间。
2.根据权利要求1所述的车辆的控制装置,其中, 当所述车辆在上坡路上起步时、或者当在所述低速状态下进行了所述大加速器操作时,所述通电控制部推定对所述催化剂装置通电了基准时间时的催化剂温度,在所述催化剂温度小于允许温度的情况下使所述催化剂装置通电,在所述催化剂温度超过所述允许温度的情况下不使所述催化剂装置通电。
3.根据权利要求2所述的车辆的控制装置,其中, 所述车辆还具备第2旋转电机(22),该第2旋转电机(22)连接于驱动轴,其转速与车速成比例, 所述基准时间是预测为车速从小于所述第I车速到达到第2车速所需要的时间, 所述第2车速被设定为如下车速值,所述车速值是推定为即使不将所述第I旋转电机的发电电力通到所述催化剂装置也能够用所述第2旋转电机来消耗所述第I旋转电机的发电电力的值。
4.根据权利要求1所述的车辆的控制装置,其中, 所述车辆还具备能够在与所述第I旋转电机之间授受电力的蓄电装置(70), 当所述车辆在上坡路上起步且所述蓄电装置能够接受的电力值小于阈值电力值时、或者当在所述低速状态下进行了所述大加速器操作且所述蓄电装置能够接受的电力值小于阈值电力值时,所述通电控制部使所述催化剂装置通电。
5.根据权利要求1所述的车辆的控制装置,其中, 所述车辆还具备行星齿轮装置(40),该行星齿轮装置(40)包括:齿圈,其连接于驱动轴;太阳轮,其连接于所述第I旋转电机;小齿轮,其与所述太阳轮以及所述齿圈接合;以及齿齿轮架,其连接于所述发动机,并支承所述小齿轮以使得所述小齿轮能够自转。
6.一种车辆的控制方法,是车辆的控制装置执行的控制方法,所述车辆具备发动机(10)、能够电加热的催化剂装置(140)、连接于所述发动机的第I旋转电机(21)以及对所述第I旋转电机与所述催化剂装置的连接状态进行切换的切换装置(100),所述催化剂装置对所述发动机的排气进行净化,所述第I旋转电机在车速小于第I车速的低速状态下产生与所述发动机的动力相应的电力, 所述控制方法包括: 判定步骤,判定所述车辆是否在上坡路上起步或者是否在所述低速状态下进行了加速器操作量超过阈值操作量的大加速器操作;和 控制步骤,当所述车辆在上坡路上起步时、或者当在所述低速状态下进行了所述大加速器操作时,控制所述切换装置以使所述催化剂装置通电预定时间。
【文档编号】F02D45/00GK103582746SQ201180071332
【公开日】2014年2月12日 申请日期:2011年6月2日 优先权日:2011年6月2日
【发明者】胜田浩司 申请人:丰田自动车株式会社